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Introduction

Generative modeling (for time series)

• Given datasets from an (unknown) distribution µ (target) of a time series, e.g.

Medical data of a patient

Renewable energy production

Finance: asset price, volatility surface, ...

I The goal is to

learn/estimate µ

generate new samples of µ:

Useful for improving clinical predictions, weather forecast
Financial industry: market stress test, market risk measurement, deep hedging,
reinforcement learning for optimal trading
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Introduction

Generative modeling techniques

• Generative modeling (GM) has become a classical task in AI and machine learning
used notably in image processing with spectacular success (DALL-E, Midjourney, Stable
diffusion, etc), and controversies!

• Several competing methods:

Likelihood-based models (2011-): energy-based models (EBM), variational
auto-encoders (VAE), normalizing flow models, etc

Implicit generative models (2014-): generative adversarial network (GAN)

Score-based diffusion models (2020-): emergent class of generative AI models
that achieved state-of-the-art performance by outperforming GANs.

but mostly for static data/image.
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Introduction

Challenges of GM for time series

• Temporal setting (sequential data) poses new challenges to GM:

not enough to learn the time marginals

learn the joint distribution without exploiting the sequential structure is also
not sufficient

capture the potentially complex dynamics of variables across time:
conditional distribution over time
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Introduction

State-of-the-art generative methods for time series

• Time series GAN (Yoon et al. 19): combination of an unsupervised adversarial loss
on real/synthetic data and supervised loss for generating sequential data

• Quant GAN (Wiese et al. 20): adversarial generator using temporal convolutional
networks

• Causal optimal transport GAN (Xu et al. 20): adversarial generator using the
adapted Wasserstein distance for processes

• PCF-GAN (Lou et al. 23): Path characteristic function into GAN

• Neural SDEs: SDE representation of time series with parametric (e.g. NN) coefficients
to be trained for fitting with real samples (Remlinger et al. 21, Kidger et al. 21)

• Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20).

I Most of these GM are parametric and require the training of NN

I We propose here a nonparametric generative model based on Schrödinger bridge,
relying on diffusion, but in contrast with score-based diffusion models, it is over a finite
horizon without time reversal, and adapted for time series.
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Schrödinger bridge for time series

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications
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Schrödinger bridge for time series

Reminder on the (classical) Schrödinger bridge (SB) problem

• Entropy optimal transport problem of Schrödinger (1932), see survey in Léonard (14):
Given:

reference measure on path spaces (e.g. Wiener W) over a finite horizon T

two distributions µ, ν (e.g. data and prior)

find the closest probability measure P to the reference w.r.t. Kullback-Leibler divergence,
i.e. relative entropy, which admits as marginals: µ at time 0 and ν at time T .

I Stochastic control formulation by Girsanov’s theorem (Dai Pra 1991, Chen et al. 20)
Minimize over control process α

E
[1

2

∫ T

0

|αt |2dt
]

(equal to KL(P,W) :=

∫
log

dP
dW

dP )

subject to

dXt = αtdt + dWt , 0 ≤ t ≤ T , X0 ∼ µ, XT ∼ ν.
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Schrödinger bridge for time series

Application of SB to generative modeling

The optimal drift of the SB problem is in feedback form: α∗t = a∗(t,Xt) with a∗

characterized in terms of a Schrödinger system, and the solution can be solved
numerically by

Iterative Proportional Fitting (IPF), a.k.a. Sinkhorn algorithm

Score-based matching: refinement of IPF

→ Generative model for sampling µdata: recent works by

De Bortoli et al. (21-), Vargas et al. (21), Wang et al. (21)
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Schrödinger bridge for time series

Schrödinger bridge time series problem

Let µ ∈ P((Rd)N) be the data time series distribution of some Rd -valued process
observed at N dates: target time series measure.

• Entropic interpolation of µ: : Find a diffusion process X on Rd satisfying

dXt = αtdt + dWt , 0 ≤ t ≤ T , X0 = 0,

with a controlled drift α minimizing

J(α) := E
[1

2

∫ T

0

|αt |2dt
]

and such that (Xt1 , . . . ,XtN ) ∼ µ (perfect match of the target time series measure), for
some time grid t0 = 0 < . . . < ti < . . . < tN = T .

Remark: the time grid T = {ti : i ∈ J1,NK} for the interpolation of the Schrödinger
diffusion may be different from the observed times of the time series.
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Schrödinger bridge for time series

Assumptions

Assume that µ admits a density w.r.t. Lebesgue measure on (Rd)N , denoted by misuse
of notation: µ(x1, . . . , xN).

Denote by µW
T the distribution of Brownian motion W on T , i.e. of (Wt1 , . . . ,WtN ),

hence with density:

µWT (x1, . . . , xN) =

N−1∏
i=0

1√
2π(ti+1 − ti )

exp
(
−
|xi+1 − xi |2

2(ti+1 − ti )

)
.

• We assume that the relative entropy of µ w.r.t. µW
T is finite, i.e.

(H) KL(µ|µW
T ) :=

∫
log

µ

µW
T
dµ < ∞.

Remark: Assumption (H) is satisfied whenever µ comes from a process with

Gaussian noise

Heavy-tailed distribution but with second moment
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Schrödinger bridge for time series

Solution to Schrödinger bridge time series (SBTS)

Theorem (Diffusion SBTS)

Under (H), the optimal controlled drift of the SBTS problem is in the path-
dependent form:

α∗t = a∗(t,Xt ; X ti ), ti ≤ t < ti+1, i = 0, . . . ,N − 1,

where we set X ti := (Xt1 , . . . ,Xti ), and

a∗(t, x ; x i ) = ∇x logEW

[ µ
µW
T

(Xt1 , . . . ,XtN )
∣∣X ti = x i ,Xt = x

]
,

for x i = (x1, . . . , xi ) ∈ (Rd)i , x ∈ Rd . Here EW denotes the expectation under
which X is a Brownian motion by Girsanov’s theorem.

→ By construction, the diffusion (called SBTS ) process

dXt = a∗(t,Xt ; (Xti )ti≤t)dt + dWt , X0 = 0,

satisfies (Xt1 , . . . ,XtN ) ∼ µ.
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Schrödinger bridge for time series

Application to generative modeling

• Choice of the time grid T = {ti : i ∈ J1,NK}, ∆ti = ti+1 − ti .

When d = 1: calibrate ∆ti to the (empirical) variance of µ over [ti , ti+1]
(time-changed Brownian motion):

∆ti = Varµ(Xi+1 − Xi ).

For d > 1: normalize each component of the random vector of the time series by
its Std, and then use ∆ti = 1.

• Estimate/learn the Schrödinger drift from samples of µ, see next slides

• Simulate e.g. by Euler scheme the SBTS diffusion →
New samples of µ with realizations of (Xt1 , . . . ,XtN )

Prediction by computing conditional law of Xti+1 |X ti
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Schrödinger bridge for time series Estimation of drift function

Schrödinger drift function

From the above theorem and Gaussian properties of BM, the drift function is given by

a∗(t, x ; x i ) =
∇xhi (t, x ; x i )

hi (t, x ; x i )
, t ∈ [ti , ti+1), x i ∈ (Rd)i , x ∈ Rd , (1)

with

hi (t, x ; x i ) = EY i∼N (0,Id×(N−i))

[
ρ(x i , x +

√
ti+1 − tYi+1, . . . ,

x +
√

ti+1 − tYi+1 +

N−1∑
j=i+1

√
tj+1 − tjYj+1)

]
,

with ρ := µ

µW
T

the density ratio, and Y i = (Yi+1, . . . ,YN) ∼ N (0, IN−i ).

→ Following method in Wang et al. (21), one can first derive an estimator ρ̂ of ρ by
logistic regression, and then get an estimator of the drift function by plugging into (1)
and computing the expectation with Monte-Carlo.

I But this method is costly as it requires to sample from µW
T , and then use Monte-Carlo

expectation in the drift expression (1) by sampling from Y i ∼ N (0, Id×(N−i)).
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Schrödinger bridge for time series Estimation of drift function

Alternate expression of the Schrödinger drift function

Using Bayes formula, we derive the following expression:

a∗(t, x ; x i ) =
1

ti+1 − t

Eµ
[
(Xti+1 − x)Fi (t, xi , x ,Xti+1 )

∣∣X ti = x i

]
Eµ
[
Fi (t, xi , x ,Xti+1 )

∣∣X ti = x i

] , (2)

for t ∈ [ti , ti+1), i = 0, . . . ,N − 1, x i ∈ (Rd)i , x ∈ Rd , where

Fi (t, xi , x , xi+1) = exp

(
− |xi+1 − x |2

2(ti+1 − t)
+
|xi+1 − xi |2

2(ti+1 − ti )

)
.

Here Eµ[·|·] is the (conditional) expectation under µ → One can then estimate the drift
function by relying directly on samples of data distribution µ.

Remark: When µ is the distribution arising from a Markov chain, then the conditional
expectations in (2) (and so the drift function) will depend on the past values X ti =
(Xt1 , . . . ,Xti ) only via the last value Xti .

In practice, we can test the Markov property of µ, and see to what order we need to
condition on the past.
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Schrödinger bridge for time series Estimation of drift function

Kernel estimation of the drift

• Approximate the conditional expectation under µ by nonparametric regression
methods, e.g. kernel:

I From data samples X (m)
N = (X

(m)
1 , . . . ,X

(m)
N ), m = 1, . . . ,M from µ, the

Nadaraya-Watson estimator of the drift function in (2) is given by

â(t, x ; x i ) =
1

ti+1 − t

M∑
m=1

(X
(m)
i+1 − x)Fi (t,X

(m)
i , x ,X

(m)
i+1 )K i

(X (m)
i − x i

h

)
M∑

m=1

Fi (t,X
(m)
i , x ,X

(m)
i+1 )K i

(X (m)
i − x i

h

) ,

for x i = (x1, . . . , xi ), where K i is a kernel function on (Rd)i , e.g. in multiplicative form:
K i (x i ) =

∏i
j=1 K(xj), with K kernel function on Rd , h > 0 is the bandwith parameter.

Remarks:

Choice of kernel is not crucial: we take the quartic kernel K(x) ∝ (1− |x |2)21|x|≤1

Choice of bandwith h is more crucial: tradeoff between bias and variance.

(Rate) of convergence of â towards a∗ under current investigation
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Schrödinger bridge for time series Estimation of drift function

SBTS Algorithm

Nπ: number of uniform steps in Euler scheme between two interpolation dates ti , ti+1:

tπk,i = ti + k/Nπ, k = 0, . . . ,Nπ − 1.

Algorithm 1: SBTS Simulation

Input: data samples of time series (X
(m)
1 , · · · ,X (m)

N ), m = 1, . . . ,M, and Nπ .
Initialization: initial state x0 = 0;
for i = 0, . . . ,N − 1 do

Initialize state y0 = xi ;
for k = 0, . . . ,Nπ − 1 do

Compute â(tπk,i , yk ; x i ) by kernel estimator;

Sample εk ∈ N (0, Id ) and compute: yk+1 = yk + 1
Nπ

â(tπk,i , yk ; x i ) + 1√
Nπ
εk ;

end
Set xi+1 = yNπ .

end
Return: x1, · · · , xN

→ Complexity of order: O(MNNπ).
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Numerical experiments

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications



18/30

Numerical experiments Toy examples

Evaluation metrics

In addition to visual plot of data vs generator samples path, we use some metrics to
evaluate the accuracy of our generators:

• Statistical metrics on

Marginal: Kolmogorov-Smirnov test with p-value: if p > α (usually 5%), we do not
reject the null-hypothesis (generator came from data of reference distribution)

Temporal dynamics: we compute the empirical distribution of the quadratic
variation:

∑
i |Xti+1 − Xti |

2 along the time grid T
Correlation structure: Comparison of empirical covariance or correlation matrix
along the time grid T
Predictive score: measure ability to capture conditional distribution over time.

• Tests on real metric of interest to industry:

Compare deep hedging in risk management, pricing, etc on historical data sets vs
synthetic samples
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Numerical experiments Toy examples

Autoregressive (AR) model


Xt1 = b + ε1,

Xt2 = −Xt1 + ε2,

Xt3 = −Xt2 +
√
|Xt1 |+ ε3,

where εi are independent noises, εi ∼ N (0, σ2
i ), with σ1 = 0.1, σ2 = σ3 = 0.05, b = 0.7.

• Parameters: M = 1000, bandwith h = 0.05, Nπ = 100
Runtime for 500 generated samples = 4s.
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Figure: Comparison between distribution from reference AR model (data) and generated
distribution for each couple (Xti ,Xtj ) with i , j ∈ J1, 3K with i 6= j
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Numerical experiments Toy examples

Metrics table for SBST generator vs AR model

p-value q5 q̃5 q95 q̃95

Xt1 0.98 0.535 0.528 0.855 0.861

Xt2 0.74 -0.873 -0.861 -0.516 -0.514

Xt3 0.90 1.243 1.251 1.808 1.793

Table: Marginal metrics for AR model and generator (q̃ for percentile)

Xt1 Xt2 Xt3

Xt1 0 0.014 -0.01

Xt2 0.014 0 0.013

Xt3 -0.01 0.013 0

Table: Difference between empirical correlation from generated samples and reference samples
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Numerical experiments Toy examples

A multivariate AR Gaussian model

Xti+1 = φXti + εti+1 , with εti ∼ N (0, σ1d + (1− σ)Id),

φ ∈ [0, 1]: correlation across time steps, σ ∈ [−1, 1]: correlation across the components.

I We compute the predictive score: Mean absolute error between conditional mean
(from generated model) and the true value: E[Xti+1 |X ti ] = φXti .

Temporal correlation (fixing σ = 0.8) Feature correlation (fixing φ = 0.8)
Settings φ = 0.2 φ = 0.5 φ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

Predictive score (lower the better)
SBTS .161± .016 .180± .026 .244± .014 .325± .052 .295± .038 .244± .014

TimeGAN .640± 0.003 0.412± 0.002 .251± .002 .282± .005 .261± .002 .251± .002

Table: Predictive score for SBTS vs TimeGan
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Numerical experiments Toy examples

GARCH model

{
Xti+1 = σti+1εti+1

σ2
ti+1

= α0 + α1X
2
ti + α2X

2
ti−1

, i = 1, . . . ,N,

where α0 = 5, α1 = 0.4, α2 = 0.1, εti ∼ N (0, 0.1), N = 60.

• Parameters: M = 1000, bandwith h = 0.2, Nπ = 100
Runtime for 1000 generated paths = 100s.
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Figure: Samples path of reference GARCH (left) and generator SBTS (right)
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Numerical experiments Toy examples

Metrics for SBST generator vs GARCH model
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Figure: Top left: p-value for the marginals Xti . Top right: samples plot of the joint distribution
(Xt1 ,XtN ).
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Numerical experiments Toy examples

Fractional Brownian motion

Fractional Brownian motion (FBM) with Hurst index H = 0.1.

• Parameters: M = 1000, N = 60, Nπ = 100, bandwith h = 0.05.
Runtime for 1000 generated paths = 100s.
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Figure: Four samples path of reference FBM (left) and generator SBTS (right)
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Numerical experiments Toy examples

Metrics for SBST generator vs FBM
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Bottom: Covariance matrix for reference FBM and SBTS
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Numerical experiments Toy examples

Estimation of Hurst index

Standard estimator of Hurst index:

Ĥ =
1

2

[
1−

log
( N−1∑

i=0

|Xti+1 − Xti |2
)

logN

]
.

I From our generated SBTS with N = 60, we get:

Ĥ = 0.102, Std = 0.003.
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Numerical experiments Application with real-data sets

Application to deep hedging on real data sets (Apple)

Data: stock prices of Apple from jan. 1, 2010 to jan. 30, 2020, with sliding window of
N = 60 days, → M = 2500 samples.

• Consider a ATM call option on Apple: g(XT ) = (XT − K)+, and we search for a price
p∗ and hedging strategy ∆∗ minimizing the quadratic criterion (loss function):

(p,∆) 7→ E
∣∣∣ p +

N−1∑
i=0

∆ti (Xti+1 − Xti )− g(XT )︸ ︷︷ ︸
PnL

∣∣∣2 = replication error

I We parametrize ∆ by a LSTM network that is trained from synthetic data sets
produced by SBTS, and we compare the results with real-data sets.

Figure: Procedure of backtest for deep hedging
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Numerical experiments Application with real-data sets

Comparison of the PnL and replication error with real-data and generative SBTS
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Figure: Deep hedging PnL distribution from test set

Training Set Test Set
Price Mean Std Mean Std

Data 0.0488 0.000165 0.011 -0.015 0.015
SBTS 0.0506 0.0004 0.0109 -0.012 0.013

Table: Mean of PnL and its Std (replication error).
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Conclusion

Concluding remarks

• Novel generative model for time series based on Schrödinger bridge (SB) approach:

Solution described by a forward stochastic differential equation (SDE) over a finite
period, which matchs perfectly the data distribution

Drift estimated by nonparametric regression, e.g. kernel method: practical and
low-cost computationally (does not require training of neural networks as in GAN
type methods)

• Series of numerical experiments, including financial applications with real-data, to
illustrate the performance and accuracy of our generative SBTS.

• Further developments:

SBTS model can be enriched to fit more accurately with data time series:

diffusion coefficient
jump-diffusion process

Kernel method suffer from curse of dimensionality. Alternately, the drift function
can be approximated by neural networks, and more precisely with a LSTM
architecture.
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Conclusion

Reference

q M. Hamdouche, P. Henry-Labordère, H. Pham. Generative modeling for time
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Code available on Github: https://github.com/hamdouchm/SBTimeSeries

Thank you for your attention

https://github.com/hamdouchm/SBTimeSeries
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