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Statement of the problem

Aim: Numerical solution (Y ,Z , λ) of the Ergodic Backward Stochastic
Differential Equation (EBSDE)

Yt = YT +

∫ T

t

(f (Xs ,Zs)− λ) ds −
∫ T

t

ZsdWs , 0 6 t 6 T , (1)

1) (Y ,Z ) take values in some appropriate L2 space,
2) λ is a scalar (called ergodic cost),
3) X is the solution of an ergodic forward SDE.

Literature:
i) introduced first by [Fuhrman et al., 2009]: efficient tool to analyse

optimal control problems with ergodic cost functionals.
ii) Alternatively, Hamilton-Jacobi-Bellman equation, see

[Arisawa and Lions, 1998] and [Bensoussan and Frehse, 2002].
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BSDE with large time-horizon
Consider the BSDE-solution (Y T ,ZT ) parameterized by T > 0:

Y T ,x
t = g(X x

T ) +

∫ T

t

f (X x
s ,Z

T ,x
s )ds −

∫ T

t

ZT ,x
s dWs , 0 6 t 6 T .

Adjoint problems for stochastic control problems: [Peng, 1993],
[Ma and Yong, 1999], [Zhang, 2017].

Which behavior as T → +∞?

Theorem 1

Under suitable assumptions [Hu et al., 2015], the following asymptotic
expansion result holds: for some constants L ∈ R and C > 0,∣∣∣Y T ,x

0 − λT − Y x
0 − L

∣∣∣ 6 C (1 + |x |3)e−T/C (2)

where Y x
0 is the solution of (1) for X0 = x .

↪→ Solving EBSDE for any x gives explicit approximation of Y T ,x
0 as

T → +∞.
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State of the art

i) Theoretical properties of EBSDEs: [Fuhrman et al., 2009],
[Richou, 2009], [Debussche et al., 2011], [Cohen and Hu, 2013],
[Madec, 2015], [Guatteri and Tessitore, 2020]

ii) Numerical approximation: [Broux-Quemerais et al., 2024] using
random horizon time approximation and a neural network space
approximation

Our contributions: our aim is to provide an alternative fully
implementable scheme and to study the approximation error.
i) Markov representation of the value function and its gradient
ii) fixed point equation to which the gradient is (the unique) solution
iii) contraction properties of this fixed point equation
ivi) full error controls (w.r.t. the number of Picard iterations, the

number of Monte-Carlo samples using subGamma
concentration-of-inequalities, the grid mesh)

v) numerical experiments to illustrate theoretical findings
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Simplified setting
Forward d-dimensional SDE: Xt = x +

∫ t

0 b(Xs)ds + ΣWt , 0 6 t.

Assumption 2.1

There exist constants s.t., ∀x , x ′ ∈ Rd , z , z ′ ∈ R1×d ,

(A-1) |f (x , z)− f (x ′, z ′)| 6 Kf ,x |x − x ′|+ Kf ,z‖z − z ′‖,

(A-2) |b(x)− b(x ′)| 6 Kb,x |x − x ′| ,

(A-3) 〈b(x)− b(x ′), x − x ′〉 6 −η |x − x ′|2 or b(x) = −Ax with
SpA ⊂ {z ∈ C|<(z) > a > 0},

(A-4) Σ is invertible.

Unique strong solution X , with unique invariant measure ν.

BThe hypothesis of Hurwitz matrix (b(x) = −Ax with
SpA ⊂ {z ∈ C|<(z) > a > 0}) does not imply the dissipativity

assumption: take for instance A =

(
1 −3
0 1

)
.
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Proposition 1

Let us assume that Assumptions 2.1 are in force. Then the ergodic BSDE
(1) has a solution (Y ,Z , λ) such that

Yt = u(Xt), Zt = ū(Xt) (3)

for two measurable functions satisfying the growth

|u(x)| 6 C (1 + |x |), |ū(x)| 6 C , ∀x ∈ Rd .

Moreover, the solution (Y ,Z , λ) is unique (up to a constant for Y ) in
the class of Markovian solutions with previous growth.

Later, we will also justify u ∈ C 1 and that ū(.) = ∇xu(.)Σ.
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Proposition 2

Under assumptions of Proposition 1, u given by (3) is a viscosity solution
of the following elliptic PDE

Lu(x) + f (x ,∇xu(x)Σ) = λ,

where L denotes the generator of the semi-group associated to the SDE
for X .
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Time-randomized Feynman-Kac representation
Informal derivation: start with

u(x) = E

[
u(X x

T ) +

∫ T

0
(f (X x

s , ū(X x
s ))− λ) ds

]
.

Differentiate the above with respect to x and use the Malliavin calculus
integration by parts formula [Nualart, 2006]: write ū = ∇xuΣ

v(x) = ∇u(x) = E

[
v(X x

T )∇xX
x
T +

∫ T

0
Ux
s f (X x

s ,∇xuΣ(X x
s ))ds

]
where Ux

s is the (raw vector valued) Malliavin weight given by

Ux
s =

1
s

(∫ s

0
(Σ−1∇xX

x
r )>dWr

)>
.

i) At first sight, v(.) solves a nice fixed-point equation
ii) But the terms inside the above expectation have exploding

polynomial moments as T goes to +∞ !!
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Diving into the details of the time-explosion
Take dimension d = 1, with Σ = 1 and b(x) = −ax for a scalar
parameter a > 0: then ∇xX

x
t = e−at and

Ux
s =

1
s

(∫ s

0
(Σ−1∇xX

x
r )>dWr

)>
=

1
s

∫ s

0
e−ardWr

d
= N

(
0,

1− e−2as

2as2

)
.

Take a bounded driver f :∣∣∣∣∣
∫ T

0
Ux
s f (X x

s , ū(X x
s ))ds

∣∣∣∣∣
p

≤
∫ T

0
|Ux

s f (X x
s , ū(X x

s ))|p ds

≤
∫ T

0
Cp

√
1− e−2as

2as2
‖f ‖∞ds.

i) Convergence at s = 0
ii) Divergence at s = +∞!
↪→ one has to find better Malliavin weights. . .
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Reminder about the choice of Malliavin weight
Let x be given and let Ux

s the class of Malliavin weights Ux
s such that

∇xE [ϕ(X x
s )] = E [ϕ(X x

s )Ux
s ]

for any square integrable ϕ.

Lemma 2 ([Fournié et al., 2001])

The weights must have the same conditional expectation: E [Ux
s | X x

s ]
does not depend on Ux

s . The element with minimal L2-norm is

E [Ux
s | X x

s ] = Ūx
s .

When X x
s has a density: the minimal L2-norm solution is

∇xE [ϕ(X x
s )] =

∫
Rd

ϕ(x ′)∇xp(0, x ; s, x ′)dx ′ = E
[
ϕ(X x

s )Ūx
s

]
where Ūx

s = ∇x(log(p(0, x ; s, x ′))
∣∣
x′=X x

s
.

Find a good Malliavin weight without knowing the density?
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Restricted framework

Assumption 2.2

Let b(x) = −Ax , and for some constants such that

(A-1’) |f (x , z)− f (x ′, z ′)| 6 Kf ,x |x − x ′|+ Kf ,z‖z − z ′‖,

(A-2’) SpA ⊂ {z ∈ C|<(z) > a > 0},

(A-3’) Σ is invertible.

↪→ X x
t = e−Atx+e−At

∫ t

0
eAsΣdWs ,

∥∥e−At∥∥ 6 CAe
−at , ∀t > 0.

hence X x
t is Gaussian, with mean e−Atx and covariance

Σt :=

∫ t

0
e−ArΣΣ>e−A

>rdr .

Then Ūx
s = (X x

s − e−Asx)>Σ−1s e−As =: e−as Ũs ,

with |Ũs |2|2 6 C (1 ∨ s−1/2), ∀s > 0.
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Feynman-Kac representation

Theorem 3

Let us assume that Assumptions 2.2 are in force. Then
i) u ∈ C 1(Rd),
ii) Zt = v(Xt)Σ with v := ∇xu, ‖v‖∞ < +∞,
iii) the gradient v is solution of the four following equations

v(x) = E

[
v(X x

T )e−AT +

∫ T

0
e−as Ũs f (X x

s , v(X x
s )Σ)ds

]

= E
[∫ +∞

0
e−as Ũs f (X x

s , v(X x
s )Σ)ds

]
(take T = +∞)

= E
[
v(X x

T )e−AT + 1G≤Tθ
√
π

θ

√
Ge−( a

θ−1)G Ũ G
θ
f
(
X x

G
θ
, v(X x

G
θ

)Σ
)]

=

√
π

θ
E
[√

Ge−( a
θ−1)G Ũ G

θ
f
(
X x

G
θ
, v(X x

G
θ

)Σ
)]

(take T = +∞)

where θ ∈ (0, a) and G
d
= G(1/2, 1) is independent of W .

E. Gobet, International Seminar on SDEs and Related Topics, May 9th 2025 12
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Application to BSDE in large horizon
A BSDE with driver independent of Y can be well approximated, as the
horizon T is large, by an EBSDE

Y T ,x
0 ≈ λT + Y x

0 + L

with the error bound (2).
i) Y x

0 is defined up to a constant: L depends on this choice.
ii) Once v is obtained, we get λ =

∫
Rd f (x , v(x)Σ)ν(dx).

iii) u is the antiderivative of v up to constant

Y x
0 = u(x) =

∫ 1

0
v(tx)xdt, ∀x ∈ Rd .

iv) The tuning of L is delicate. Since Y x=0
0 = 0, we have

L = lim
T→+∞

(Y T ,x=0
0 − λT ),

with an exponential convergence.
↪→ Naive approach: estimate Y T ,x=0

0 for a few T , and then get an
estimation of L. . .
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Contraction properties of the FK representation

For all T ∈ R+ ∪ {+∞}, define a map

ΦT : w ∈ L0(Rd ,R1×d) −→ L0(Rd ,R1×d)

given by, for all x ∈ Rd ,

ΦT (w)(x) = E
[
w(X x

T )e−AT1T<+∞

+ 1G≤Tθ
√
π

θ

√
Ge−( a

θ−1)G Ũ G
θ
f
(
X x

G
θ
,w(X x

G
θ

)Σ
)]

We seek the solution v such that

ΦT (v) = v , ∀ T ∈ R+ ∪ {+∞}.

In the paper, we have studied the contraction properties for any fixed
T < +∞ and for T = +∞: properties are better for T = +∞.
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Define weighted norm ‖v‖ρ = supx∈Rd
‖v(x)‖
ρ(x) with

ρpol,α,β(x) = (1+α|x |)β (with β > 1 and α > 0) or ρexp,α(x) = eα|x| (with α > 0)

Theorem 4
Assume

‖Σ−1s ‖1/2 6 c1,(4) +
c2,(4)√

s
, ∀s > 0. (4)

Then, ‖Φ∞(w1)− Φ∞(w2)‖ρ 6 κ∞ ‖w1 − w2‖ρ , with

i) If CA = 1 and ρ = ρexp,α , then

κ∞ 6 Kf ,z‖Σ‖
√
d

(
2e

α2‖ΣΣ>‖
2a2 N

(
α‖ΣΣ>‖1/2

a

))d/2(
c1,(4)

a
+

√
πc2,(4)√

a

)
.

ii) If CA > 1 and ρ = ρpol,α,β , then

κ∞ 6 CAKf ,z‖Σ‖
√
dE

(CA + αCA

(
‖ΣΣ>‖

2a

)1/2

|Y |
)2β

1/2(
c1,(4)

a
+

√
πc2,(4)√

a

)

where Y ∼ N (0, Id).
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Numerical scheme

v(x) =

√
π

θ
E
[
e(θ−a)G

√
GŨG f (X x

G , v(X x
G )Σ)

]
i) Picard scheme:

vn+1(x) =

√
π

θ
E
[
e(θ−a)G

√
GŨG f (X x

G , v
n(X x

G )Σ)
]

ii) space discretization: x ∈ Π,

vn+1(x) =

√
π

θ
E
[
e(θ−a)G

√
GŨG f (X x

G ,Pv
n(X x

G )Σ)
]

iii) Monte-Carlo estimation.

E. Gobet, International Seminar on SDEs and Related Topics, May 9th 2025 16
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Our fully implementable numerical scheme

Definition 5

We construct a sequence of random functions vn
M : Ω× Π→ R1×d ,

n ∈ N such that v0M = 0 and, for all n ∈ N, z ∈ Π,

vn+1
M (z) =

 1
M

M∑
j=1

Rz
n+1,j(Pv

n
M)


B

,

where B > ‖v‖∞, for any φ : Rd → R1×d , (Rz
n,j(φ))n,j∈N∗,z∈Π are

independent random variables and for any z ∈ Π, (Rz
n,j(φ))n,j∈N∗ have

the same distribution as

Rz(φ) :=

√
π

θ

√
Ge−(a−θ)G ŨG f (X z

G , φ(X z
G )Σ) ,

recalling that θ ∈ (0, a) and G
d
= G(1/2, θ) is independent of W .

Note that the random variables to sample have sub-Gamma tails.
E. Gobet, International Seminar on SDEs and Related Topics, May 9th 2025 17
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Concentration-inequalities of sub-Gamma tails
Orlicz function: Ψ := exp(.)− 1.
Orlicz norm: |Y |Ψ := inf

{
c > 0,E

[
Ψ
(
|Y |
c

)]
6 1
}
.

Proposition 3 ([Talagrand, 1989], [van der Vaart and Wellner, 1996])

i) [Talagrand inequality] There exists a universal constant CΨ such
that, for all sequence (Yk)16k6K of independent, mean zero,
random variables satifying |Yk |Ψ < +∞ for all 0 6 k 6 K , we have∣∣∣∣∣

K∑
k=1

Yk

∣∣∣∣∣
Ψ

6 CΨ

(
E

[∣∣∣∣∣
K∑

k=1

Yk

∣∣∣∣∣
]

+

∣∣∣∣ max
16k6K

|Yk |
∣∣∣∣

Ψ

)
.

ii) [Maximal inequality] There exists a universal constant CΨ such
that, for all sequence (Yk)16k6K of random variables satisfying
|Yk |Ψ < +∞ for all 0 6 k 6 K , we have∣∣∣∣ max

16k6K
|Yk |

∣∣∣∣
Ψ

6 CΨΨ−1(K) max
16k6K

|Yk |Ψ.
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A convergence result
We assume that our grid Π is centered in 0, and is given by{

(i1δ, ..., idδ) | ik ∈ {−Ñ, ..., Ñ}, k ∈ {1, ..., d}
}

for a given Ñ ∈ N.

Proposition 4

Take Mz = M̃(1 + |z |)2ρ−2(z).
i) If CA = 1 and ρ = ρexp,α, then we have

E
[

sup
x∈Rd

∥∥∥∥Pvn
M(x)− v(x)

ρ(x)

∥∥∥∥] = O

(
δ2 +

ln Ñ√
M̃

+ e−αÑδ + κn∞

)
.

ii) If CA > 1 and ρ = ρpol,α,β , then we have

E
[

sup
x∈Rd

∥∥∥∥Pvn
M(x)− v(x)

ρ(x)

∥∥∥∥] = O

(
δ2 +

ln Ñ√
M̃

+ (1 + αÑδ)−β + κn∞

)
.
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Some numerical experiments
σ = 1, f (x , z) =1 + sin(γ(|x |+ |z |)) + γ|z | − sin(γ(|x |+ 2|x |e−|x|

2
))

− (2γ|x |+ 2|x |2 − d + 2a|x |2)e−|x|
2
.

Solution of the EBSDE: u(x) = e−|x|
2
, v(x) = −2x>e−|x|2 and λ = 1.

Figure: Solution v at different iterations. Parameters: d = 1, γ = 1, a = 2,
θ = 1.8, Ñ = 10, δ = 0.2, M = 105.

E. Gobet, International Seminar on SDEs and Related Topics, May 9th 2025 20
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Impact of the Lipschitz constant of the driver
Ed,r
∞,n := sup {|vn

M(x)− v(x)| : x = (i1δ, ..., idδ),

ik ∈ {−(Ñ − r), ..., (Ñ − r)}, k ∈ {1, ..., d}
}
,

Figure: Box plots of log-sup errors Ed,r
∞,n (with d = 1, r = 1) for different n, as

a function of γ. Parameters: a = 2, θ = 1.8, Ñ = 10, δ = 0.2, M = 105.
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Impact of the parameter θ of the Gamma distribution
Recall that theoretically θ < a.

Figure: Box plots of log-sup errors Ed,r
∞,n (with d = 1, r = 1) for different n, as

a function of θ. Parameters: a = 2, γ = 1, Ñ = 10, δ = 0.2, M = 105.
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Tests in various dimensions

Dimension d 1 2 3 4 5
Sup Error Ed,1

∞,3 5.49 ∗ 10−2 5.69 ∗ 10−2 7.69 ∗ 10−2 11.9 ∗ 10−2 11.3 ∗ 10−2
Mean Error 2.31 ∗ 10−2 1.94 ∗ 10−2 2.16 ∗ 10−2 2.76 ∗ 10−2 3.49 ∗ 10−2
Time (s) 4 18 217 4155 86639

Table: Comparison of sup errors and computational times as a function of the
dimension d . Parameters: a = 2, γ = 1 θ = 1.8, Ñ = 5, δ = 0.4, M = 104

Remark. The scheme can be "easily" parallelized. L. Facq and P.
Depouilly (Math Institute Bordeaux) used a GPU card with 40Go RAM
to do same computations: for d = 5, they obtained the result in 90s.
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Using neural networks

i) Replacement of the grid approximation by a NN.
ii) Removing Picard iteration:

E

∥∥∥∥∥NN(X0)− 1
M

M∑
i=1

√
π

θ
e(θ−a)G i√

G i Ũ i
G i f (XX0

G i , NN(XX0
G i )Σ)

∥∥∥∥∥
2

↪→ Ongoing numerical experiments done by S. Chardul for solving (non
ergodic) infinite horizon BSDE.
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