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The Osgood condition for ODEs

Assumption 1 : b : R→ R+ is nonegative, locally Lipschitz and nondecreasing

Consider the ODE

Xt = a +

∫ t

0
b(Xs) ds, t ≥ 0, a ≥ 0.

This equation admits a unique solution up to its blow up time

T := sup{t > 0 : |Xt | <∞} =

∫ ∞
a

1
b(s)

ds.

We say that the solution blows up in finite time if T <∞.
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The Osgood condition for integral equations

The Osgood condition : for some a > 0∫ ∞
a

1
b(s)

ds <∞.

Assumption 2 : g : [0, ∞)→ R is continuous and

lim sup
t→∞

inf
0≤h≤1

g(t + h) =∞.

Theorem (León-Villa’11)
Suppose that Assumptions 1 and 2 hold. The solution to

Xt = a +

∫ t

0
b(Xs) ds + g(t), a ≥ 0,

blows up in finite time if and only if the Osgood condition holds.
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Proof (recall Xt = a +
∫ t

0 b(Xs) ds + g(t))

Assume T <∞. Set M := sup0≤s≤T |g(s)|. For t ∈ [0,T ],

Xt ≤ a + M +

∫ t

0
b(Xs) ds.

Let

Yt = a + M + 1 +

∫ t

0
b(Ys) ds.

Then Xt ≤ Yt on [0, T ].

So Yt will also blow up by time T and b satisfies the Osgood condition.
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Proof (recall Xt = a +
∫ t

0 b(Xs) ds + g(t))

Suppose T =∞. Let tn →∞. Then, for t ∈ [0, 1],

Xt+tn ≥ a +

∫ t+tn

tn
b(Xs) ds + g(t + tn)

≥ a +

∫ t

0
b(Xs+tn ) ds + inf

0≤h≤1
g(h + tn),

This means that Xt+tn ≥ Zt where

Zt =
1
2

(
a + inf

0≤h≤1
g(h + tn)

)
+

∫ t

0
b(Zs) ds.

In particular, ∫ ∞
1
2 (a+inf0≤h≤1 g(h+tn))

1
b(s)

ds > 1.

But from Assumption 2, we can find tn →∞ such that

1
2

(a + inf
0≤h≤1

g(h + tn))→∞.

This contradicts the Osgood condition.
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SDEs driven by Bifractional Brownian motion

Introduced by Houdré-Villa’03 is defined as a centered Gaussian process (BH,K
t )t≥0

with covariance
RH,K (t , s) = 2−K ((t2H + s2H)K − |t − s|2HK ),

where H ∈ (0, 1) and K ∈ (0, 1]. BH,1
t is a fBm.

Theorem (León-Villa’11)
Suppose that Assumptions 1 holds. Then the solution to

Xt = a +

∫ t

0
b(Xs) ds + BH,K

t , a ≥ 0,

blows up in finite time almost surely if and only if the Osgood condition holds.
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Proof (of infh∈[0,1] BH,K
tn+h →∞)

One first shows that for ψH,K (t) := tHK√2 log log t , t > e, a.s.

sup
s,t∈[n,n+2]

|BH,K
t − BH,K

s |
ψH,K (n)

−→ 0, as n→∞. (1)

In fact,

E

[
∞∑

n=1

sup
s,t∈[n,n+2]

|BH,K
t − BH,K

s |p

ψH,K (n)p

]
≤
∞∑

n=1

Ap2pHK

ψH,K (n)p <∞.

Let ω such that both LIL and (1) hold. Then

inf
h∈[0,1]

BH,K
t+h ≥ BH,K

t + inf
h∈[0,1]

(
−|BH,K

t+h − BH,K
t |

)
≥ BH,K

t

ψH,K (t)
ψH,K (t)− sup

h∈[0,1]

|BH,K
t+h − BH,K

t |
ψH,K ([t ])

ψH,K ([t ]).

Finally, LIL and (1) conclude the proof.
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The stochastic heat equation on [0,1]

∣∣∣∣∣∣
∂u(t , x)

∂t
= ∆u(t , x) + b(u(t , x)) + σẆ (t , x), x ∈ [0, 1], t > 0,

u(0, x) = u0(x),

homogeneous Dirichlet boundary conditions, σ > 0, Ẇ space-time white noise

u0(x) nonnegative and continuous function

If b is locally Lipschitz then there exists a unique local random field solution
which is a jointly measurable and adapted space-time process satisfying

u(t , x) =

∫ 1

0
p(t , x , y)u0(y) dy +

∫ t

0

∫ 1

0
p(t − s, x , y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫ 1

0
p(t − s, x , y)W (dy ds),

for all t ∈ (0, T ), where T = sup{t > 0 : supx∈[0,1] |u(t , x)| <∞} and p(t , x , y) is
the Dirichlet heat kernel on [0, 1].
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Proof (of unique local random field solution)

For each N ≥ 1, let

bN(x) := 1{|x|≤N}b(x) + 1{|x|>N}b(N) + 1{|x|<−N}b(−N)

and obtain a unique global solution (uN(t , x))(t,x)∈R+×[0,1] where b is replaced by
bN . Moreover, uN(t , x) is almost surely continuous in (t , x).

Let

τN := inf

{
t > 0 : sup

x∈[0, 1]
|uN(t , x)| > N

}
,

By the local property of the stochastic integral, for each N ≥ ‖u0‖∞, we have a
unique local random field solution u(t , x) = uN(t , x) for all x ∈ [0, 1] and
t ∈ [0, τN). In particular, u(t , x) is almost surely continuous in (t , x).

Moreover, τN ≤ τN+1. Denote τ∞ = limN→∞ τN . It is easy to show that τ∞ = T
where recall T = sup{t > 0 : supx∈[0,1] |u(t , x)| <∞}.

Eulalia Nualart (UPF) Instantaneous blow up parabolic SPDEs International Seminar on SDEs, March 8th 2024 9 / 28



Blow up results

∂u(t , x)

∂t
= ∆u(t , x) + b(u(t , x)) + σẆ (t , x), x ∈ [0, 1], t > 0.

Theorem (Bonder-Groisman’09)
If b is nonegative, locally Lipschitz, convex, and satisfies the Osgood condition, then
the solution blows up in finite time.

Theorem (Dalang-Khoshnevisan-Zhang’19)
If b is locally Lipschitz and |b(x)| = O(|x | log |x |) as |x | → ∞, then there exists a
global solution.

Observe that if b(x) ∼ |x |(log |x |)δ, as x →∞, the Osgood condition holds iff δ < 1.

Thus, Dalang-Khoshnevisan-Zhang’19 result shows that the Osgood condition is
optimal.
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Blow up result= converse of Bonder-Groisman

∂u(t , x)

∂t
= ∆u(t , x) + b(u(t , x)) + σẆ (t , x), x ∈ [0, 1], t > 0.

Theorem (Foondun-Nualart’20)
Suppose that Assumption 1 holds. If the solution blows up in finite time with positive
probability then b satisfies the Osgood condition.

Observe that Bonder-Groisman’s Theorem shows that if b(u) = u1+η, with η > 0, then
there is no global solution no matter how small the initial condition is.
When σ = 0, for any η > 0 one can construct nontrivial global solutions by taking u0

small enough.
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Extension to multiplicative noise and fractional
Laplacian in a ball

∣∣∣∣∣∣
∂u(t , x)

∂t
= Lu(t , x) + b(u(t , x)) + σ(u(t , x))Ḟ (t , x), x ∈ B1(0), t > 0,

u(0, x) = u0(x),

L is the fractional Laplacian in B1(0) ⊂ Rd and F is white in time with a general
spatial correlation

σ is a locally Lipschitz function satisfying 1
K ≤ σ(x) ≤ K for all x ∈ R and some

K > 0.

Theorem (Foondun-Nualart’20)
Suppose that Assumption 1 holds. If the solution blows up in finite time with positive
probability, then b satisfies the Osgood condition.
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The stochastic heat equation on R

∣∣∣∣∣∣
∂u(t , x)

∂t
= ∆u(t , x) + b(u(t , x)) + σẆ (t , x) x ∈ R, t > 0,

u(0, x) = u0(x).

Theorem (Foondun-Nualart’20)
Suppose that Assumption 1 holds. Then, if b satisfies the Osgood condition, then
almost surely, there is no global solution.

This Theorem shows that if b(u) = u1+η, with η > 0, then there is no global solution
meaning that there is no Fujita exponent in the stochastic setting.
Recall that when σ = 0 and x ∈ Rd , if η > 2/d , one can construct nontrivial global
solutions when u0 is small enough (Fujita’66).
The Theorem is also true for fractional Laplacian and Rd with a general spatial
correlation given by a Riesz kernel.
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The stochastic heat equation on R

The mild formulation writes as

u(t , x) =

∫
R

G(t , x , y)u0(y) dy +

∫ t

0

∫
R

G(t − s, x , y)b(u(s, y)) dy ds + σg(t , x)

where G(t , x , y) is the heat kernel and

g(t , x) :=

∫ t

0

∫
R

G(t − s, x , y)W (dy ds).

For a fixed x ∈ R, the process (g(t , x), t ≥ 0) is a bifractional Brownian motion
with parameters H = K = 1

2 multiplied by a constant (Lei-D.Nualart’09).

Theorem (Foondun-Nualart’20)
A.s. there exists tn →∞ such that

inf
h∈[0,1],x∈[0,1]

g(tn + h, x)→∞ as n→∞.
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Proof (of infh∈[0,1],x∈[0,1] g(tn + h, x)→∞)

Using an improvement of the classical Garsia’s lemma obtained in
Dalang-khosnevisan-Nualart’07 we show that for all p ≥ 2 and integer n ≥ 1,

E

[
sup

s,t∈[n,n+2],x,y∈[0,1]
|g(t , x)− g(s, y)|p

]
≤ Ap2p/4.

As a consequence, a.s.

sup
s,t∈[n,n+2],x,y∈[0,1]

|g(t , x)− g(s, y)|
ψ 1

2 ,
1
2

(n)
−→ 0, as n→∞.

Fix x0 ∈ [0, 1] and write

inf
h∈[0,1],x∈[0,1]

g(t + h, x) ≥ g(t , x0) + inf
h∈[0,1],x∈[0,1]

(−|g(t + h, x)− g(t , x0)|)

≥ g(t , x0)

ψ 1
2 ,

1
2

(t)
ψ 1

2 ,
1
2

(t)− sup
h∈[0,1],x∈[0,1]

|g(t + h, x)− g(t , x0)|
ψ 1

2 ,
1
2

([t ])
ψ 1

2 ,
1
2

([t ]).

Using the LIL for bifBm, we conclude the proof.
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Proof (of the sufficiency of the Osgood condition)

Assume that there is a global solution a.s. Let tn →∞. Then

u(t + tn, x) ≥
∫

R
G(t + tn, x , y)u0(y) dy + σg(t + tn, x)

+

∫ t

0

∫
R

G(t − s, x , y)b(u(s + tn, y)) dy ds.

There exists tn →∞ such that g(t + tn, x) > 0 for all x ∈ (0, 1) and t ∈ [0, 1],
and thus u(t + tn, x) > 0 as well.

For fixed x ∈ (0, 1) and t ∈ [0, 1],∫ t

0

∫
R

G(t − s, x , y)b(u(s + tn, y)) dy ds

≥
∫ t

0
b
(

inf
y∈(0, 1)

u(s + tn, y)

)∫
(0, 1)

G(t − s, x , y) dy ds

≥
∫ t

0
b
(

inf
y∈(0, 1)

u(s + tn, y)

)
ds,

as G(t , x , y) ≥ c
t1/2 whenever |x − y | ≤ t1/2.
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Proof (of the sufficiency of the Osgood condition)

Set Yt := infy∈(0, 1) u(t + tn, y).

We have shown that

Yt ≥ inf
0≤h≤1,x∈(0, 1)

{∫
R

G(h + tn, x , y)u0(y) dy + σg(h + tn, x)
}

+

∫ t

0
b(Ys) ds.

Using the last Theorem, we conclude that the Osgood condition cannot hold.
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Everywhere and instantaneous blow up

∣∣∣∣∣∣
∂u(t , x)

∂t
= ∆u(t , x) + b(u(t , x)) + σ(u(t , x))Ẇ (t , x) x ∈ R, t > 0,

u(0, x) = u0(x).
(2)

σ : R→ (0,∞) is bounded, globally Lipschitz and bounded away from the origin.

u0 is bounded.

We say that a random field solution u = {u(t , x)}t≥0,x∈R blows up everywhere and
instantaneously if for any t > 0 and every x ∈ R,

u(t , x) =∞ a.s..
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Everywhere and instantaneous blow up

Theorem (Foondun-Khoshnevisan-Nualart’23)
If the Osgood condition holds then u blows up everywhere and instantaneously almost
surely.

We start by making sense of the solution to (2) by a truncation argument : let

b(n) = b ∧ n.

Every b(n) is Lipschitz continuous and b(n) ≤ b(m) when n ≤ m.

We replace b by b(n) with the same σ and u0, then (2) will have a solution u(n).

By a standard comparison theorem for SPDEs , we have u(n)(t , x) ≤ u(m)(t , x) for all
t > 0 and x ∈ R when n ≤ m.

Therefore, u(t , x) = limn→∞ u(n)(t , x) and it satisfies the mild formulation of (2).
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Elements of Malliavin calculus and ergodicity
The following Poincaré inequality holds for all F ,G in D1,2

|Cov(F ,G)| ≤
∫ ∞

0
dr
∫ ∞
−∞

dz ‖Dr,zF‖2‖Dr,zG‖2.

We say that a predictable random field Z = {Z (t , x)}(t,x)∈(0,∞)×R is spatially mixing if
the random field x → Z (t , x) is weakly mixing for every t > 0.

By Chen-Khoshnevisan-Nualart-Pu’21-22, this holds if and only if for all integers
k ≥ 1, real numbers t > 0 and ξ1, ..., ξk , and Lipschitz-continuous functions
g1, ..., gk : R→ R satisfying gj (0) = 0 and Lip(gj ) = 1 for every j = 1, ..., k ,

lim
|x|→∞

Cov[G(x),G(0)] = 0,

where

G(x) =
k∏

j=1

gj (Z (t , x + ξj )), x ∈ R.

Moreover, if the process x → Z (t , x) is stationary and weakly mixing for all t > 0, then
it is ergodic.
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Ergodicity of stochastic convolutions

Let Z = {Z (t , x)}(t,x)∈(0,∞)×R be a predictable random field satisfying

c1 ≤ inf
(t,x)∈(0,∞)×R

Z (t , x) ≤ sup
(t,x)∈(0,∞)×R

Z (t , x) ≤ c2.

Set IZ (0 , x) = 0 and consider the stochastic convolution

IZ (t , x) =

∫
(0,t)×R

pt−s(y − x)Z (s , y) W (ds dy) for every t > 0.

Theorem
Assume that x → Z (t , x) is stationary and Z (t , x) ∈ D1,k , for all k ≥ 2, t > 0, x ∈ R.
Assume that for all T > 0 and k ≥ 2, there exists CT ,k > 0 such that for t ∈ (0,T ) and
x ∈ R and for a.e. (r , z) ∈ (0, t)× R,

‖Dr,zZ (t , x)‖k ≤ CT ,k pt−r (x − z)pr (z).

Then for all t > 0, the process x → Z (t , x) is ergodic and the process x → IZ (t , x) is
stationary and ergodic.
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Spatial growth of stochastic convolutions

Theorem
Assume the hypotheses of the preceding theorem. Choose and fix c2 > c1 > 0. Then,
there exists η > 0 such that

lim sup
c→∞

inf
t∈(a,a+(ηa)2)

inf
x∈(0,ηa)

IZ (t , c + x) =∞ a.s.,

for every a > 0.

We show that

inf
a>0

P
{

lim sup
c→∞

inf
t∈(a,a+ε4)

inf
x∈(c,c+ε2)

IZ (t , x) > M
(a
π

)1/4
}
> 0,

uniformly for all M ≥ M0. Ergodicity implies that

P
{

lim sup
c→∞

inf
t∈(a,a+ε4)

inf
x∈(c,c+ε2)

IZ (t , x) > M
(a
π

)1/4
}

= 1,

uniformly for all M ≥ M0 and a > 0. We finally send M →∞.
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Ergodicity of the solution

Set
I(t , x) =

∫
(0,t)×R

pt−s(y − x)σ(u(s , y)) W (ds dy)

Theorem
Consider the solution to but with b globally Lipschitz and constant initial condition.
Then the processes x → u(t , x) and x → I(t , x) are both stationary and ergodic for
all t > 0.

Recall that u(t , x) ∈ D1,k , for all k ≥ 2, t > 0 and x ∈ R and the Malliavin derivative
satisfies

Dr,zu(t , x) = pt−r (x − z)σ(u(r , z)) +

∫
(r,t)×R

pt−s(y − x)Bs,y Dr,zu(s , y) ds dy

+

∫
(r,t)×R

pt−s(y − x)Σs,y Dr,zu(s, y) W (ds dy)

a.s.,where B and Σ are a.s. bounded random fields.
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An important lower bound

Theorem
Assume b Lipschitz continuous. For every a > 0, there exists ε > 0 such that for every
M > ‖u0‖L∞(R) : There exists an a.s.-finite random variable c = c(a ,M) > 0 such that

inf
t∈[a+ε,a+2ε]

inf
x∈(c,c+

√
ε)

u(t , x) ≥ sup

{
N > M :

∫ N+ρ

M+ρ

dy
b(y)

< ε

}
a.s. [sup∅ = 0],

where ρ := infx∈R u0(x).
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Proof of everywhere and instantaneous blow up

Fix M > ‖u0‖L∞(R) such that ∫ ∞
M+ρ

dy
b(y)

< ε.

Then, the construction of u and the preceding theorem together yield ε such that

inf
t∈[a+ε,a+2ε]

inf
x∈(c,c+

√
ε)

u(t , x) ≥ inf
t∈(a+ε,a+2ε)

inf
x∈(c,c+

√
ε)

u(n)(t , x)

≥ sup

{
N > M :

∫ N+ρ

M+ρ

dy
b(n)(y)

< ε

}
a.s.
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Proof of everywhere and instantaneous blow up

Let n ↑ ∞ to see from the monotone convergence theorem that

inf
t∈[a+ε,a+2ε]

inf
x∈(c,c+

√
ε)

u(t , x) ≥ sup

{
N > M :

∫ N+ρ

M+ρ

dy
b(y)

< ε

}
=∞ a.s.

This proves that the blowup time is a.s. ≤ a + 2ε(a) and that the solution blows up
everywhere in a random interval of the type (c , c +

√
ε).

This proves that for every t > 0 there is a.s. a random closed interval I(t) ⊂ (0,∞)
and and a non-random closed interval Ĩ(t) = [a + ε, a + 2ε] ⊂ (0, t) such that

inf
(s,x)∈Ĩ(t)×I(t)

u(s , x) =∞ a.s.
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Proof of everywhere and instantaneous blow up

By the monotone convergence theorem,∫
(0,t)×R

pt−s(y − x)b(n)(u(n)(s , y)) ds dy ≥
∫

Ĩ(t)×I(t)
pt−s(y − x)b(n)(u(n)(s , y)) ds dy ↑ ∞

Moreover,

sup
n

E

 sup
(t,x)∈K

∣∣∣∣∣
∫
(0,t)×R

pt−s(y − x)σ(u(n)(s, y)) W (ds dy)

∣∣∣∣∣
2
 <∞,

for every compact set K ⊂ R+ × R. Therefore,

lim inf
n→∞

sup
(t,x)∈K

∫
(0,t)×R

pt−s(y − x)σ(u(n)(s, y)) W (ds dy) <∞,

by Fatou’s lemma. This proves that

inf
(t,x)∈K

u(t , x) =∞

for all compact sets K ⊂ R+ × R, which concludes the proof.
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