Weak solutions to the master equation of potential mean field games

Seminar on SDEs and related topics

François Delarue (Nice – J.-A. Dieudonné)

May 6 2022

Joint work A. Cecchin (Padua, Italy)

1. Mean field games and related master equation

Background

- Originates from macroeconomics: games with many many heterogeneous rational agents
 - associate cost functional with each player
 - o interactions through aggregated quantity: say price...
- each agent has nearly infinitesimal impact but the sum of all forms a compromise!
 - o advocate for games with a continuum of players

Background

- Originates from macroeconomics: games with many many heterogeneous rational agents
 - associate cost functional with each player
 - o interactions through aggregated quantity: say price...
- each agent has nearly infinitesimal impact but the sum of all forms a compromise!
 - o advocate for games with a continuum of players
- Paradigm for games with a continuum of players [Aumann, 64]
- o taken from mean-field approach in statistical mechanics \rightsquigarrow players interact one with the others through the theoretical distribution of the population
- o solving games is computationally demanding, but asymptotic formulation under mean-field assumption has lower complexity

Background

- Originates from macroeconomics: games with many many heterogeneous rational agents
- Paradigm for games with a continuum of players [Aumann, 64]
- taken from mean-field approach in statistical mechanics \(\simeta \)
 players interact one with the others through the theoretical
 distribution of the population
- solving games is computationally demanding, but asymptotic formulation under mean-field assumption has lower complexity
 - o taken from Von Neumann and Morgenstern:

this is a well known phenomenon in many branches of the exact and physical sciences that very great numbers are often easier to handle than those of medium size. This is of course due to the excellent possibility of applying the laws of statistics and probabilities in the first case

Typical examples...

• Define a compromise for the whole population as the solution of a fixed point problem

- Define a compromise for the whole population as the solution of a fixed point problem
- (1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

- Define a compromise for the whole population as the solution of a fixed point problem
- (1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)
- (2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = \alpha_t dt + dW_t$$

 \circ with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.

$$\circ \text{ with } \boxed{\text{cost}} J(\alpha) = \mathbb{E} \Big[g(X_T, \mu_T) + \int_0^T (f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2) dt \Big]$$

$$\circ \boxed{\text{example}} : f(x, \mu) = \int_{\mathbb{R}^d} h(x - y) d\mu(y)$$

- Define a compromise for the whole population as the solution of a fixed point problem
- (1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)
- (2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = \alpha_t dt + dW_t$$

 \circ with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.

$$\circ \text{ with } \boxed{\text{cost}} J(\alpha) = \mathbb{E} \left[g(X_T, \mu_T) + \int_0^T (f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2) dt \right]$$

(3) let $(X_t^{\star,\mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) \rightarrow find $(\mu_t)_{0 \le t \le T}$ such that

$$\mu_t = \mathcal{L}(X_t^{\star,\mu}), \quad t \in [0,T]$$

• [Lasry-Lions], [Caines-Huang-Malhamé]...

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E}\left[g(X_T, \mu_T) + \int_t^T \left(f(X_s, \mu_s) + \frac{1}{2}|\alpha_s|^2\right) ds |X_t = x\right]$$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \left[g(X_T, \mu_T) + \int_t^T \left(f(X_s, \mu_s) + \frac{1}{2} |\alpha_s|^2 \right) ds | X_t = x \right]$$

$$\circ u \text{ solution } \boxed{\text{Backward}} \text{ HJB}$$

$$\left(\partial_t u + \frac{1}{2} \Delta_x u \right) (t,x) + \inf_{\alpha \in \mathbb{R}^d} \left[\alpha \cdot \partial_x u(t,x) + \frac{1}{2} |\alpha|^2 + f(x,\mu_t) \right] = 0$$

$$\text{standard Hamiltonian in HJB}$$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \left[g(X_T, \mu_T) + \int_t^T \left(f(X_s, \mu_s) + \frac{1}{2} |\alpha_s|^2 \right) ds |X_t = x \right]$$

$$\circ u \text{ solution } \boxed{\text{Backward}} \text{ HJB}$$

$$\left(\partial_t u + \frac{1}{2} \Delta_x u \right) (t,x) - \frac{1}{2} |\partial_x u(t,x)|^2 + f(x,\mu_t) = 0$$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \left[g(X_T, \mu_T) + \int_t^T \left(f(X_s, \mu_s) + \frac{1}{2} |\alpha_s|^2 \right) ds |X_t = x \right]$$

$$\circ u \text{ solution } \boxed{\text{Backward}} \text{ HJB}$$

$$\left(\partial_t u + \frac{1}{2} \Delta_x u \right) (t,x) - \frac{1}{2} |\partial_x u(t,x)|^2 + f(x,\mu_t) = 0$$

- \circ terminal boundary condition: $u(T, \cdot) = g(\cdot, \mu_T)$
- Pay attention that u depends on $(\mu_t)_t$!

• Value function in environment $(\mu_t)_{0 \le t \le T}$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E}\left[g(X_T, \mu_T) + \int_t^T \left(f(X_s, \mu_s) + \frac{1}{2}|\alpha_s|^2\right) ds |X_t = x\right]$$

∘ *u* solution | Backward | HJB

$$\left(\partial_t u + \tfrac{1}{2} \Delta_x u\right)(t,x) - \tfrac{1}{2} |\partial_x u(t,x)|^2 + f(x,\mu_t) = 0$$

- \circ terminal boundary condition: $u(T, \cdot) = g(\cdot, \mu_T)$
- Pay attention that u depends on $(\mu_t)_t$!
- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
 - \circ Dynamics of $X^{\star,\mu}$ at equilibrium

$$dX_t^{\star,\mu} = -\partial_x u(t, X_t^{\star,\mu}) dt + dW_t$$

 \circ Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation

$$\partial_t \mu_t = \operatorname{div}_x(\partial_x \mathbf{u}(t, x) \mu_t) + \frac{1}{2} \Delta_x \mu_t$$

• End-up with forward-backward system in ∞ dimension

- A lot on the MFG forward-backward system [Cardaliaguet and Porretta] ↔ McKean Vlasov [FBSDE]
- A key point of view → regard MFG system as the characteristics of a PDE on space of probability measures
 - ∘ look for v(t, x, m), with $m \in \mathcal{P}(\mathbb{R}^d)$ such that

$$u_t(x) = v(t, x, m_t)$$

 $\circ v(t, x, m)$ is the (???) equilibrium value of the game with (t, m) as initial state

- A lot on the MFG forward-backward system [Cardaliaguet and Porretta] ↔ McKean Vlasov [FBSDE]
- A key point of view → regard MFG system as the characteristics of a PDE on space of probability measures
 - \circ look for v(t, x, m), with $m \in \mathcal{P}(\mathbb{R}^d)$ such that

$$u_t(x) = v(t, x, m_t)$$

- $\circ v(t, x, m)$ is the (???) equilibrium value of the game with (t, m) as initial state
- \circ formal proof is to expand $v(t, x, m_t)$ by chain rule and to identify with the expansion of $u_t(x)$

$$d[v(s, X_s^{\star}, \mathcal{L}(X_s^{\star}))]$$

$$= \left[f(X_s^{\star}, \partial_x v(s, X_s^{\star}, \mathcal{L}(X_s^{\star}))) + \frac{1}{2} |\partial_x v(s, X_s^{\star}, \mathcal{L}(X_s^{\star}))|^2 \right] ds$$

$$+ \partial_x v(t, X_s^{\star}, \mathcal{L}(X_s^{\star})) dB_s$$

$$\circ X_t^{\star} \sim m$$

• Look for v(t, x, m), with $m \in \mathcal{P}(\mathbb{R}^d)$ such that

$$u_t(x) = v(t, x, m_t)$$

• Equation for v(t, x, m) with $x \in \mathbb{R}^d$ and $m \in \mathcal{P}(\mathbb{R}^d)$

$$\begin{split} \partial_t v(t,x,m) &- \frac{1}{2} \left| \partial_x v(t,x,m) \right|^2 + \frac{1}{2} \Delta_x v(t,x,m) + f(x,m) \\ &- \frac{1}{2} \int \partial_x v(t,y,m) \partial_\mu v(t,x,m)(y) dm(y) \\ &+ \frac{1}{2} \int \text{Tr} \Big(\partial_y \partial_\mu v(t,x,m)(y) \Big) dm(y) = 0 \end{split}$$

o definition of the derivative

$$\begin{split} \partial_{\mu}v(t,x,m)(y) &= \partial_{y}\frac{\delta v}{\delta m}(t,x,m)(y) \\ \frac{\delta v}{\delta m}(t,x,m)(y) &= \lim_{\varepsilon \searrow 0} \frac{v\left(t,x,(1-\varepsilon)m + \varepsilon \delta_{y}\right) - v(t,x,m)}{\varepsilon} \end{split}$$

• Equation for v(t, x, m) with $x \in \mathbb{R}^d$ and $m \in \mathcal{P}(\mathbb{R}^d)$

$$\begin{split} \partial_t v(t,x,m) &- \tfrac{1}{2} \left| \partial_x v(t,x,m) \right|^2 + \tfrac{1}{2} \Delta_x v(t,x,m) + f(x,m) \\ &- \tfrac{1}{2} \int \partial_x v(t,y,m) \partial_\mu v(t,x,m)(y) dm(y) \\ &+ \tfrac{1}{2} \int \mathrm{Tr} \Big(\partial_y \partial_\mu v(t,x,m)(y) \Big) dm(y) = 0 \end{split}$$

→ blue part is HJB; red terms are mean field

o definition of the derivative

$$\partial_{\mu}v(t,x,m)(y) = \partial_{y}\frac{\delta v}{\delta m}(t,x,m)(y)$$

$$\frac{\delta v}{\delta m}(t,x,m)(y) = \lim_{\epsilon \to 0} \frac{v\left(t,x,(1-\epsilon)m + \epsilon \delta_{y}\right) - v(t,x,m)}{\epsilon}$$

• Smoothness in x is ok (thanks to Δ_x) but smoothness in m is an issue: infinite dimensional hyperbolic system

Bibliography

• Classical solutions to the master equation under monotonicity [same for *g*]

$$\int_{\mathbb{R}^d} (f(x,\mu) - f(x,\mu')) d(\mu - \mu')(x) \ge 0$$

Bibliography

• Classical solutions to the master equation under monotonicity [same for *g*]

$$\int_{\mathbb{R}^d} (f(x,\mu) - f(x,\mu')) d(\mu - \mu')(x) \ge 0$$

- smooth coefficients [Cardaliaguet, D., Lasry, Lions],
 [Chassagneux, Crisan, D.] (see also [Buckdahn, Li, Peng, Rainer])
- o research on master equation in weaker setting (Bertucci, Mou & Zhang, Gangbo & Meszaros...)

Bibliography

• Classical solutions to the master equation under monotonicity [same for *g*]

$$\int_{\mathbb{R}^d} (f(x,\mu) - f(x,\mu')) d(\mu - \mu')(x) \ge 0$$

- smooth coefficients [Cardaliaguet, D., Lasry, Lions],
 [Chassagneux, Crisan, D.] (see also [Buckdahn, Li, Peng, Rainer])
- research on master equation in weaker setting (Bertucci, Mou & Zhang, Gangbo & Meszaros...)
- How to go beyond montonicity? → potential games
- \circ MFG solutions are critical points of a mean field control problem: control problem with trajectories taking values in $\mathcal{P}(\mathbb{R}^d)$
- solve first HJ equation and say that MFG system is the derivative of the HJ equation
- o identify the solution of the master equation with the derivative of the value function (finite dimension: [Kruzhkov, Lions])

2. Mean field control: optimal control of McKean

Vlasov equations

Potential mean field game

• Mean field game

$$dX_{t} = \alpha_{t}dt + dB_{t}$$

$$J(\alpha) = \mathbb{E} \int_{0}^{T} \left(f(X_{t}, \mu_{t}) + \frac{1}{2} |\alpha_{t}|^{2} \right) dt + \mathbb{E} g(X_{T}, \mu_{T})$$

- $\circ \alpha_t = \text{control}, \mu = \text{environment}$
- No monotonicity but potential (below same for g/G)

$$f(x,\mu) = \frac{\frac{\delta F}{\delta m}}{(\mu)(x)} = \lim_{\varepsilon \searrow 0} \frac{F((1-\varepsilon)\mu + \varepsilon \delta_x) - F(\mu)}{\varepsilon}$$

• flat derivative (defined up to a constant: centred w.r.t. m)

Potential mean field game

• Mean field game

$$dX_t = \alpha_t dt + dB_t$$

$$J(\alpha) = \mathbb{E} \int_0^T \left(f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2 \right) dt + \mathbb{E} g(X_T, \mu_T)$$

- $\circ \alpha_t = \text{control}, \mu = \text{environment}$
- No monotonicity but potential (below same for g/G)

$$f(x,\mu) = \frac{\frac{\delta F}{\delta m}}{(\mu)(x)} = \lim_{\varepsilon \searrow 0} \frac{F\left((1-\varepsilon)\mu + \varepsilon \delta_x\right) - F(\mu)}{\varepsilon}$$

- flat derivative (defined up to a constant: centred w.r.t. m)
- Derives from a mean field control problem!

• Same state dynamics but ≠ optimization

$$dX_t = \alpha_t dt + dB_t$$

$$J(\alpha) = \int_0^T \left(F(\mu_t) + \frac{1}{2} \mathbb{E}(|\alpha_t|^2) \right) dt + G(\mu_T)$$

$$\circ \mu_t = \mathcal{L}(X_t) \text{ (law of } X_t)$$

• this is a McKean-Vlasov probem: the fixed point condition is fixed before the optimization step and not after!

• PDE formulation

$$\partial_t \mu_t(x) + \operatorname{div}_x(\alpha_t(x)\mu_t(x)) - \frac{1}{2}\Delta_x \mu_t(x) = 0$$

$$J(\alpha) = \int_0^T \left(F(\mu_t) + \frac{1}{2} \int_{\mathbb{R}^d} |\alpha_t(x)|^2 \right) dt + G(\mu_T)$$

 Pontryagin principle ⇒ MFG system is the first-order condition [Lasry-Lions], [Briani-Cardaliaguet]

• PDE formulation

$$\partial_t \mu_t(x) + \operatorname{div}_x(\alpha_t(x)\mu_t(x)) - \frac{1}{2}\Delta_x \mu_t(x) = 0$$

$$J(\alpha) = \int_0^T \left(F(\mu_t) + \frac{1}{2} \int_{\mathbb{R}^d} |\alpha_t(x)|^2 \right) dt + G(\mu_T)$$

- Value function $V(t, m) \rightsquigarrow \text{minimal cost when } \mathcal{L}(X_t) = m$
- HJ equation

$$\begin{cases} \partial_t V(t,m) - \frac{1}{2} \int \left| \partial_\mu V(t,m)(y) \right|^2 dm(y) \\ + \frac{1}{2} \int \text{Tr} \left(\partial_y \partial_\mu V(t,m)(y) \right) dm(y) + F(m) = 0 \\ V(T,m) = G(m) \end{cases}$$

• No smooth solution in general setting; theory of viscosity solutions still in development \sim main difficulty: Δ , see [Pham and co-authors, Conforti and co-authors]

PDE formulation

$$\begin{split} &\partial_t \mu_t(x) + \mathrm{div}_x \big(\alpha_t(x) \mu_t(x) \big) - \frac{1}{2} \Delta_x \mu_t(x) = 0 \\ &J(\alpha) = \int_0^T \left(F\left(\mu_t\right) + \frac{1}{2} \int_{\mathbb{R}^d} |\alpha_t(x)|^2 \right) dt + G\left(\mu_T\right) \end{split}$$

- Value function $V(t, m) \rightsquigarrow \text{minimal cost when } \mathcal{L}(X_t) = m$
- HJ equation

$$\begin{cases} \partial_t V(t,m) - \frac{1}{2} \int \left| \partial_\mu V(t,m)(y) \right|^2 dm(y) \\ + \frac{1}{2} \int \text{Tr} \left(\partial_y \partial_\mu V(t,m)(y) \right) dm(y) + F(m) = 0 \\ V(T,m) = G(m) \end{cases}$$

• Objective: write a generalized form ('a.e. derivatives') and uniqueness for semi-concave solutions

Using Fourier analysis

- Provide a notion of generalized solution to HJB based on finite dimensional Fourier approximations
- use periodic setting and get discretization with respect to
 Fourier coefficients

$$\mathcal{P}\left(\mathbb{R}^d\right) \Rightarrow \mathcal{P}\left(\mathbb{T}^d\right)$$

and

$$\phi(m), \ m \in \mathbb{T}^d \implies \phi\left(\left(\widehat{m}^k\right)_k\right), \ \hat{m}^k = \int_{\mathbb{T}^d} e^{i2\pi k \cdot x} dm(x)$$

o restrict functions to measures m such that

$$\widehat{m}^k = 0$$
 if $|k| \ge N$, for some $N \ge 1$

• Good point because those measures are stable by the heat equation which is the characteristic equation of the operator

$$\left(\phi: \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}\right) \mapsto \frac{1}{2} \int_{\mathbb{T}^d} \operatorname{Tr}\left(\partial_y \partial_\mu \phi(m)(y)\right) dm(y)$$

Finite dimensional restrictions

• For $\phi: \mathcal{P}(\mathbb{T}^d) \to \mathbb{R}$, restrict to

$$O_N = \left\{ m \in \mathcal{P}(\mathbb{T}^d) : \hat{m}^k = 0, \max_{i=1,\dots,d} |k_i| \ge N \right\}$$

- ∘ Bochner-Herglotz: \exists density f_N s.t. $f_N * m \in O_N$ for $m \in \mathcal{P}(\mathbb{T}^d)$
- If ϕ is Lipschitz for total variation

$$|\phi(m_1) - \phi(m_2)| \le C \int_{\mathbb{T}^d} |m_1(x) - m_2(x)| dx \le C \Big(\sum_{\max_{j=1,\dots,d} |k_j| < N} |\widehat{m}_1^k - \widehat{m}_2^k|^2 \Big)^{1/2}$$

- \circ restriction of ϕ is a.e. differentiable on O_N
- \circ identification of $(\delta \widehat{\phi/\delta m})^k$ for $\max_{i=1,\dots,d} |k_i| < N$

$$\frac{d}{d\varepsilon|_{\varepsilon=0}}\phi((\widehat{m}^k + \widehat{\varepsilon}\widehat{r}^k)_k) = \sum_{\max_{j=1,\dots,d}|k_j| < N} (\widehat{\delta\phi/\delta m})^{-k} \widehat{r}^k$$

$$\sim \partial_{\widehat{m}^k/\widehat{m}^k}\phi = (\widehat{\delta\phi/\delta m})^{-k}$$

- \bullet Standard property: value function V is time-space Lipschitz (for even coarser topologies)
- Write HJB at a point (t, m) $[0, T] \times O_N$ at which the restriction of V is differentiable
 - \rightarrow we have $\partial_{\widehat{m}^k} V(t, m)$ for $\max_{j=1,\dots,d} |k_j| < N$
- Philosophy: rewrite the terms as derivatives w.r.t. Fourier coefficients

- Standard property: value function *V* is time-space Lipschitz (for even coarser topologies)
- Write HJB at a point (t, m) $[0, T] \times O_N$ at which the restriction of V is differentiable

$$\rightarrow$$
 we have $\partial_{\widehat{m}^k} V(t, m)$ for $\max_{i=1,\dots,d} |k_i| < N$

• Philosophy: rewrite the terms as derivatives w.r.t. Fourier coefficients

$$\Rightarrow \frac{1}{2} \int_{\mathbb{T}^d} \operatorname{Tr} \left(\partial_y \partial_\mu V(t, m)(y) \right) dm(y) = \frac{1}{2} \int_{\mathbb{T}^d} \Delta_y \frac{\delta}{\delta m} V(t, m)(y) dm(y)$$

- Standard property: value function *V* is time-space Lipschitz (for even coarser topologies)
- Write HJB at a point (t, m) $[0, T] \times O_N$ at which the restriction of V is differentiable

$$\rightarrow$$
 we have $\partial_{\widehat{m}^k} V(t, m)$ for $\max_{i=1,\dots,d} |k_i| < N$

• Philosophy: rewrite the terms as derivatives w.r.t. Fourier coefficients

$$\frac{1}{2} \int_{\mathbb{T}^d} \operatorname{Tr} \left(\partial_y \partial_\mu V(t, m)(y) \right) dm(y) = -\sum_{|k_t| < N} 2\pi^2 |k|^2 \widehat{m}^k \partial_{\widehat{m}^k} V(t, m)$$

- \bullet Standard property: value function V is time-space Lipschitz (for even coarser topologies)
- Write HJB at a point (t, m) $[0, T] \times O_N$ at which the restriction of V is differentiable

$$\rightarrow$$
 we have $\partial_{\widehat{m}^k} V(t, m)$ for $\max_{i=1,\dots,d} |k_i| < N$

• Philosophy: rewrite the terms as derivatives w.r.t. Fourier coefficients

$$-\frac{1}{2} \int_{\mathbb{T}^d} \left| \partial_{\mu} V(t, m)(y) \right|^2 dm(y) \simeq -\frac{1}{2} \int_{\mathbb{T}^d} \left| \sum_{|k| < N} k \partial_{\widehat{m}^k} V(t, m) e^{i2\pi k \cdot y} \right|^2 dm(y)$$

- Standard property: value function *V* is time-space Lipschitz (for even coarser topologies)
- Write HJB at a point (t, m) $[0, T] \times O_N$ at which the restriction of V is differentiable

$$\rightarrow$$
 we have $\partial_{\widehat{m}^k} V(t, m)$ for $\max_{i=1,\dots,d} |k_i| < N$

• Philosophy: rewrite the terms as derivatives w.r.t. Fourier coefficients

$$\frac{1}{2} \int_{\mathbb{T}^d} \operatorname{Tr} \left(\partial_y \partial_\mu V(t, m)(y) \right) dm(y) = -\sum_{|k_i| < N} 2\pi^2 |k|^2 \widehat{m}^k \partial_{\widehat{m}^k} V(t, m)$$

$$-\frac{1}{2} \int_{\mathbb{T}^d} \left| \partial_{\mu} V(t,m)(y) \right|^2 dm(y) \simeq -\frac{1}{2} \int_{\mathbb{T}^d} \left| \sum_{|k:| < N} k \partial_{\widehat{m}^k} V(t,m) e^{i2\pi k \cdot y} \right|^2 dm(y)$$

 \circ By Pontryagin principle $\partial_{\widehat{m}^k}V(t,m)=u_0^{-k}\Rightarrow$ known decay with k

Reformulation of HJ

• General formulation (for *V* Lipschitz, not being necessarily the value function)

∘ require for any *N* and a.e. $(t, m) \in [0, T] \times O_N$

$$\begin{split} \partial_t V(t,m) &- \sum_{|k_j| < N} 2\pi^2 |k|^2 \widehat{m}^k \partial_{\widehat{m}^k} V(t,m) \\ &- \frac{1}{2} \int \Big| \sum_{|k_j| < N} k \partial_{\widehat{m}^k} V(t,m) e^{i2\pi k \cdot y} \Big|^2 dm(y) + F(m) = \frac{O(\eta_N)}{2} \end{split}$$

 $\sim \eta_N$ converges to 0 and notation $O(\cdot)$ is (almost) uniform on $[0,T] \times O_N$

- Result 1: The value function satisfies the general formulation
 use DPP...
- Question: uniqueness?

Scheme for uniqueness

• General idea: V_1 and V_2 two solutions

$$\circ$$
 if classical $\Rightarrow V_1 - V_2$ satisfies

$$\partial_t \left[\frac{\mathbf{V}_1 - \mathbf{V}_2}{\mathbf{V}_1} \right] (t, m) + \frac{1}{2} \int \text{Tr} \left(\partial_y \partial_\mu \left[\frac{\mathbf{V}_1 - \mathbf{V}_2}{\mathbf{V}_1} \right] (t, m)(y) \right) dm(y)$$
$$- \int \frac{1}{2} \left(\partial_\mu V_1 + \partial_\mu V_2 \right) (t, m)(y) \left(\partial_\mu \left[\frac{\mathbf{V}_1 - \mathbf{V}_2}{\mathbf{V}_1} \right] \right) (t, m)(y) dm(y) = 0$$

o solve Fokker-Planck equation/McKean-Vlasov equation

$$\begin{split} \partial_t \mu_t(x) + \operatorname{div}_x \Big[& \frac{1}{2} \Big(\partial_\mu V_1 + \partial_\mu V_2 \Big)(t, \mu_t)(x) \mu_t(x) \Big] dt - \frac{1}{2} \Delta_x \mu_t(x) = 0 \\ dX_t &= -\frac{1}{2} \Big(\partial_\mu V_1 + \partial_\mu V_2 \Big)(t, \mathcal{L}(X_t))(X_t) dt + dB_t \end{split}$$

 \circ expand $(V_1 - V_2)(t, \mu_t)$ in time and get

$$[V_1 - V_2](0, \mu_0) = 0$$

• Question: When generalized solutions?

Mollified HJ equation

• Claim: If V is a generalized solution, then mollification that nearly solves HJ in classical sense \Rightarrow mollification parameters:

 \rightarrow N: truncation of Fourier coefficients of m in V

 $\sim \varrho_N$: finite-dimensional mollification kernel on Fourier coefficients up to order N (mollification for a given truncation)

• Statement: If V is generalized solution, then $\exists V^{N,\varrho_N} \sim V$ such that

$$\begin{split} \partial_t V^{N,\varrho_N}(t,m) &- \tfrac{1}{2} \int \left| \partial_\mu V^{N,\varrho_N}(t,m)(y) \right|^2 dm(y) \\ &+ \tfrac{1}{2} \int \mathrm{Tr} \left(\partial_y \partial_\mu V^{N,\varrho_N}(t,m)(y) \right) dm(y) + F(m) = O\left(\eta_N \right) + \phi_t^{N,\varrho_N}(m) \end{split}$$

- $\circ \eta_N \to 0$ (independently of ϱ_N)
- $\circ \phi_t^{N,\varrho_N}(m)$ depends on \widehat{m}^k for $\max_{j=1,\dots,d} |k_j| < N$ and in L^1

$$\int |\phi_t^{N,\varrho_N}(m)| d\left(\hat{m}^k\right)_{|k_i| < N} \to 0 \quad \text{as } \varrho_N \to \delta_0 \quad (N \text{ fixed})$$

Back to uniqueness

• Proceed as before and now compare $V_1^{N,\varrho_N} - V_2^{N,\varrho_N} \Rightarrow$ Fokker-Planck equation

$$\partial_t \mu_t(x) + \mathrm{div}_x \left[\tfrac{1}{2} \left(\partial_\mu V_1^{N,\rho_N} + \partial_\mu V_2^{N,\rho_N} \right) (t,\mu_t)(x) \mu_t(x) \right] dt - \tfrac{1}{2} \Delta_x \mu_t(x) \sim 0$$

• with solutions in O_N then

$$(V_1^{N,\rho_N} - V_2^{N,\rho_N})(0,\mu_0) = O(\eta_N) + \int_0^T \phi_t^{N,\rho_N}(\mu_t) dt$$

- o difficult term is $\phi_t^{N,\rho_N}(\mu_t)$: $\phi_t^{N,\rho_N}(\cdot) \to 0$ in L^1 (taking as inputs $(\hat{m}_k)_{|k_i| < N}$)
 - \circ need to consider $(\widehat{\mu}_t^k)_{|k_i| < N}$:
 - If $(\widehat{\mu}_0^k)_{|k|\leq N}$ are chosen randomly according to a bounded density
- \Rightarrow the density of $(\widehat{\mu}_t^k)_{k,l < N}$ remains bounded (indep. of ϱ_N)

Need for semi-concavity

- Need to control the contraction of the Fourier coefficients of the solution to MKV equation
 - o semi-concavity comes in

$$V(t, \mathcal{L}(X+Y)) + V(t, \mathcal{L}(X-Y)) - 2V(t, \mathcal{L}(X)) \le C\mathbb{E}[|Y|^2]$$

• Result 2: Uniqueness of Lipschitz, semi-concave generalized solutions such that

$$\partial_{\widehat{m}^k}V(t,m)$$

decreases fast enough at points where the derivative exists

 \rightarrow covers the value function

3. Back to mean field games

Back to the master equation

• Recall the master equation

$$\begin{split} \partial_t v(t,x,m) &- \frac{1}{2} \left| \partial_x v(t,x,m) \right|^2 + \frac{1}{2} \Delta_x v(t,x,m) + f(x,m) \\ &- \frac{1}{2} \int \partial_x v(t,y,m) \partial_\mu v(t,x,m)(y) dm(y) \\ &+ \frac{1}{2} \int \text{Tr} \Big(\partial_x \partial_\mu v(t,x,m)(y) \Big) dm(y) = 0 \end{split}$$

Conservative form

$$\rightarrow$$
 if v smooth then $\bar{v} = v - \int v dm$ solves

$$\begin{split} \partial_t \bar{v}(t,x,m) &- \tfrac{1}{2} \frac{\delta}{\delta m} \Big[\int \left| \partial_y \bar{v}(t,y,m) \right|^2 dm(y) \Big](x) \\ &+ \tfrac{1}{2} \frac{\delta}{\delta m} \Big\{ \int \mathrm{Tr} \left(\partial_y^2 \bar{v}(t,y,m) \right) dm(y) \Big\}(x) + \frac{\delta F}{\delta m}(x) = 0 \end{split}$$

$$ightharpoonup$$
 guess: $\bar{v}(t, x, m) = \frac{\delta V}{\delta m}(t, m)(x)$

Generalized solution

Bounded measurable function

$$\mathcal{Z}: [0,T] \times \mathcal{P}(\mathbb{T}^d) \times \mathbb{T}^d \to \mathbb{R}^d,$$

such that the system of Fourier coefficients

$$\widehat{\mathcal{Z}}^k : [0, T] \times \mathbb{P}(\mathbb{T}^d) \ni (t, m) \mapsto \widehat{Z(t, m, \cdot)}^{-k},$$

satisfies for $N \ge 1$, for $\max_{j=1,\dots,d} |k_j| < N$, a.e. on O_N

$$\begin{split} \partial_t \widehat{\mathcal{Z}}^k(t,m) - 2\pi^2 \partial_{\widehat{m}^k} \int_{\mathbb{T}^d} \left| \sum_{|k_j| < N} j \widehat{\mathcal{Z}}^j(t,m) e_j(y) \right|^2 dm(y) \\ - \sum_{|k_j| < N} 2\pi^2 |j|^2 \partial_{\widehat{m}_k} \widehat{\mathcal{Z}}^j(t,m) \widehat{m}^j + \widehat{f}^{-k}(m,\cdot) + \partial_{\widehat{m}^k} (\eta_N(t,m)) = 0 \end{split}$$

with $\eta_N \to 0$ (almost) uniformly on $[0, T] \times O_N$

Uniqueness

- Claim: Uniqueness of generalized functions that satisfy a weak one-sided Lipschitz property
- \circ weak solutions derive from a potential on O_N and this potential is semi-concave
- \bullet Some care is needed to aggregate all the equations (for any truncation N)
- \circ \exists probability measure \mathbb{P} on $\mathcal{P}(\mathbb{T}^d)$ with full support such that uniqueness holds a.e. under \mathbb{P} for solutions \mathcal{Z} such that

$$\widehat{\mathcal{Z}}^k(t, m * f_N) \rightharpoonup \widehat{\mathcal{Z}}^k(t, m)$$

weakly (when test with respect to bounded functions depending on a finite number of Fourier coefficients)

- o derivative of HJB satisfies the requirements
- Short look at construction of \mathbb{P} : \mathbb{P} is the weak limit of

$$d\mathbb{P}_{N}(m) = 1_{O_{N}}(m) \frac{1}{Z_{N}} \exp\left(-\sum_{|k_{j}| < N} |k|^{2pd} |\widehat{m}^{k}|^{2}\right) \prod_{|k_{j}| < N} d\widehat{m}^{k}$$