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Motivation: Decision making under uncertainty

More specifically:

• How to optimize the control of dynamic systems under uncertainty?

• How to find optimal policies that maximize rewards/minimize costs?

Applications:

• natural resource management ( impulse control):

• optimize fishing policies in order to sustainably exploit fish stocks

• optimize logging and reforestation policies in forestry

• aerospace guidance ( singular control): spacecraft trajectory optimization to ensure safe and

efficient paths

• game playing: learn optimal strategies for games like chess, Go, or video games
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Decision making under uncertainty

Stochastic control:

active decision-making agent controls a stochastic process with known

dynamics

• seeks to find the best possible strategy to achieve a goal by

computations, often in a continuous-time setting

• Bellman principle, dynamic programming, HJB equations, ...

Reinforcement learning:

based on the use of algorithms relying on experiences or trials, often in

discrete time

• dynamics/rewards do not have to be known (“model-free”)

• limited convergence guarantees

• Q-learning, deep learning, AlphaGo, ...
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Stochastic control vs. reinforcement learning

stochastic control reinforcement learning

system dynamics assumes a concrete mathe-

matical model

can learn from interactions with-

out explicit modeling in a general

MDP set-up

knowledge of dynamics requires full knowledge can learn from experience

exploration vs. exploitation focuses on exploiting the

known dynamics to optimize

control of actions

agents actively explore the en-

vironment to gather information

and discover optimal policies

C. Rudin et al. (2022): Interpretable machine learning: Fundamental principles and 10 grand

challenges:

“In deep reinforcement learning, policies are defined by deep neural networks, which helps

to solve complex applied problems, but typically the policies are essentially impossible to

understand or trust.”
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On the way to data-driven stochastic control

• the very beginning:

S. Christensen and C. Strauch (2023). Nonparametric learning for impulse control

problems. Ann. Appl. Probab., 33, no. 2, 1369–1387.

• extension to singular control problems and the Lévy framework:

S. Christensen, C. Strauch and L. Trottner (2024). Learning to reflect: A unifying

approach for data-driven stochastic control strategies. Bernoulli, 30, no. 3, 2074–2101.

• extension to the multivariate case:

S. Christensen, A. Holk Thomsen and L. Trottner (2023). Data-driven rules for

multidimensional reflection problems. arXiv:2311.06639.

• refining the statistical analysis/providing minimax optimality:

S. Christensen, N. Dexheimer and C. Strauch (2023). Data-driven optimal stopping: A

pure exploration analysis. arXiv:2312.05880.
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Constructing interpretable strategies for data-driven stochastic control

General mathematical framework:

• consider a regular scalar Itô diffusion process with dynamics

dXt = b(Xt)dt + σ(Xt)dWt , t > 0

• assumptions on the uncontrolled diffusion: locally Lipschitz, growth condition, and

∀|x | > A :
b(x)

σ2(x)
sgn(x) 6 −γ

• in particular: there exists an invariant density

ρ(x) := ρb(x) :=
1

Cb,σσ2(x)
exp

(
2

∫ x
0

b(y)

σ2(y)
dy

)
, x ∈ R

• notation: denote by Σ the class of “sufficiently regular” drift functions b
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(I) Impulse control problem: Basic framework

Set K = (τn)n∈N, τ1 < τ2 < . . . an increasing sequence of stopping times, and consider the controlled

process X = XK fulfilling

• on (τk , τk+1), dXt = b(Xt)dt + σ(Xt)dWt ,

• X (τk) = y0 fix (in the sequel, y0 ≡ 0).

Goal: Given a payoff function g , choose the intervention times to maximize the asymptotic

growth rate, i.e., maximize

Φb(g) := sup
K

lim inf
T→∞

1

T
Eb

[ ∑
n:τn6T

g(XK
τn−

)

]
.

6



(I) Solution for impulse control problem (with full knowledge of dynamics)

Denote τy := inf{t > 0 : Xt > y }, y ∈ R. For each y , the corresponding threshold strategy has value

g(y)

ξb(y)
, y > 0,

where, for ρb and Fb denoting the invariant density and the associated cdf, respectively,

ξb(y) := Eb [τy ] = 2

∫ y
0

Fb(r)

ρb(r)σ2(r)
dr .

Theorem (Alvarez (2004); Helmes et al. (2017))

Under mild assumptions, the value Φ for the impulse control problem is given as the maximum

Φb(g) = sup
y>0

g(y)

ξb(y)
,

and the threshold strategy K̂ = (τ̂n)n∈N with τ̂n = inf{t > τ̂n−1 : Xt > y∗}, τ̂0 := 0, for the maximizer

y∗ = y∗b of y 7→ g(y)
ξb(y)

is optimal.
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(II) Singular control problem: Basic framework

As before, we consider a regular scalar Itô diffusion process with dynamics

dXt = b(Xt)dt + σ(Xt)dWt , t > 0,

admitting an invariant density ρ = ρb. In the set-up of singular control, with Z = (Ut ,Dt)t>0, U,D

non-decreasing, right-continuous and adapted, the controlled process X Z fulfills

dX Z
t = b(X Z

t )dt + σ(X
Z
t )dWt + dUt − dDt .

Goal: Given continuous, nonnegative running cost function c, qu, qd > 0, minimize the cost

functional

lim sup
T→∞

1

T
E

[∫T
0

c(X Z
s )ds + quUT + qlDT

]
.
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(II) Solution for singular control problem (with full knowledge of dynamics)

For each (c, d), the corresponding reflection strategy has value

C (c, d) =
1∫d

c ρb(x)dx

(∫ d
c

c(x)ρb(x)dx +
quσ

2(c)

2
ρb(c) +

qdσ
2(d)

2
ρb(d)

)
.

Theorem (Alvarez (2018))

Under some assumptions, the value for the singular control problem is given by

Vsing = min
(c,d)

C (c, d),

and the reflections strategy for the minimizer (c∗, d∗) is optimal.
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Data-driven stochastic control: Between statistics and optimization

Central assumption in stochastic control:

The dynamics of the underlying process X are completely known.

What to do if this is not the case?

• Which are the relevant characteristics of X to estimate the optimal level/optimal boundaries?

• How does controlling the process influence the estimation?

Auxiliary question:

How to solve the problem when we use information of an independent uncontrolled process to

estimate the optimal level/boundaries?
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(I) Key statistical question for the impulse control problem

â If the diffusion dynamics are unknown: How to estimate

Φb(g) = sup
y>0

g(y)

ξb(y)
, where ξb(y) = 2

∫ y
0

Fb(r)

ρb(r)σ2(r)
dr ,

and the corresponding maximizer y∗ = arg maxy>0
g
ξb
(y), using a continuous record of

observations (Xs)06s6T of the uncontrolled process?

â Plug-in approach: Define the nonparametric estimators

ρ̂T (x) :=
1

T

∫T
0

KT (x − Xs)ds and F̂T (x) :=

∫T
0

1 {Xs ∈ (−∞, x)}ds, x ∈ R,

where KT (x) :=
√
TK (

√
Tx), for a bounded kernel function K with compact support, and use

ξ̂T (y) := 2

∫ y
0

F̂T (r)

ρ̂T (r)σ2(r)∨ c
dr ∨ c and ŷT ∈ arg max

y>0

g

ξ̂T
(y).
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(I) Bounding the simple regret

How can we bound the expected loss when following the threshold strategy with ŷT instead of the

true maximum y∗, i.e., the simple regret

Eb

[
Φb(g) −

g

ξb
(ŷT )

]
?

Denote

G :=

g ∈ C ((0,∞)) :


g(0+) < 0, y1 = inf{y > 0 : g(y) > 0},

∀b ∈ Σ : g(y)
ξb(y)

6 supz∈(0,ζ]
g(z)
ξb(z)

∀y > 0

supz∈[y1,ζ] |g(z)| 6 M

 ,

with 0 < y1 < ζ <∞ and 0 < M <∞, i.e., G is the class of “sufficiently regular” (bounded,

continuous) payoff functions g for which it is known that y∗ ∈ [y1, ζ].
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(I) Bounding the simple regret

How can we bound the expected loss when following the threshold strategy with ŷT instead of the

true maximum y∗, i.e., the simple regret

Eb

[
Φb(g) −

g

ξb
(ŷT )

]
?

Then, by definition, for any g ∈ G and any p > 1,

Eb

[(
Φb(g) −

g

ξb
(ŷT )

)p]1/p

6 Eb

[(
Φb(g) −

g

ξb
(ŷT ) +

g

ξ̂T
(ŷT ) −

g

ξ̂T
(y∗)

)p]1/p

6 2Eb

[
sup

y∈[y1,ζ]

(∣∣∣∣ gξb (y) − g

ξ̂T
(y)

∣∣∣∣)p
]1/p

. sup
y∈[y1,ζ]

(
Eb [|ρ̂T (x) − ρb(x)|

p]
1/p

+ Eb

[∣∣∣F̂T (x) − Fb(x)
∣∣∣p]1/p

)
.

13



(I) Bounding the simple regret (general case)

Proposition (Christensen & CS (23); Christensen, Dexheimer, CS (23))

For any T > 0, p > 1, it holds

sup
b∈Σ

sup
x∈R

(
Eb [|ρ̂T (x) − ρb(x)|

p]
1/p

+ Eb

[∣∣∣F̂T (x) − Fb(x)
∣∣∣p]1/p

)
. T−1/2

(
p1/2 + pT−1/2

)
.

Consequently,

sup
b∈Σ

sup
g∈G

Eb

[(
Φb(g) −

g

ξb
(ŷT )

)p]1/p

6 T−1/2
(
p1/2 + pT−1/2

)
.

• bound is nonasymptotic, estimator achieves parametric rate, fully data-driven

• explicit bound for all moments
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(I) Refining the statistical analysis: Towards minimax optimality

Previous bound holds true for general payoff functions, can we improve this under more specific

assumptions?

Assumption A (margin condition, Tsybakov noise condition)

Let ∆0 ∈ (0, 1), n ∈ N, η,β > 0, and let f be a continuous function on (0,∞) fulfilling

supx∈(0,∞) f (x) <∞. We say that f satisfies Assumption A if there exist x1, . . . , xn ∈ (0,∞) such

that f (xi ) = supx∈(0,∞) f (x) <∞ for all i = 1, . . . , n and

∀0 < ∆ 6 ∆0, Xf (∆) ⊆
n⋃

i=1

(
xi −

1

2
η∆β, xi +

1

2
η∆β

)
,

where

Xf (∆) :=

{
x ∈ (0,∞) : sup

y∈(0,∞)

f (y) − f (x) 6 ∆

}
, ∆ > 0.

 β intuitively measures the difficulty of identifying the true maximiser
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(I) Bounding the simple regret: Margin condition

For each (sufficiently regular) b ∈ Σ, define the class of payoff functions

Gb(β) :=

{
g ∈ G :

g

ξb
satisfies Assumption A

}
.
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Figure 1: Plots of the function g(x) = (1 − |1 − x |1/β)ξb(x) for β = 0.25, 0.5, 0.75, 1, with b(x) = −x/2.
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(I) Bounding the simple regret under the margin condition

Theorem (Christensen, Dexheimer, CS (23))

For any T > 0, β > 0, p > 1,

sup
b∈Σ

sup
g∈Gb(β)

Eb

[(
Φb(g) −

g

ξb
(ŷT )

)p]

6 inf
0<α<β∧1

C
p

1−α
1 T− p

2−2α

((
p

1 − α

) p
2−2α

+

(
p

1 − α

) p
1−α

T− p
2−2α

)
.

In particular,

sup
b∈Σ

sup
g∈Gb(β)

Eb

[
Φb(g) −

g

ξb
(ŷT )

]
∈ O (Ψ(β,T )) ,

where

Ψ(β,T ) :=

T− 1
2−2β , 0 < β < 1,

exp (−C2T ) , β > 1.
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(I) PAC bounds for the simple regret under the margin condition

Since we can explicitly control all moments of the simple regret, we also obtain the following PAC

bounds.

Corollary (Christensen, Dexheimer, CS (23))

For any δ ∈ (0, e−1], ε ∈ (0, 1), the uniform PAC bound

sup
b∈Σ

sup
g∈Gb(β)

Pb

(
Φb(g) −

g

ξb
(ŷT ) > ε

)
6 δ

holds, if β ∈ (0, 1), for any

T >
4C 2

1 e2−2β log(δ−1)

(1 − β)ε2−2β
,

and, if β > 1, for any

T >
4C 2

1

log(2)
log(2δ−1) log(eε−1).
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(II) Using estimators (singular control)

Given some invariant density estimator ρ̂T , use

ĈT (c, d) :=
1∫d

c ρ̂T (x)dx

(∫ d
c

c(x)ρ̂T (x)dx +
quσ

2(c)

2
ρ̂T (c) +

qdσ
2(d)

2
ρ̂T (d)

)
and

(̂c, d)T ∈ arg min
(c,d)

ĈT (c, d).

Proposition (Christensen, CS, Trottner (24))

Assume that we have a data-driven estimator ρ̂T for ρ. Then,

Eb

[
Vsing − C ((̂c, d)T )

]
6 2Eb

[
max
(c,d)

∣∣∣C (c, d) − ĈT (c, d)
∣∣∣]

. Eb [‖ρ̂T − ρb‖L∞ ] .

þ need nonparametric bounds for Eb [‖ρ̂T − ρb‖L∞ ]
19



Exploration vs. exploitation

• previous results require estimation based on data of the uncontrolled process

þ high associated costs from not controlling the process

• estimation of optimal boundary based on controlled process cannot be expected to converge

Problem

Exploration vs. exploitation!

• our approach: divide time axis into exploration periods of length ST (estimate optimal

intervention time/boundary based on uncontrolled process) and exploitation periods (control the

process based on estimates to reduce the costs)

• optimal strategy must balance effects by determining exploration/exploitation ratio
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(I) Data-driven impulse control of diffusions

Figure 2: Illustration of a path controlled by data-driven impulse strategy with drift function b(x) = −2x ,

diffusion coefficient σ(x) = 1, payoff function g(x) = 0.7 − |1 − x |. The exploration periods are marked green,

the exploitation periods purple, and the estimated thresholds orange. The optimal threshold is marked with the

black dashed line.
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(I) Upper bound for the cumulative regret

• for the cumulative regret of the data-driven strategy, we obtain

Φb(g)T − Eb

[ ∑
n:τn6T

g(ŷτn )

]
. ST + Tψ(ST ),

where ψ is an upper bound for the simple regret of the proposed estimator

• choosing

ST ∼ Tψ(ST ) =


T 2/3, general case,

T
2−2β
3−2β , margin condition with β ∈ (0, 1),

logT , margin condition with β > 1

asymptotically yields the best result of a cumulative regret of order

Φb(g) −
1

T
Eb

[ ∑
n:τn6T

g(ŷτn )

]
.


T−1/3, general case,

T− 1
3−2β , margin condition with β ∈ (0, 1),

logT
T

, margin condition with β > 1
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(I) What about minimax optimality of the upper bounds on the regret?

We consider the general case.

Theorem (Christensen, Dexheimer, CS (23))

• (simple regret) For any loss function `, there exist constants c`,1, c`,2 > 0 such that, for large

enough T ,

inf
ỹT

sup
b∈Σ

sup
g∈G

Eb

[
`

(
c`,1T

1/2

(
Φb(g) −

g(ỹT )

ξb(ỹT )

))]
> c`,2,

where the infimum extends over all estimators ỹT .

• (cumulative regret) There exists a constant c3 > 0 such that, for large enough T > 0,

inf
K

sup
b∈Σ

sup
g∈G

(
Φb(g)T − E

[ ∑
n:τn6T

g(XK
τn−

)

])
> c3

√
T ,

where the infimum extends over all impulse control strategies wrt G.
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(II) Data-driven singular control of diffusions

τ1 τ2 τ3 τ4 τ5

ξ0

0

θ0

Figure 3: A path controlled using a data-driven reflection strategy with exploration (blue) and exploitation

(turquoise) periods. The estimated optimal reflection boundaries are represented by purple lines.
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(II) Data-driven singular control of diffusions

Theorem (Christensen, CS, Trottner (24))

Assume that we have a data-driven estimator ρ̂T for ρ with

E0
b [‖ρ̂T − ρb‖L∞ ] ∈ O

(√
logT/T

)
.

If ST ≈ T 2/3, the regret is of order O
(√

logT T−1/3
)
.

• missing piece for our data-driven strategy: estimator ρ̂T of ρ with sup-norm rate O(
√

logT/T )

• assumption: continuous record XT = (Xt)t∈[0,T ] available

• classical candidate: kernel density estimator

ρ̂h,T (x) :=
1

hT

∫T
0

K

(
x − Xt

h

)
dt, x ∈ R

25



Controlling the risk of estimators

Two approaches:

À make use of specific structure of diffusions by employing local time and continuous martingale

techniques (Aeckerle-Willems & CS (2021))

Á use mixing properties to control the long-time transitional behaviour and heat kernel bounds on

the transition density for the short-time behaviour (Dexheimer, CS, Trottner (2022))

ú both approaches allow to handle deviation inequalities and moment bounds for suprema of

empirical processes of the form

sup
g∈G

∣∣∣ 1√
T

∫T
0

g(Xs)ds︸ ︷︷ ︸
=:GT (g)

∣∣∣, G ⊂ L∞(R),

via Talagrand’s generic chaining device
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Putting the pieces together

Theorem (Christensen, CS, Trottner (24))

Assume that we have a data-driven estimator ρ̂T for ρ with

E0
b [‖ρ̂T − ρb‖L∞ ] ∈ O

(√
logT/T

)
.

If ST ≈ T 2/3, the regret is of order O
(√

logT T−1/3
)
.

Under standard assumptions on drift b and diffusion coefficient guaranteeing

(a) exponential ergodicity of X ,

(b) heat kernel bound on semigroup, i.e., supx ,y∈R pt(x , y) . 1/
√
t, t ∈ (0, 1),

it follows from general sup-norm estimation results for Markov processes (Dexheimer, CS, Trottner

(2022)) that for any bounded, open set D and hT ∼ log2 T/
√
T ,

E0
b

[
‖ρ̂hT ,T − ρb‖L∞(D)

]
∈ O

(√
logT/T

)
X.
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For (general) stationary, exponentially β-mixing Markov processes with inv. distribution µ, i.e.,

β(t) =
∫
‖Pt(x , ·) − µ‖TV µ(dx) . exp(−κt), we obtain for mT 6 T/4, τ ∈ [mT , 2mT ],(

Eµ

[
sup
g∈G

|GT (g)|
p

])1/p

6 C1

∫∞
0

logN
(
u,G, 2mT√

T
d∞)du + C2

∫∞
0

√
logN(u,G, dG,τ)du

+ 4 sup
g∈G

(2mT√
T
‖g‖∞c1p + ‖g‖G,τc2

√
p +

1

2
‖g‖∞cκ√Te−

κmT
p

)
,

where dG,τ(f , g) = Var(Gτ(f − g)). With the decomposition

Eµ

[∥∥ρ̂h,T − ρ
∥∥
L∞(D)

]
= ‖Eµ[ρ̂h,T (·)] − ρ‖L∞(D) + Eµ

[∥∥ρ̂h,T − Eµ[ρ̂h,T (·)]
∥∥
L∞(D)

]
=: B + V ,

we can use the general result to bound the stochastic error V via

V =
1√
Th

Eµ

[
sup
g∈G

|GT (g)|

]
, G =

{
K
(
x−·
h

)
− µ

(
K
(
x−·
h

))
: x ∈ D ∩Q

}
.
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Data-driven approaches to stochastic control

Simple recipe:

(A) Identify a stochastic control problem which admits an explicit solution;

(B) identify the dependence on the underlying diffusion dynamics;

(C) use a plug-in approach to obtain a data-driven estimate.

What makes the problems studied so far tractable?

Estimation problem boils down to nonparametric analysis of invariant density/cdf estimators for

scalar diffusions.

↪→ parametric convergence rate

↪→ bandwidth of kernel density estimators can be chosen independently of the smoothness

↪→ specific for invariant density estimation of scalar diffusion processes from continuous observations
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Summary

• we develop data-driven strategies for the determination of optimal intervention

times/boundaries appearing in stochastic optimal control problems associated to diffusion

processes under uncertainty on the underlying dynamics

• central to the approach are efficient nonparametric estimators of the cost/payoff-representing

functionals

• we show improved results for the simple regret under more specific assumptions (margin

condition) on the payoff functions

• optimality of the results on the simple regret is verified by providing matching minimax lower

bounds

• we provide a solution for the emerging exploration-exploitation dilemma

Thank you for your attention!
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