
  Coupling methods in stochastic control

Giovanni Conforti  
12/12/2025 

Based joint works with A.Cecchin, M.Cirant, A.Durmus, K.Eichinger, 
A.Porretta



Motivation



Set of admissible controls 

AdmT = {(ut)t∈[0,T] ℱt-prog.meas. with 𝔼[∫
T

0
|us |2 ds] < + ∞}

Stochastic control

Stochastic basis  

•  a filtered probability space with a -dimensional Brownian 
motion 
(Ω, ℱ, (ℱt)t≥0, (Bt)t≥0) d



Action functional and control problem  

JT,g
t,x (u) = 𝔼[∫

T

t
ℓ(Xu

s , us) ds + g(Xu
T)]

Stochastic control

Controlled dynamics 

dXu
s = [b(Xu

s ) + us] ds + σ(Xu
s ) ⋅ dBs Xu

t = x

φT,g
t (x) = inf

u∈AdmT

JT,g
t,x (u)



Markovian controls

Markov control policies 

• Markov control policies 
 

• Controlled state 

 

•  coincides with  with  

ℳT = {α : [0,T ] × ℝd ⟶ ℝd}

dXα
t = [b(Xα

s ) + αs(Xα
s )]ds + σ(Xα

s ) ⋅ dBs Xα
t = x

Xα Xuα uα
t = αt(Xα

t )

Equivalence of formulations 
Under mild assumptions  

φT,g
t (x) = inf

α∈ℳT

JT,g
t,x (uα)



Ergodic control problem

Ergodic controls 

•  is the set of ergodic Markov policies 

•  is the invariant distribution for the Markov process  

ℳ∞ = {α : ℝd ⟶ ℝ}

Xα
∞ Xα

dXα
s = [b(Xα

s ) + α(Xα
s )]ds + dBs

Ergodic control problem 

                 J∞(α) = 𝔼[ℓ(Xα
∞, α(Xα

∞))] inf
α∈ℳ∞

J∞(α)



Convergence to equilibrium

The Meta-Theorem (informal) 

Let  be optimal and  be the optimal ergodic policy. Then, there exist 
 independent of   such that  

 

holds for a large class of initial conditions and terminal costs.

αT ∈ ℳT α∞

C, λ ∈ (0, + ∞) T

W1(ℒ(XαT

t ), ℒ(Xα∞)) ≲ C (e−λt + e−λ(T−t)) ∀t ∈ [0,T ]

• Manifestation of the exponential turnpike phenomenon 

• Exponential estimates for |αT
t − α∞ |



Ergodicity of uncontrolled diffusions 

dXt = b(Xt)dt + σ(Xt) ⋅ dBt

Monotonicity of the drift  

⟨b(x) − b( ̂x), x − ̂x⟩ ≤ − κb( |x − ̂x | ) |x − ̂x |2 , lim inf
r→+∞

κb(r) > 0.

Lyapunov condition 

There exist  s.t. λ, C > 0, L < + ∞

b(x) ⋅ x ≤ − λ |x |2 + C, Db(x) ⪯ L

Exponential convergence to equilibrium



What induces ergodicity in control?

Drift-induced ergodicity 

•  is asymptotically monotone 

•  strongly confining in  

•  does not oscillate too much or does not grow too fast 

b
l u
V

For simplicity consider a separable cost  

ℓ(x, u) = l(u) + V(x)



Ergodicity of b

Optimal control policy is “small” 
•   has small oscillations              •  strongly confining 

“Choosing a big control  to minimize  is not effective as it costs more 
than what it can achieve”

V l

u V

Optimal drift is a small perturbation of  
•  is ergodic 

•   is small 

 is ergodic

b
b
αT

⇒ b + αT



Cost-induced ergodicity

Monotonicity of  
•   satisfies a Lyapunov condition, or  asymptotically monotone 

•  not too confining (but still convex) 

•  not too explosive (or absent)

∇V
∇V ∇V
l
b

Propagation of monotonicity from cost to control 
“Choosing a big control  to minimize   is not too expensive and pays 

off as an optimal strategy” 
u V

αT
t ( ⋅ ) ≈ − ∇V( ⋅ )



Some questions

Objectives 
• Can we show that the turnpike estimates 

 

 holds in each of the two scenarios? 

• When does the drift win over the cost?  

• When does the cost win over the drift? 

• Critical situations where the two mechanisms coexist and cooperate?

W1(ℒ(XαT

t ), ℒ(Xα∞)) ≲ C(e−λt + e−λ(T−t)) ∀t ∈ [0,T ]



Pontryagin’s maximum principle

Stochastic Maximum principle 
The optimal Markov policy is 

 . 
 Setting  

  
we have 

αT
t (x) = − ∇l⋆(∇φT,g

t (x))

Xt = XαT

t , Yt = ∇φT,g
t (Xt), Zt = ∇2φT,g

t (Xt)

dXs = [b(Xs) − ∇l⋆(Ys)]ds + dBs

dYs = − [DbT(Xs) ⋅ Ys + ∇V(Xs)]ds + Zs ⋅ dBs

Xt = x, YT = ∇g(XT)



A “toy” model and some 
answers 



The model

Example 
• For the cost, we choose 

 

for some  and  

• For the drift 

         

for some ,             

l(u) =
|u |q⋆

q⋆
, V(x) =

λf

n
|x |n ,

n, q⋆ ≥ 1 λf ∈ ℝ

b(x) = − λb |x |2m−2 x
m ≥ 0 λb ∈ ℝ

Goal: study the interplay between ,n, m, q⋆ λf , λb



A (not so) toy model

Stochastic maximum principle 

             

dXs = − λb |Xs |2m−2 Xs − |Ys |q−1 Yds + dBs

dYs = λb(2m − 1) |Xs |2m−2 Ys − λf |Xs |n−2 Xsds + Zs ⋅ dBs

Xt = x, YT = ∇g(XT)

{∂tφt(x) + 1
2 Δφt(x) − 1

q |∇φt(x) |q − λb |x |2m−2 x ⋅ ∇φt(x) +
λf

n |x |n = 0
φT ≡ g

HJB equation



Preliminary considerations

Drift-induced ergodicity 
• Expected for , large ,  and  not too large, 

regardless of the sign of  
λb > 0 m q⋆ n

λf

Cost-induced ergodicity 

• Expected for , large , and  not too large  
regardless of the sign of  

λf > 0 n m, q⋆

λb

Cooperation 
When ,λf > 0 λb > 0



Drift-induced ergodicity 

Theorem (Cirant, C. Porretta) 
Assume that  and  

 
Then, we have  

 

As a corollary, the optimal drift 

 

 satisfies a Lyapunov condition.

λb > 0
q⋆(2m − 1) > n

|∇φt(x) | ≲ C( |x |n/q + 1)

b( ⋅ ) − |αT
t ( ⋅ ) |q−2 αT

t ( ⋅ )



Proof idea

A monotonicity bound 

1. Introduce the process 

 

2. There exists  such that 

 

3. Integrate and use boundary conditions 

Vs = |Ys |q −
λf

n
|Xs |n

τ > 0
d𝔼[Vs] ≥ τ 𝔼[Vs]ds − C

|∇φt(x) | − λ |x |n = Vt ≤ e−τ(T−t)VT +
C
τ



Propagation of a Lyapunov condition

Theorem (Cirant, C. Porretta) 
Assume that  and 

 

Then  satisfies a Lyapunov condition 

 

As a corollary, the optimal drift satisfies a Lyapunov condition.

λf > 0
q⋆(2m − 1) < n

∇φ

∇φt(x) ⋅ x ≥ λ |x |1+n/q − C



A first attempt ( )b ≡ 0

A first attempt  
Show that 

 

satisfies a differential inequality 

Vs = − Xs ⋅ Ys + λ |Xs |1+n/q

d𝔼[Vs] ≥ τ𝔼[Vs]ds − C

Problem 
 

• Uniform bounds on  require  of linear growth

dVs = …−Tr(Zs)ds+…

Zs ∇V



A trick

Idea: include higher order terms in  Vs

Vs = − Xs ⋅ Ys + λ |X |1+n/q +εTr(Z+
s )

Benefit 

 
dVs ≥ ⋯−Z+

s ds + ⋯+

+ε[ |Ys |q−2 (Z+
s )2−Tr(∇2f )(Xs)]ds



The critical case n = (2m − 1)q⋆

Theorem (Cirant, C., Porretta) 

• If  and , cost and drift cooperate for ergodicity 

• If  and  

 

 the cost wins;  satisfies a Lyapunov condition 

• If  and  

 

the drift wins;  

λf > 0 λb > 0

λf > 0

2m |λb | < (λf q⋆)1/q⋆

∇φ
λb > 0

2mλb > ( |λf |q⋆)1/q⋆

|∇φ | (x) = o( |x |2m )



Obstructions to drift-cost cooperation

Ergodic drift goes against monotone cost 
We want to show a monotonicity estimate 

  
for 

 
Problem 

 

Problem 

d𝔼[Vs] ≥ τ𝔼[Vs]ds − C

Vs = − Xs ⋅ Ys + λ |Xs |1+n/q

d(−Xs ⋅ Ys) = ⋯ + [DbT(Xs) ⋅ Xs − b(Xs)] ⋅ Ys ds

d |Xs |1+n/q = ⋯ + |Xs |n/q−1 b(Xs) ⋅ Xs ds



A special case: l(u) =
|u |2

2



Propagation of asymptotic convexity

Definition  
 is asymptotically convex if  

 
with 

  

V
⟨∇V(x) − ∇V( ̂x), x − ̂x⟩ ≥ κV( |x − ̂x | ) |x − ̂x |2

lim sup
r→+∞

κV(r) > 0, ∫
1

0
r κV(r)dr > − ∞

Theorem (Informal) (Chaintron, C., Eichinger ‘25)  
Let  be asymptotically convex. Then  is asymptotically 

convex uniformly in .

V, g φT,g
t

t, T



Coupling by reflection of FBSDEs

Proof sketch 
Monotonicity estimate for 

 

•  two solutions of the stochastic maximum 
principle 

•  subsolution to 1-  viscous Burger’s equation

⟨Yt − ̂Yt, et⟩ − gt( |Xt − X̂t | ), et =
Xt − X̂t

|Xt − X̂t |

(X, Y, Z), (X̂, ̂Y, ̂Z)

(t, r) ↦ gt(r) d



What is new?

Changing the noise to overcome lack of point wise convexity 
•  are not driven by the same noise 

•  instead of  to profit from noise
(X, Y, Z), (X̂, ̂Y, ̂Z)
⟨Yt − ̂Yt, et⟩ ⟨Yt − ̂Yt, Xt − X̂t⟩

Coupling by reflection 
 

The increments of  and  are  

• The same in directions orthogonal to  

• Opposite along the  direction

dB̂s = (id − 2eseT
s )dBs

Bs B̂s

Xs − X̂s

Xs − X̂s



Applications of the quadratic case

Functional inequalities 
Generalizations of Prékopa-Leindler and Brascamp-Lieb 

Score-based generative models and diffusion models 
Optimal dimensional dependence of convergence bounds 

Entropic optimal transport 
Exponential convergence of Sinkhorn’s algorithm 

Filtering 
Stability of conditional distributions with respect to initial 

distribution and observation path



What was left out

Mean Field games and mean field control 
Developments driving much of the progresses in the field 
• Small interactions 

[Cecchin et al.’24] 

• Lasry-Lions monotonicity 
 [Cardaliaguet et al. ’12] [Caraliaguet et al.,’13] [Caraliaguet Porretta,’19]

[Cirant, Porretta’21], … 
• Displacement monotonicity 

[Cirant, Meszaros ’24] 
• Common noise 

[Cardaliaguet et. al’ 25]



Thank you for the attention!!


