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GANs (Goodfellow et. al. (2014))

GANs are generative models, via the game of two neural networks
Generator network G

Discriminator network D
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A generator network G

Takes a random variable Z with a fixed Pz , and maps it
through a parametric function G

PG is the probability distribution of G (Z )

Optimizes G so that PG can best resemble the true distribution
Pr

G is implemented through an NN
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A discriminator network D

Checks via another NN whether the samples are fake or real
Assigns a score between 0 (fake) and 1 (real)
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GANs are popular in ML

High resolution image generation
Image inpainting
Visual manipulation
Text-to-image synthesis
Video generation
Style transfer
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GANs attract attention in MF

Deep learning for asset pricing
Portfolio and risk management
Simulation of financial time-series data
Fraud detection
Computing mean-field games

(Cao & G. (2021) and Eckerli & Osterrieder (2021) for reviews)
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GANs have many challenges...

Vanishing gradient/imbalance between G and D training
Berard (2020)
Convergence issue
Mescheder, Geiger, and Nowozin (2018), Cao and G. (2020)
Mode collapsing/gradient exploding
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GANs and divergence

GANs as minimax games between G and D

min
G

max
D
{EX∼Pr [logD(X )] + EZ∼Pz [log(1− D(G (Z )))]}

Fix G and optimize for D, then the optimal discriminator is

D∗G (x) =
pr (x)

pr (x) + pg (x)

with pr and pg the density functions of Pr and PG respectively
Therefore, the minimax game becomes

min
G

{
EX∼Pr

[
log

pr (X )

pr (X ) + pg (X )

]
+ EX∼PG

[
log

pg (X )

pr (X ) + pg (X )

]}
= − log 4 + 2JS(Pr ,PG )

JS(·, ·) denoting the Jensen-Shannon divergence
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Improper divergence function

Example: Given θ ∈ [0, 1], assume that P and Q satisfy

∀(X ,Y ) ∼ P, X = 0, Y ∼ Uniform(0, 1),

∀(X ,Y ) ∼ Q, X = θ, Y ∼ Uniform(0, 1)

As θ 6= 0,

KL(P,Q) = KL(Q,P) = +∞, JS(P,Q) = log(2)

As θ = 0,

KL(P,Q) = KL(Q,P) = JS(P,Q) = 0
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GANs and divergence

KL is infinite when two distributions are disjoint
JS has sudden jump, discontinuous at θ = 0
W1 is continuous and relatively smooth
Wasserstein L1 divergence outperforms KL and JS divergences
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GANs and divergence

f-GANs: f -divergence (Nock et. al. (2017))
LSGANs: Least square loss (Mao et. al (2017))
DRAGANs: Regret minimization (Kodali et. al. (2017))
CGANs: Conditional extension (Mirza and Osindero (2014))
WGANs: Wasserstein-1 distance
(Arjovsky, Chintala, and Bottou (2017)),
(Gulrajani et. al. (2017))
RWGANs: Relaxed Wasserstein divergence
(G., Hong, Lin, Yang (2017))
GANs with scaled Bregman:
(Srivastava, Greenewald, and Mirzazadeh (2019))
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Theoretical Studies of GANs

Connecting GANs with mean-field games
Cao, G., and Laurière (2020), Lin, Fung, Li, Nurbekyan, and
Osher (2020)
Connecting GANs with reinforcement learning actor-critic
Pfau and Vinyals (2016)
Connecting GANs with optimal transport
Cao, G., and Laurière (2020), Xu, Wenliang, Munn, Acciaio
(2020)
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Issue of Convexity
Issue of Learning Rate for SGA

GANs training via SGA

Training over a dataset D = {(zi , xj)}1≤i≤N, 1≤j≤M , with
{zi}Ni=1 ∼ PG and {xj}Mj=1 ∼ Pr

the minimax problem

min
θ∈Rdθ

max
ω∈Rdω

g(θ, ω),

with

g(θ, ω) =

∑N
i=1
∑M

j=1 F (Dω(xj),Dω(Gθ(zi )))

N ·M

Minimax games between the generator network Gθ and the
discriminator network Dω
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Issue of Convexity
Issue of Learning Rate for SGA

The parametrized version of vanilla GANs training is to find

min
θ

max
ω

EX∼Pr [logDω(X )] + EZ∼Pz [log(1− Dω(Gθ(Z )))]

The parametrized version of general GANs training is to find

min
θ

max
ω

EX∼Pr [f1(Dω(X ))] + EZ∼Pz [f2(Dω(Gθ(Z )))]

where f1, f2 are some quasi-concave functions chosen to address
the stability issues of GANs game, including WGANs.
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Issue of Convexity
Issue of Learning Rate for SGA

Sion’s theorem (1958)

Assuming
ω and θ chosen from compact and convex sets
g is upper continuous and quasi-convex in θ and lower
continuous and quasi-concave in ω

then minimax problem has no duality gap, i.e.,

min
θ

max
ω

g(ω, θ) = max
ω

min
θ

g(ω, θ)

(Generalized minimax theorem of John von Neumann (1959))
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Issue of Convexity
Issue of Learning Rate for SGA

Example with convexity/concavity issue
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Figure: SGA to solve miny maxx xy with (0, 0) the unique Nash equilibrium
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Issue of Convexity
Issue of Learning Rate for SGA

Improper parametrization for GANs training

Alert: Many existing works for GANs lack of proper concavity and
convexity properties!

Take X ∼ N(m, σ2), Z ∼ N(0, 1), with (m, σ) ∈ R× R+.
Consider the parametrization of the discriminator and the
generator networks: Dw (x) = D(w1,w2,w3)(x) =

1
1 + e−(w3/2·x2+w2x+w1)

,

Gθ(z) = G(θ1,θ2)(z) = θ2z + θ1,

where w = (w1,w2,w3) ∈ R3, and θ = (θ1, θ2) ∈ R× R+.
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Issue of Convexity
Issue of Learning Rate for SGA

Example of improper learning rate

Consider

f (x) = (a/2) x2 + b x , ∀x ∈ R,

where (a, b) ∈ R+ × R.
Finding the minimum x∗ = −(b/a) of f via the gradient
algorithm goes as follows:

xn+1 = xn − η(axn + b), ∀n ≥ 0,

with x0 ∈ R given and η the learning rate.
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Issue of Convexity
Issue of Learning Rate for SGA

Consider the error en = |xn − x∗|2:

en+1 = |xn+1 − x∗|2 =
(
1− ηa(2− ηa)

)
|xn − x∗|2

Thus,
en+1 = r en →

n→∞
+∞

as r =
(
1− ηa(2− ηa)

)
> 1 when η > 2/a.
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Optimal controls for GANs training

Three key parameters for fine tuning
Learning rate: on how far to move along the gradient direction
Batch size: the number of training samples used in the gradient
estimation
Time scale: the number of updates of the variables θ and ω
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Remark

Smaller learning rate and larger minibatch size reduce error and
oscillation (Cao, G. and Laurière (2020))
Optimal control of time scale can be shown to be equivalent to
optimal control of learning rate (G. and Mounjid (2021))
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Optimal learning rate: mathematical formulation

Starting from initial guess (w0, θ0)

SGA updating:

wt+1 = wt + ηwt gw (wt , θt),

θt+1 = θt − ηθt gθ(wt , θt)

with gw = ∇wg , gθ = ∇θg , and (ηwt , η
θ
t ) ∈ R2

+ the learning rate
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Coupled SDEs approximation (Cao and G. (2020))

{
dw(t) = gw (q(t))dt +

√
ησw (q(t))dW 1(t),

dθ(t) = −gθ(q(t))dt +
√
ησθ(q(t))dW 2(t)

q(t) = (w(t), θ(t))

σw : RM × RN →MR(M) and σθ : RM × RN →MR(N) are
approximated by the covariance of gw and gθ

Brownian motions W 1 and W 2 are independent
Learning rates (η, η) are fixed constants for the generator and
the discriminator
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Adaptive learning rate process η(t)

A learning rate η(t) at time t

η(t) =
(
ηw (t), ηθ(t)

)
=
(
uw (t)× η̄w (t), uθ(t)× η̄θ(t)

)
= u(t) • η̄(t) ∀t ≥ 0

Predefined base learning rate η̄t = (η̄w (t), η̄θ(t)) fixed by the
controller
An adapted learning rate ut = (uw (t), uθ(t)), adjusted around
η̄t and adaptive to the training process
uw (t) and uθ(t) assumed bounded by a fixed constant umax

Clipping parameter umax ≥ 0 introduced to handle the
convexity and explosion issue
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State dynamics

With the adaptive learning rate η(t), the corresponding SDE for
GANs training becomes

dw(t) = uw (t)gw (q(t))dt +
(
uw
√
η̄w
)
(t)σw (q(t))dW 1(t),

dθ(t) = −uθ(t)gθ(q(t))dt +
(
uθ
√
η̄θ
)
(t)σθ(q(t))dW 2(t)
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Control problem

T <∞ a finite time horizon
Reward function

J(T , t, q; u) = E[g(q(T ))|q(t) = q, u]

Uw and Uθ respective admissible controls set for uw and uθ

Objective
v(t, q) = min

uθ∈Uθ
max

uw∈Uw
J(T , t, q; u)

for any (t, q) ∈ [0,T ]× RM × RN
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Analysis of optimal learning rate control problem

Value function (G. and Mounjid (2021))

Under proper regularity assumptions, the value function v is a
solution (classical or viscosity) to the following equation:

vt + maxmin(uw ,uθ∈[0,umax])

{(
uwg>w vw − uθg>θ vθ

)
+1

2

[
(uw )2(Σ̄w : vww ) + (uθ)2(Σ̄θ : vθθ)

]}
= 0,

v(T , ·) = g(·)
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Optimal learning rate (G. Mounjid (2021))

Under simple regularity conditions, the optimal adaptive learning rate
ūw and ūθ are given by

ūw =

 0 ∨
( − g>w vw

Σ̄w : vww
∧ umax), if Σ̄w : vww < 0,

umax, otherwise

ūθ =

 0 ∨
( g>θ vθ

Σ̄θ : vθθ
∧ umax), if Σ̄θ : vθθ > 0,

umax, otherwise
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Here the matrices Σ̄w and Σ̄θ satisfy
Σ̄w (t, q) = {σ̄wt (σ̄wt )>}(q), Σ̄θ(t, q) = {σ̄θt (σ̄θ)>t }(q),

σ̄wt (q) =
√
η̄w (t)σw (q), σ̄θt (q) =

√
η̄θ(t)σθ(q)

for any t ∈ R+, and q = (w , θ) ∈ RM × RN ,
A : B = Tr[A>B] for any real matrices A and B
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On regularity conditions: v belongs to C1,2([0,T ],RM × RN).
For instance, when g and σ̄ are Lipschitz continuous.
The clipping parameter umax is closely related to the convexity
issue discussed for GANs minimax games.
When the convexity condition Σ̄w : vww < 0 is violated,
explosion in GANs training can be prevented by fixing an upper
bound ūmax for the learning rate.
The control (ūw , ūθ) is closely related to the standard Newton
algorithm.
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Numerical experiment

Vanila GANs setup
X ∼ N(3, 1),Z ∼ N(0, 1)

Discriminator accuracy expected to be 0.5
Epoch: the number of gradient updates needed to pass the
entire training dataset
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ADAM with base andadaptive learning rate
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Figure: Left: discriminator accuracy for ADAM with base learning rate;
Right: ADAM with an additional adaptive learning rate component
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Monge’s formulation of optimal transport

Figure: Earth mover problem

inf
T

{∫
X
c(x ,T (x))µ0(dx)

∣∣∣∣T#µ0 = µ1

}
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Primal and dual formulation of optimal transport

Kantorovich’s (primal) formulation of optimal transport

inf
π∈Π(µ,ν)

∫
X×Y

c(x , y)π(dx , dy)

with Π(µ, ν) the collection of couplings of µ and ν

Kantorovich-Rubinstein Duality [Villani, 2009]

Under proper conditions on the transport cost c , the primal and dual
problems are equivalent.
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WGANs and OT

Proposition [Cao, G. and Laurière, 2019]

For a given G, WGAN is an optimal transport problem.

Earlier geometric view of connecting GANs and optimal transport in
(Lei, Su, Cui, Yau, and Gu (2017))

Discriminator is to locate the best coupling among ΠG under a
given G and ΠG

Generator is to refine the set of possible couplings ΠG so that
the infimum becomes 0 eventually
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Key idea

WGANs as a minmax game of

min
G

max
D

EX∼Pr [logD(X )]− EZ∼Pz [logD(G (Z ))]

If f = log ◦D, assume f to be 1-Lipschitz, by
Kantorovich-Rubinstein duality,

sup
f s.t. ‖f ‖L≤1

EX∼Pr [f (X )]− EZ∼Pz [f (G (Z ))] = W1(Pr ,PG )

:= inf
γ∈Π(Pr ,PG )

∫
Ω×Ω
|x − y |γ(dx , dy)

with Π(Pr ,PG ) the collection of couplings of Pr and PG

Remark: this connection can be generalized to any GANs assuming
that the corresponding OT problem has a dual presentation.
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Discussion

Optimal controls of parameter fine tuning will improve the
performance of GANs: more applications?
Applying connection between GANs with mean-field games and
optimal transport for finance problems beyond financial data
simulation: high dimensional MFGs, MFCs, FBSDEs?
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This talk is based on
H. Y. Cao and X. Guo. (2021). GANs, some analytical
perspectives. Handbook of Machine Learning and Applications
to Mathematical Finance.
H. Y. Cao, X. Guo, and M. Lauriére (2020). Connecting GANs
and MFGs. Under review.
H. Y. Cao and X. Guo (2020). Approximation and convergence
of GANs training: an SDE approach. Under review.
X. Guo and O. Mounjid (2021). GANs training: a stochastic
control and game framework. Under review.
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Questions?
Thank you!
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