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Fractional Brownian motion

The fractional Brownian motion (fBm) B = (BH
t , t ≥ 0) is a zero mean

Gaussian process with covariance function given by

E(BH
t BH

s ) =
1
2

(
s2H + t2H − |t − s|2H

)
.

H ∈ (0,1) is called the Hurst parameter. For H = 1
2 , B

1
2 is a Brownian

motion.
Stationary increments: E[(BH

t − BH
s )2] = |t − s|2H .

Regularity: For any γ < H, with probability one, the trajectories
t → BH

t (ω) are Hölder continuous of order γ:

|BH
t (ω)− BH

s (ω)| ≤ Gγ,T (ω)|t − s|γ , s, t ∈ [0,T ].
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Self-similarity: For all a > 0, the process

{a−HBH
at , t ≥ 0}

is a fractional Brownian motion with Hurst parameter H.
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Correlated increments:
(i) For H 6= 1

2 , the fBm BH has correlated increments:

ρH(n) = E(BH
1 (BH

n+1 − BH
n ))

=
1
2

(
(n + 1)2H + (n − 1)2H − 2n2H

)
∼ H(2H − 1)n2H−2,

as n→∞.

(ii) If H > 1
2 , then ρH(n) > 0 and

∑
n ρH(n) =∞ (long memory ).

(iii) If H < 1
2 , then ρH(n) < 0 (intermittency) and

∑
n |ρH(n)| <∞.
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Local nondeterminism:

For any 0 = s0 < s1 < · · · < sn <∞ and u1, . . . ,un ∈ R,

Var
( n∑

i=1

ui
(
BH

si
− BH

si−1

))
≥ kH

n∑
i=1

u2
i (si − si−1)2H .
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Local time
Let BH be a d-dimensional fBm with Hurst parameter H.

The local time of the fBm BH is formally defined as

Lt (x) =

∫ t

0
δ(BH

s − x)ds,

for t ≥ 0 and x ∈ Rd .

The local time is the density of the occupation measure:∫ t

0
f (Bs)ds =

∫
Rd

f (x)Lt (x)dx .

If H < 1
d there exists a version of the local time which is continuous in

(t , x) (Geman-Horowitz ’80). In fact,

E[Lt (0)] =

∫ t

0
(2πsn2H)−

d
2 ds <∞ ⇔ H <

1
d
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First order limit result

Theorem
Assume H < 1

d . Let f ∈ L1(Rd ). Then, for all t ≥ 0,

nHd
∫ t

0
f (nH(BH

s − λ))ds → Lt (λ)

∫
Rd

f (y)dy ,

in L2(Ω).

Proof:

We simply write

nHd
∫ t

0
f (nH(BH

s − λ))ds = nHd
∫
Rd f (nH(x − λ))Lt (x)dx

=
∫
Rd f (y)Lt (n−Hy + λ)dy .
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Second order limit result

What happens if
∫
Rd f (y)dy = 0?

Theorem (Hu-N.-Xu ’14)

Suppose 1
d+2 < H < 1

d and f : R→ R satisfies
∫
Rd |f (y)|(1 + |y | 1

H−d )dy <∞
and

∫
Rd f (y)dy = 0. Then,

n
Hd+1

2

∫ t

0
f (nHBH

s )ds L−→
√

CH,d‖f‖ 1
H−dW̃Lt (0)

in C([0,∞)), as n→∞, where W̃ is a Brownian motion independent of BH

and
‖f‖2

1
H−d = −

∫
R2d

f (x)f (y)|x − y | 1
H−ddxdy .

and

CH,d =
21−1/(2H)

(1− Hd)πd/2 Γ

(
Hd + 2H − 1

2H

)
.
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The proof is based on the method of moments and uses the local
nondeterministic property.

By self-similarity, we can replace nHBH
s by BH

sn and making the change of
variable ns → u, we obtain

n
Hd−1

2

∫ nt

0
f (BH

u )du L−→
√

CH,d‖f‖ 1
H−dW̃Lt (0).

When d = 1 we need H > 1
3 . In the particular case d = 1 and H = 1

2 , we
obtain

n−
1
4

∫ nt

0
f (B

1
2
u )du L−→

√
2‖f‖1 W̃Lt (0),

which was proved by Papanicolau-Stroock-Varadhan ’77 using
martingale methods.
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Suppose d = 1

Questions:

What happens if H ≤ 1
3?

Can we obtain a second order limit result when
∫
R f (y)dy 6= 0?

Limit theorems for fBm functionals Seminar on SDEs 2022 10 / 27



Second order limit result for
∫
R f (y)dy 6= 0:

Theorem (Jaramillo-Nourdin-N.-Peccati ’22)
Suppose H > 1

3 and f : R→ R satisfies
∫
R |f (y)|(1 + |y |)dy <∞. Then

n
H+1

2

(∫ t

0
f (nH(BH

s − λ))ds − n−HLt (λ)

∫
R

f (x)dx

)
f .d.d.−→

√
CH,f W̃Lt (λ),

as n→∞, where f.d.d means convergence in law of the finite-dimensional
distributions, W̃ is a Brownian motion independent of BH , and CH,f is a
constant depending on H and f .

The proof is based on an integral representation of the local time based
on Malliavin calculus and Clark-Ocone formula.

Limit theorems for fBm functionals Seminar on SDEs 2022 11 / 27



Second order limit result for
∫
R f (y)dy 6= 0:

Theorem (Jaramillo-Nourdin-N.-Peccati ’22)
Suppose H > 1

3 and f : R→ R satisfies
∫
R |f (y)|(1 + |y |)dy <∞. Then

n
H+1

2

(∫ t

0
f (nH(BH

s − λ))ds − n−HLt (λ)

∫
R

f (x)dx

)
f .d.d.−→

√
CH,f W̃Lt (λ),

as n→∞, where f.d.d means convergence in law of the finite-dimensional
distributions, W̃ is a Brownian motion independent of BH , and CH,f is a
constant depending on H and f .

The proof is based on an integral representation of the local time based
on Malliavin calculus and Clark-Ocone formula.

Limit theorems for fBm functionals Seminar on SDEs 2022 11 / 27



Integral representation of fBm

We can assume that

BH
t =

∫ t

0
KH(t , s)dWs,

where W is a standard Brownian motion and

KH(t , s) =

[
H(2H − 1)

β(2− 2H,H − 1
2 )

] 1
2 ∫ t

s
(u − s)H− 3

2 uH− 1
2 du,

if H > 1
2 and

KH(t , s) =

[
2H

(1− 2H)β(1− 2H,H + 1
2 )

] 1
2

×

[(
t
s

)H− 1
2

(t − s)H− 1
2 − (H − 1

2
)s

1
2−H

∫ t

s
(u − s)H− 1

2 uH− 3
2 du

]
,

if H < 1
2 .
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Malliavin calculus

S is the space of random variables of the form

F = f (W (h1), . . . ,W (hn)),

where hi ∈ H = L2(R+), W (hi ) =
∫∞

0 hi (t)dWt and f ∈ C∞b (Rn).

If F ∈ S we define its derivative by

DsF =
n∑

i=1

∂f
∂xi

(W (h1), . . . ,W (hn))hi (s).

DF is a random variable with values in H.

Sobolev spaces: For p ≥ 1, Dk,p ⊂ Lp(Ω) is the closure of S with respect
to the norm

‖DF‖k,p =
k∑

j=0

(
E(‖DjF‖p

H⊗j )
)1/p

.
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Clark-Ocone formula

For any random variable F ∈ D1,2 we have

F = E[F ] +

∫ ∞
0

E[DtF |Ft ]dWt ,

where {Ft , t ≥ 0} is the filtration generated by the Brownian motion W .
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Stochastic integral representation of the local time:

Applying the Clarck-Ocone formula we can show that

Lt (λ) = E[Lt (λ)] +

∫ t

0
E[Dr Lt (λ)|Fr ]dWr

=

∫ t

0
ps2H (λ)ds +

∫ t

0

(∫ t

r
p′µr,s (Br ,s − λ)KH(s, r)ds

)
dWr ,

where

Br ,s =

∫ r

0
KH(s, θ)dWθ, µr ,s =

∫ s

r
K 2

H(s, θ)dθ,

and pt (x) = 1√
2πt

e−x2/(2t).
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Proof:

(i) One one hand we have

E[Lt (λ)] = E

[∫ t

0
δ(BH

s − λ)ds

]
=

∫ t

0
ps2H (λ)ds.

(ii) On the other hand, for r ≤ t ,

E[Dr Lt (λ)|Fr ] = lim
ε→0

E

[
Dr

∫ t

0
pε(BH

s − λ)ds

∣∣∣∣∣Fr

]

= lim
ε→0

E

[∫ t

r
KH(s, r)E[p′ε(B

H
s − λ)|Fr ]ds

]
,

because

Dr BH
s = Dr

∫ s

0
KH(s, θ)dWθ = KH(s, r)1[0,s](r).
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(iii) Making the decomposition, for r ≤ s,

BH
s =

∫ r

0
KH(s, θ)dWθ +

∫ s

r
KH(s, θ)dWθ,

and taking into account that Br ,s =
∫ r

0 KH(s, θ)dWθ is Fr -measurable and∫ s
r KH(s, θ)dWθ is independent of Fr , we obtain

E[p′ε(Bs − λ)|Fr ] = E
[

p′ε

(
Br ,s +

∫ s

r
KH(s, θ)dWθ − λ

)∣∣∣∣Fr

]
= p′ε+µr,s

(Br ,s − λ) ,

where µr ,s =
∫ s

r K 2
H(s, θ)dθ.

Therefore, letting ε→ 0,

E[Dr Lt (λ)|Fr ] =

∫ t

r
KH(s, r)p′µr,s

(Br ,s − λ) ds.
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Sketch of the proof of the theorem:

(i) We want to show that

Z (n)
t (f )

f .d .d .−→
√

CH,d‖f‖ 1
H−dW̃Lt (λ),

where

Z (n)
t (f ) := n

H+1
2

(∫ t

0
f (nH(BH

s − λ))ds − n−HLt (λ)

∫
R

f (x)dx
)
.

(ii) Using the local time, we can write

Z (n)
t (f ) = n

1−H
2

∫
R

f (x)(Lt (n−Hx + λ)− Lt (λ))dx .
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(ii)i From the representation of the local time, we obtain

Z (n)
t (f ) = n

1−H
2

∫ t

0
Gf ,n

r ,t dWr + n
1−H

2 R(f ,n)
t ,

where

Gf ,n
r ,t =

∫
R

∫ t

r
f (x)

(
p′µr,s (Br ,s −

x
nH − λ)− p′µr,s (Br ,s − λ)

)
× KH(s, r)dsdx

and

Rf ,n
t =

∫
R

∫ t

0
f (x)

(
ps2H (

x
nH + λ)− ps2H (λ)

)
dsdx .
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(iv) We have
lim

n→∞
sup

0≤t≤T
n

1−H
2 |R(f ,n)

t | = 0.

(v) To show the convergence

n
1−H

2

∫ t

0
Gf ,n

r ,t dWr
f .d .d .−→

√
CH,d‖f‖ 1

H−dW̃Lt (λ),

where W̃ is a Brownian motion independent of BH , we use
martingale methods.
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(vi) If we fix t > 0, the process

M(n)
u = n

1−H
2

∫ u

0
Gf ,n

r ,t dWr , u ≥ 0,

with the convention Gf ,n
r ,t = 0 if r > t , is a martingale, that satisfies

〈M(n)〉u
P−→ CH,d‖f‖2

1
H−dLt∧u(λ) (1)

and
〈M(n),W 〉u

P−→ 0, (2)

uniformly in u ∈ [0,T ], for each fixed T > 0.

(vii) (1) and (2) imply:

M(n)
u

L−→
√

CH,d‖f‖ 1
H−dW̃Lt∧u(λ), (3)

where W̃ is a Brownian motion independent of W .
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Proof that (1) and (2) imply (3):

(viii) Let W (n) be the Brownian motion such that M(n)
u = W (n)

〈M(n)〉u
, u ∈ [0,T ].

Then, an asymptotic version of Knight’s theorem together with (1) and
(2) imply

(W ,W (n), 〈M(n)〉) L−→ (W , W̃ , 〈M(∞)〉),

where W̃ is a Brownian motion independent of W and

〈M(∞)〉u = CH,d‖f‖2
1
H−dLt∧u(λ).

This implies the following convergence in law for each u ∈ [0,T ]:

M(n)
u = W (n)

〈M(n)〉u
L−→ W̃〈M(∞)〉u .
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(2) imply

(W ,W (n), 〈M(n)〉) L−→ (W , W̃ , 〈M(∞)〉),

where W̃ is a Brownian motion independent of W and

〈M(∞)〉u = CH,d‖f‖2
1
H−dLt∧u(λ).

This implies the following convergence in law for each u ∈ [0,T ]:

M(n)
u = W (n)

〈M(n)〉u
L−→ W̃〈M(∞)〉u .
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Case H = 1
3

Theorem (Jaramillo-Nourdin-N.-Peccati ’22)
Suppose H = 1

3 and f : R→ R satisfies
∫
R |f (y)|(1 + |y |2)dy <∞. Then for

any t > 0 and λ ∈ R we have

(log n)−
1
2 n

1+H
2

(
nH
∫ t

0
f (nH(BH

s − λ))ds − Lt (λ)

∫
R

f (x)dx

)
f .d.d.−→

√
Cf W̃Lt (λ),

as n→∞.
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Case H < 1
3

Theorem (Jaramillo-Nourdin-N.-Peccati ’22)
Suppose H < 1

3 and f : R→ R satisfies
∫
R |f (y)|(1 + |y |ν)dy <∞ for some

ν > 1. Then for any t > 0 and λ ∈ R we have

nH

(
nH
∫ t

0
f (nH(BH

s − λ))ds − Lt (λ)

∫
R

f (x)dx

)
L2(Ω)−→ L′t (λ)

∫
R

yf (y)dy ,

as n→∞.
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Sketch of the proof:

Set

Dn := nH
∫ t

0
f (nH(BH

s − λ))ds − Lt (λ)

∫
R

f (x)dx − n−HL′t (λ)

∫
R

yf (y)dy

We have
lim

n→∞
n2HE[|Dn|2] = 0,

which follows from

nHDn =

∫
R

f (y)nH
(

Lt (
y

nH + λ)− Lt (λ)− y
nH L′t (λ)

)
dy .
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Open problems:

Tightness in the case H ≥ 1
3 .

d-dimensional fBm:
(i) For 1

d+2 ≤ H < 1
d we expect convergence in law.

(ii) For H < 1
d+2 we expect convergence in L2(Ω) to some derivatives

of the local time.

Limit theorems for fBm functionals Seminar on SDEs 2022 26 / 27



References

[1] A. Jaramillo, I. Nourdin, D. Nualart and G. Peccati: Limit theorems for
additive functionals of the fractional Brownian motion. Ann. Probab. To
appear.

[2] A. Jaramillo, I. Nourdin and G. Peccati: Approximation of local times: zero
energy and weak derivatives. Ann. Appl. Probab. 31, 2143-2191, 2021.

[3] Y. Hu, D. Nualart and F. Xu: Central limit theorem for an additive functional
of the fractional Brownian motion. Ann. Probab. 42, 168-203, 2014.

[4] D. Nualart and F. Xu: Central limit theorem for an additive functional of the
fractional Brownian motion II. Electron. Commun. Probab. 18, no. 74, 2013.

[5] G. C. Papanicolau, D. Stroock and S. R. S. Varadhan: Martingale
approach to some limit theorems. Duke Univ. Math. Ser., Vol. III, 1977.

Limit theorems for fBm functionals Seminar on SDEs 2022 27 / 27


