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Generative modeling (for time series)

e Given datasets from an (unknown) distribution  (target) of a time series, e.g.

@ Medical data of a patient

@ Renewable energy production

@ Finance: asset price, volatility surface, ...

» The goal is to
@ learn/estimate
@ generate new samples of u:

o Useful for improving clinical predictions, weather forecast
e Financial industry: market stress test, market risk measurement, deep hedging,
reinforcement learning for optimal trading



Generative modeling techniques

e Generative modeling (GM) has become a classical task in Al and machine learning
used notably in image processing with spectacular success (DALL-E, Midjourney, Stable
diffusion, etc), and controversies!

e Several competing methods:

@ Likelihood-based models (2011-): energy-based models (EBM), variational
auto-encoders (VAE), normalizing flow models, etc

@ Implicit generative models (2014-): generative adversarial network (GAN)

@ Score-based diffusion models (2020-): emergent class of generative Al models
that achieved state-of-the-art performance by outperforming GANs.

Forward SDE (data — noise)
dx = £(x, t)dt + g(t)dw *)@
score function
dx = [£(x,t) - g*(t)V logpe(x)] dt + g(t)dw @

Reverse SDE (noise — data)

but mostly for static data/image.



Challenges of GM for time series

e Temporal setting (sequential data) poses new challenges to GM:
@ not enough to learn the time marginals
@ learn the joint distribution without exploiting the sequential structure is also
not sufficient

@ capture the potentially complex dynamics of variables across time:
conditional distribution over time



State-of-the-art generative methods for time series

e Time series GAN (Yoon et al. 19): combination of an unsupervised adversarial loss
on real/synthetic data and supervised loss for generating sequential data

e Quant GAN (Wiese et al. 20): adversarial generator using temporal convolutional
networks

e Causal optimal transport GAN (Xu et al. 20): adversarial generator using the
adapted Wasserstein distance for processes

e PCF-GAN (Lou et al. 23): Path characteristic function into GAN

e Neural SDEs: SDE representation of time series with parametric (e.g. NN) coefficients
to be trained for fitting with real samples (Remlinger et al. 21, Kidger et al. 21)

e Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20).

» Most of these GM are parametric and require the training of NN
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to be trained for fitting with real samples (Remlinger et al. 21, Kidger et al. 21)

e Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20).

» Most of these GM are parametric and require the training of NN

» We propose here a nonparametric generative model based on Schrodinger bridge,
relying on diffusion, but in contrast with score-based diffusion models, it is over a finite
horizon without time reversal, and adapted for time series.



Outline

@ Schrodinger bridge for time series



Schradinger bridge for time series

Reminder on the (classical) Schrodinger bridge (SB) problem

e Entropy optimal transport problem of Schrédinger (1932), see survey in Léonard (14):
Given:

@ reference measure on path spaces (e.g. Wiener W) over a finite horizon T
@ two distributions p, v (e.g. data and prior)
find the closest probability measure P to the reference w.r.t. Kullback-Leibler divergence,

i.e. relative entropy, which admits as marginals: x4 at time 0 and v at time T.

» Stochastic control formulation by Girsanov's theorem (Dai Pra 1991, Chen et al. 20)
Minimize over control process «

1 dP

-
2 — R
]E[E/O || dt] (equal to KL(P, W) := /Iog S7dP)

subject to

dXt = Oéfdt + th, 0 S t S T, X() ~ [, XT ~ V.



Application of SB to generative modeling

The optimal drift of the SB problem is in feedback form: af = a*(t, X¢) with a*
characterized in terms of a Schrodinger system, and the solution can be solved
numerically by

@ lterative Proportional Fitting (IPF), a.k.a. Sinkhorn algorithm

@ Score-based matching: refinement of IPF

— Generative model for sampling piqgsta: recent works by
De Bortoli et al. (21-), Vargas et al. (21), Wang et al. (21)



Schrodinger bridge time series problem

Let 1 € P((RY)") be the data time series distribution of some R-valued process
observed at N dates: target time series measure.

e Entropic interpolation of y: : Find a diffusion process X on RY satisfying
dX; = adt+dW,, 0<t<T, Xo=0,

with a controlled drift o minimizing

J(a) = IE[% /OT|at|2dt]

and such that (X, ..., Xiy) ~ i (perfect match of the target time series measure), for

sometimegridtp =0< ... <t <...<ty=T.

Remark: the time grid 7 = {t; : i € [1, N]} for the interpolation of the Schrodinger
diffusion may be different from the observed times of the time series.



Schradinger bridge for time series

Assumptions

Assume that p admits a density w.r.t. Lebesgue measure on (Rd)N, denoted by misuse
of notation: p(xi,...,xn).

Denote by ;¥ the distribution of Brownian motion W on T, i.e. of (W, ..., Ws,),
hence with density:

N—-1

1 Xiy1 — xi|?
W) = [] 7)&[,(,@),

o V2r(tisr — 8 2(tip1 — t;)
o We assume that the relative entropy of p w.r.t. x¥¥ is finite, i.e.

(H) KL(ulpl) = /loguiwdu < .
T

Remark: Assumption (H) is satisfied whenever ;1 comes from a process with

@ Gaussian noise

@ Heavy-tailed distribution but with second moment



Solution to Schrodinger bridge time series (SBTS)

Theorem (Diffusion SBTS)

Under (H), the optimal controlled drift of the SBTS problem is in the path-
dependent form:

a; = a'(t,X5; Xy), ti<t<tp, i=0,...,N—1,
where we set X¢, := (Xg,...,Xt), and

a™(t,x; i) = Vi |og]EW[LW(Xt1, e X)X = X0, Xe = x},
KT

for x; = (x1,...,x) € (RY)’, x € RY. Here Ew denotes the expectation under
which X is a Brownian motion by Girsanov's theorem.

\.

— By construction, the diffusion (called SBTS ) process
dXt = &*(t, Xt; (Xt,-)tfgt)dt =+ th, X() = 0,

satisfies (Xe, ..., Xey) ~ p.



Application to generative modeling

e Choice of the time grid 7 = {t; : i € [1, N]}, At; = tiy1 — t;.

@ When d = 1: calibrate At; to the (empirical) variance of u over [ti, tit1]
(time-changed Brownian motion):

At; = VarH(X,url — X,').

@ For d > 1: normalize each component of the random vector of the time series by
its Std, and then use At; = 1.

e Estimate/learn the Schrédinger drift from samples of u, see next slides

e Simulate e.g. by Euler scheme the SBTS diffusion —
@ New samples of p with realizations of (X, ..., X))

@ Prediction by computing conditional law of X;,_ | X,



Schrodinger drift function

From the above theorem and Gaussian properties of BM, the drift function is given by

vxh,'(t,X; X,')

*
t,x;xj) = — 0
a ( ,X,X,) h,‘(t,X;X,‘) )

t € [t tin), xi € (RY), x € RY, (1)

with
hi(t,x; x;) = EY"NN(O,’dx(N_;)) [P(Xi,X + AVt — tYiga, .,
N—1
X+t — Y+ Y VE - g Yj+1)}
j=it1
with p := i, the density ratio, and Y' = (Y, ..o, Yu) ~ N(0,In_)).
‘T
— Following method in Wang et al. (21), one can first derive an estimator p of p by

logistic regression, and then get an estimator of the drift function by plugging into (1)
and computing the expectation with Monte-Carlo.

» But this method is costly as it requires to sample from u'fmr/, and then use Monte-Carlo
expectation in the drift expression (1) by sampling from Y’ ~ N(0, Lyxn—i))-



Estimation of drift function
Alternate expression of the Schrodinger drift function

Using Bayes formula, we derive the following expression:

a*(t X'X') _ 1 Eu [(Xfi+1 B x)F,-(t,x,-,x,Xt,H)’Xt,. = X,'] (2)
B tiy1—t By [Fi(t, xi, x, Xey )| X, = xi] '

fort € [ti,ti1), i=0,...,N—1, x; € (R, x € RY, where

|Xi+1 - X|2 \Xi+1 - Xi|2 )
Fi(t, xi, x, xi = exp|— .
( #) (50 e
Here E,[-|-] is the (conditional) expectation under ;1 — One can then estimate the drift
function by relying directly on samples of data distribution .

Remark: When p is the distribution arising from a Markov chain, then the conditional
expectations in (2) (and so the drift function) will depend on the past values X, =
(Xt, - -, X¢;) only via the last value X .

In practice, we can test the Markov property of i, and see to what order we need to
condition on the past.



EETCTNFEL T EER R Estimation of drift function

Kernel estimation of the drift

e Approximate the conditional expectation under i by nonparametric regression
methods, e.g. kernel:

» From data samples X = (X X("’)), m=1,..., M from pu, the
Nadaraya-Watson estlmator of the drlft functlon in (2) is glven by
(m)
X — x;
1 Z(XHrl - t X( ) » X XI(+ml))K (%)
a(t,X;X,‘) = 3
tip1—t

m X(m)f i
Z File, X\ XK (=)

for x; = (x1,...,x), where K' is a kernel function on (RY)", e.g. in multiplicative form:
K'(xi) = [Tj=, K(%), with K kernel function on R, h > 0 is the bandwith parameter.
Remarks:
@ Choice of kernel is not crucial: we take the quartic kernel K(x) o< (1 — |x[*)’1 <1
@ Choice of bandwith h is more crucial: tradeoff between bias and variance.

@ (Rate) of convergence of 4 towards a* under current investigation



SBTS Algorithm

Nz: number of uniform steps in Euler scheme between two interpolation dates t;, ti+1:

tr, = ti+k/N., k=0,...,N—1.

Algorithm 1: SBTS Simulation

Input: data samples of time series (Xl(m), ceey Xl(vm)), m=1,...,M, and N,.
Initialization: initial state xo = 0;
fori=0,...,N—1do

Initialize state yp = x;;
for k=0,...,N; —1do
Compute é,(t,:',,.7 Yi; Xi) by kernel estimator;
Sample e, € N(0,1,) and compute: yxi1 = yk + ﬁé(tﬂi,yk; xi) + —F—=ex;

NS
end
Set Xi11 = yn, -
end
Return: xj,--- , xy

— Complexity of order: O(MNN,).



Outline

© Numerical experiments with applications



Numerical experiments [ SRS ELIEE

Evaluation metrics

In addition to visual plot of data vs generator samples path, we use some metrics to
evaluate the accuracy of our generators:

e Statistical metrics on

@ Marginal: Kolmogorov-Smirnov test with p-value: if p > « (usually 5%), we do not
reject the null-hypothesis (generator came from data of reference distribution)

@ Temporal dynamics: we compute the empirical distribution of the quadratic
variation: >_;[Xy,, — Xy|* along the time grid 7

@ Correlation structure: Comparison of empirical covariance or correlation matrix
along the time grid T

@ Predictive score: measure ability to capture conditional distribution over time.

e Tests on real metric of interest to industry:

@ Compare deep hedging in risk management, pricing, etc on historical data sets vs
synthetic samples



Toy examples
Autoregressive (AR) model

th = b+ €1,
Xy = =Xy +ée2,
Xy = =X, + /| Xy | +e3,

where ¢; are independent noises, ¢; ~ N (0, a,-z), with 01 = 0.1, 0 = 03 = 0.05, b = 0.7.

e Parameters: M = 1000, bandwith h = 0.05, N. = 100
Runtime for 500 generated samples = 4s.

] o E E E
x, X, X,

Figure: Comparison between distribution from reference AR model (data) and generated
distribution for each couple (Xy;, Xy;) with i, € [1,3] with i # j



Metrics table for SBST generator vs AR model

p-value gs Gs Qs Gos
X | 0.98 0.535 0.528 0.855 0.861
X, | 0.74 -0.873 | -0.861 | -0.516 | -0.514
X | 0.90 1.243 1.251 1.808 1.793

Table: Marginal metrics for AR model and generator (§ for percentile)

Xo | Xo | X
X, | 0 0.014 | -0.01
X, | 0014 | 0 0.013
X, | -0.01 | 0.013 | 0

Table: Difference between empirical correlation from generated samples and reference samples



Numerical experiments [ SRS ELIEE

A multivariate AR Gaussian model

Xti+1 = ¢Xt,. +5t,-+17 with Et; NN(O, Uld+(1 —O')Hd),
¢ € [0,1]: correlation across time steps, o € [—1,1]: correlation across the components.

» We compute the predictive score: Mean absolute error between conditional mean
(from generated model) and the true value: E[X;, |X;] = ¢X.

Temporal correlation (fixing o = 0.8) 1 Feature correlation (fixing ¢ = 0.8)
Settngs | $#=02 | 6-05 | $=08 || o0=02 | o=05 | o=038
Predictive score (lower the better)
SBTS .161 + .016 .180 + .026 244 £ 014 | 325+.052 | .295+.038 | .244 £ .014

TimeGAN .640 +0.003 | 0.412 + 0.002 .251 £ .002 .282 + .005 .261 £+ .002 .251 4+ .002

Table: Predictive score for SBTS vs TimeGan



Numerical experiments [ SRS ELIEE

GARCH model

2 _ 2 2 -
Oty = aotoanX;taoaXi , i=1...,N,

where ag =5, a1 = 0.4, ax = 0.1, &, ~ N(0,0.1), N = 60.

{Xfiﬂ = Ot1€t4

e Parameters: M = 1000, bandwith h = 0.2, N = 100
Runtime for 1000 generated paths = 100s.

0.8
0.4
= «»
S o0 5
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time

Figure: Samples path of reference GARCH (left) and generator SBTS (right)




Metrics for SBST generator vs GARCH model
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Marginal index Xt

Figure: Top left: p-value for the marginals X;. Top right: samples plot of the joint distribution
(Xfu Xflv)'



Numerical experiments [ SRS ELIEE

Fractional Brownian motion

Fractional Brownian motion (FBM) with Hurst index H = 0.1.

e Parameters: M = 1000, N = 60, N, = 100, bandwith h = 0.05.
Runtime for 1000 generated paths = 100s.

9]
g o Boo
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Figure: Four samples path of reference FBM (left) and generator SBTS (right)



Toy examples
Metrics for SBST generator vs FBM

FBM

0.0

Figure: Top: Quadratic variation distribution Zf\’:l \XtH_l
Bottom: Covariance matrix for reference FBM and SBTS

SBTS

— Xy;|* for N = 60.
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Toy examples
Estimation of Hurst index

Standard estimator of Hurst index:

N—-1
e (3 X = XP?)
A= Z|1- =0
2 [ log N

» From our generated SBTS with N = 60, we get:

A

H = 0.102, Std = 0.003.



Application to deep hedging on real data sets (Apple)

Data: stock prices of Apple from jan. 1, 2010 to jan. 30, 2020, with sliding window of
N = 60 days, — M = 2500 samples.

e Consider a ATM call option on Apple: g(X7) = (X7 — K)+, and we search for a price
p* and hedging strategy A* minimizing the quadratic criterion (loss function):

N—1
2
(p,A) +— IE‘ p+ Z Ay (X, — Xy) —g(X1)| = replication error
i=0

PnL



Application with real-data sets
Application to deep hedging on real data sets (Apple)

Data: stock prices of Apple from jan. 1, 2010 to jan. 30, 2020, with sliding window of
N = 60 days, — M = 2500 samples.

e Consider a ATM call option on Apple: g(X7) = (X7 — K)+, and we search for a price

p* and hedging strategy A* minimizing the quadratic criterion (loss function):

N—1
2
(p,A) +— IE‘ p+ Z Ay (X, — Xy) —g(X1)| = replication error
i=0

PnL

» We parametrize A by a LSTM network that is trained from synthetic data sets
produced by SBTS, and we compare the results with real-data sets.

o

Deep Hedging
Dataset 10% i i "
Backtest ——>

—> SBTS

Figu re: Procedure of backtest for deep hedging



Numerical experiments

Comparison of the PnL and replication error with real-data and generative SBTS

=3 pata
=3 58TS

ET ET 002 000 o0
PoL

Figure: Deep hedging PnL distribution from test set

Training Set Test Set

Price Mean Std Mean Std
Data 0.0488 | 0.000165 | 0.011 -0.015 | 0.015
SBTS | 0.0506 | 0.0004 0.0109 | -0.012 | 0.013

Table: Mean of PnL and its Std (replication error).



Conclusion

Concluding remarks

e Novel generative model for time series based on Schrddinger bridge (SB) approach:

@ Solution described by a forward stochastic differential equation (SDE) over a finite
period, which matchs perfectly the data distribution

@ Drift estimated by nonparametric regression, e.g. kernel method: practical and

low-cost computationally (does not require training of neural networks as in GAN
type methods)

e Series of numerical experiments, including financial applications with real-data, to
illustrate the performance and accuracy of our generative SBTS.

e Further developments:

@ SBTS model can be enriched to fit more accurately with data time series:

o diffusion coefficient
e jump-diffusion process

@ Kernel method suffer from curse of dimensionality. Alternately, the drift function

can be approximated by neural networks, and more precisely with a LSTM
architecture.



Conclusion

Reference

[B M. Hamdouche, P. Henry-Labordere, H. Pham. Generative modeling for time
series via Schrodinger bridge. SSRN 4412434, arXiv:2304.05093

Code available on Github: https://github.com/hamdouchm/SBTimeSeries

THANK YOU FOR YOUR ATTENTION
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