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The question

Stationary distribution of MKV SDEs

Let (2, A,P,F) := (Ft)e=0) be a filtered probability space, with F satisfying the usual
conditions. W is F-Brownian motion (independent of Fy). Consider

> a McKean-Vlasov SDE: ([¢] is the law of the random variable &)
dXt = b(Xt, [Xt]) dt + O'(Xt, [Xt]) C1W1_~7

> As you know: generally obtained as limit of particles systems weakly interacting.
Here we are interested in the long time behavior - convergence to equilibrium of
this equation ~» stationary distribution.

> A stationary distribution v* is such that [X;] = v* for all t = 0
» Starting with X5 ~ v* we have simply
dX; = b(X{,v*)dt + o(X7, ") dW,
< A ‘classical’ diffusion...

Goal: Find a way to compute v* (provided it exists!)
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The question

Computing the stationary distribution of classical SDE

For a classical SDEs dX; = B(X;)dt + £(X;) dW; with stationary distribution fi.
> First approach. Use Euler scheme with step h for the SDE:

Xint1yh = Xon + hB(Xan) + Z(Xon) (Wins1)h — Wan)

Simulate M samples (X77)1<m<m with (M, n) large to obtain M Oxm =~ fu
» Second approach. From the fact %SS 0x, ds — fi (a.k.a. ergodic behavior under
some good conditions)
1. First idea: Use the scheme (X,n) and let it run forever to obtain
150 8,y — fi...+bias.
2. Better idea: Use adaptative time stepping to kill the bias asymptotically.
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The question

Computing the stationary distribution of SDE

> Let (vn)n=1 be a non-increasing sequence of positive steps satisfying

n
Y» — 0 and Fn:=2fyk=+oo as n— 4w
k=1

> Define then X the Euler scheme with decreasing step size:

Xr, =X + ’ynB(X ) + «/’ynz(X )Z,, with Z, = 7‘/‘/ = W
r,o=Xr, T r , h —
1 1 1 I~

and then set or, = & 0_, wdx, ,, n=>1
> One expects Ir, — [ when n goes to infinity.

> Lamberton-Pages [LP02, LP03] give a complete picture of the convergence
results and how to chose the step optimally in various contexts.
(In particular, v, = ’ym_%)

> How to adapt this to our framework?

J-F Chassagneux Computing the stationary measure of McKean-Vlasov SDEs



A solution

Computing the stationary distribution (MKV)

» Obstruction for MKV: (B(x),X(x)) = (b(x,v*),o(x,v*)) and v* is what we
want to compute...

» Solution: Replace v* by the empirical measure in the coefficients.
Introduce first (the self-interacting diffusion)

t
dX; = b(X:,v¥) dt + o(Xe,vi¥) AW, with ¥ = %J bx, ds.
0

Then consider its Euler Scheme (Xr,)n>0 the scheme, which is defined by

/?l'n = ‘)Ern—l + ’Y'Tb(‘)z‘rn—u Ur,_y) + ’YnU(A?r,,_l, Drn—l)znv
Wrn - Wrn—l

1 n
with Ijrn = = ’yk(S)e s Zn =
. kgl Me—1 /Yn

> One expects or, — v*.

> Observe that this is in sharp contrast with the basic idea of simulating a particles
system and letting time run forever ~» only one particle is simulated here!
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A solution

Related literature and contributions

The idea of using self-interacting diffusion to approximate stationary measure of MKV
SDEs is not new.

» The paper [ABRS19] from CEMRACS 2017 mentions this approach.

> The paper [DJL23] studies the convergence with a rate for E[W5 (v*, ir,) ]| (very
inspiring) Their setting is the closest to ours.

» The paper [KK*12] (and references therein) give some almost sure rate of
convergence: application to physics.

» The paper [DRSW23] uses exponentially weighted empirical measure and
combines this with an annealing method to obtain convergence.

Our main contributions:
1. We focus on the implemented scheme.

2. We obtain rate of convergence for Wa(v*, 7rr,) both in the L? and almost sure

case where 1
=, inf E[IX- VP[]
W2(;ua V) (X’y)s,tl,r)](~l/yy“‘l" | |
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A solution

Main setting

1. Lipschitz coefficient: this is because we consider the error for the Euler scheme.
1b(x, 1) = by, V)| + llo(x, 1) = oy, V)] < L(Ix = y[+Wa(p,v)).

2. Confluence (HC)pu.5: for every x, ye RY and every i, ve P»(R?), (b, o) satisfies:

2(b(x, ) = by, v) [ x = y) + (2p = Do (x, p) = oy, V)7 < —alx =y " + W3 (u, v).

with o > 3 > 0.

— (H*)=(HL) & (HC)1,q,3 hold and we set 9* :=1 — %

C

3. Mean-reversion: to obtain some integrability (HMV), ks o+ g: For every x, ye R?
and every p € P2(RY),

2(b(x, ) | x) + (2p = D]o(x, w7 < K — o/ |x[* + BW3 (1, 6o).-
witha' >3 >0
4. o is uniformly elliptic, to obtain the almost sure rate of convergence only.

(There are links between assumptions 1,2 & 3)
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A solution

On the stationary process X*

e For ;1 € Po(RY), denote M(p) the set of invariant measure for
dX{* = b(X{", p)dt + o(XE', p) AW and X§' ~ 1

» Under the confluence assumption, IN(y) is single valued and

WZ(”(N’)v I_I(V)) < \/gWQ(:uv V)

» Work in the case where o > 3 > 0: v* is the fixed point of I then (X* = X*").

» The mean-reversion assumption allows then to " control” the level of integrability of
v* (minimal case is £?*", for some p* > 1)

» Example "OU like process”: dX; = (bE[X:] — X¢) dt + A/2dW,. Set m;y = E[X¢], so
that dm;, = (b — 1)m, and m, = E[Xo] e*~V* vt

1. if |b] <1, (H*) holds: dX; = —X? dt ++/2dW,, 0.U. process v* = N(0,1).

2. ifb=1: dX} = (mo — X{)dt + v/2dW, Stationary distributions v* = N (mo, 1)
parametrised by initial mean my...

3. if b < —1: (H*) does not hold but stationary distribution v* = A(0,1)



A solution

Some computations for the contraction property

e i=1,2 pu e PXRY), dX{ = b(X{,u)dt + o (X, ') dWs, X' ~ M[p'] (stationary)
» Apply Ito’s formula to (e®f| X} — X2|?)t=0:

t
e |IXt — X2° = |X3 — X3)? + af e |X! — X2|> ds + M (loc.mart.)
0

t
[ e (20606 1Y) = G AIXE = XE) + o (XE i) = o OE )R ) ds
0

via (HC)<—a|X2—X2[24+BW3 (ul,u2)

» After localization if need be:

t
B[ 1!~ XPP| < e B[ )X x|+ i i) | e ds
S —— 0
SW2(M[ut],N[p2])

» Integrating and letting t — +00, we do obtain

WAL, M) < SW3G )
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A solution

Convergence results, see [CP24].

e We obtain rates of convergence for Wh(v*, Ir,,) in the L2 and a.s. sense where:
— " is the unique stationary distribution of the MKV SDE (distribution of X*)

— br, = ri,, I 'ykéé\-gl_ki1 with X Euler scheme with stepsize (vn) for the SID.

e Results in the L2 sense. (H*) holds. Denote r* := 1+19* € (0,1) with 9* =1— 2.
Set v, = fyln”*, 7 > 0.

2p* —1

i) for any small n > 0, set (p» := @It (0~ (T3

—

1
o rop 2(d+3)

E[sz(y*’ﬂrn)]% _ o, (nfuf,*)gp*) (LW []) o <n7%+n)

convergence of vX* to v* rate for the Euler scheme to the SID

ii) If moreover, o is bounded then
1

E[Wg(y*jrn)]? =0 <n*% |0g(n)%> i (1 +W22(u*,[XO])) o (n*%“’),

improved rate
1

Note: 20 X xy|2 —¢ : |
ote: If one has E| W5 (vf ,v*)|” = O(t™°) then it can be used above!




A solution

Convergence results in the a.s. sense

o (H*) + (HMV), + o unif. elliptic: Set 7, = yyn~ ("4 %)

(2p*—1)?
2020 +1){2(d+2) 1 (d+3)(d+2p" —1)}

i) for any small ', > 0, set fp* =

Wz(V*,Drn) — On, (n_(l—(r*A%))ép* Iog(n)%"'n/) n (1 n |X0* _ XO') o, (n_(%/\%)+n)

convergence of vX* to v* rate for the Euler scheme to the SID

ii) If moreover, o is bounded then, for any small ', > 0,

lf(r*Al) , o
Wh(v™, Dr,) = oy (n 2@T5) Iog(n)%“] ) + (14 |Xe — Xo|) oy (nf(TA%HT’) .

improved rate
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A solution

Numerical illustration

> MKV Example: dX; = (bE[X,] — X;)dt + v2dW, (b e R)

- Stationary version: dX; = —X; dt + /2dW; (OU process)
- Stationary distribution b < 1: v* = L(X) = N(0,1)

» Scheme for this equation is easy to implement:
.)a',, = .)Ern_l + Yn(bMp_1 — Xrn_l) + 72902, with m,_1 = Tl—l Zz;i Ve Xk—1
(observe that m, = 7~ Xn 1+ (1- ™ )ymy_1)

> Question: how to choose the step rate r in vy, = 'yln -7

— Previous theoretical results indicates r* := 1+19* € (0,1) with 9* =1 — g
An upper bound for ¥* here is 1 — b*> — " L2 step rate” on the graph.
<> we also consider r* A 1: "as step rate” and r = 1 (classical SDE case).

1
» We estimate convergence rate for E[Wﬁ(ﬂrn, 1/*)] 2 (emp. mean on 500 samples,
n up to N = 100000):
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A solution

Estimated convergence rate for mean quadratic W2 distance
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Empirical estimation of the convergence rate as a function of b. Tests realised for three
different specifications of the algorithm input step rate, N = 100000 and M = 500.
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A solution

Is there an optimal step rate?

Estimated convergence rate for mean quadratic W2 distance
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Figure: Comparison of optimal rates for b = 0.9 (left) and b = 0.5 (right).
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Empirical con

A solution

ergence for r =

1
3

Estimated mean of SID Euler scheme

empirical mean
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(a) Empirical mean of (&r,) (M=10000)
for various values of b
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Why it works

Global approach to the problem

e We decompose the main error as follows:
Wao(v*, r,) S Wa(v*, vfs) + Wa (v, r,)

» The term Wh(v*, 117%) reveals the ergodic behavior of X at the limit. It is further
controled by

W2(l/ VF,, ) + Wz(llrn ,I/rX)
» The term WQ(I/[-X", r,) is linked to discretisation errors. It is further controled by
W2(l/|i¥n'a Van) + WZ(V|£:7 l7rn)
< Notation: A is the continuous Euler scheme:
t t
Xt = X+ f b(Xs, Us)ds + f 0(Xs, Us) AW with s := Ty if s € [T, Tog1)
0 0
» For the blue terms (distance between empirical measures):

t
2, v 7y _ 1 2 1
Wy (I/t sV ) < ? f ‘Ys — Zs‘ dS, using the transport plan 7(dy, dz) = ;L 3(vg,z)(dy, dz) ds.
0

They both involve the self-interacting diffusion.
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Why it works

Stability for self-interacting diffusion (L2-case)

e Under our Lipschitz assumption, it is not too difficult to obtain existence and
uniqueness for the SID.

e However, we need to for some p > 1 (using mean reversion assumption)

supE[|Xt|2P] < 400

t=0

o Stability: Consider, for some perturbation n°, 7°

t t

- B+ f (o (i) 402 ) AW,

(b(é\?s,z/f) +nf) ds+f
0

0

Then, for any ¥ € (0,9*), the following holds

1t 7 e _ . o -

¥J E[|X5 — X5|2] ds< ct7? <E[|Xo — Xo|2] + Cﬁ*fﬂj s"TE[In2P + n ) ds) .
0 0

e Example of application: say perturbation E[|n?? + [nZ]?] = O(s~?),
then overall error is: O(t’ﬂE[P?o - Xo|2]) + O(t™7)
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Why it works

Some Computations for stability

¢ SID: dX: = b(X;, v¥) dt + AW, perturbatlon X.
» Applying Ito’s formula to (e®f|X; — X:|?)is0:

t
e X, — X = | A — X + aj e™*|X; — X ds + M. (loc.mart.)
0

t
+J eas<2(b(Xs7l/s ) — b( &, )| X — ) +perturbati0n) ds
0

via (HC)gfa\Xsf.X~'5|2+ﬁW22(V;X,V?)

» Since W2(v¥, 1/{? y< !t Sé |, — As|? ds, taking expectation (localizing if need be)

[|Xf A ] <e’°‘tIE[\Xo Xo +ﬂf e o f)lj [\X &, ] duds + ...

» Set g(t) := %SSEDXS — )Es|2] ds, integrate the previous inequality + some Fubini:

g(t) < ﬁlj g(s)ds+ ...

ot

say equality holds with ... = 0, "t g(t) = £ SO s)ds", g(t) ~ pal (E-1<0)
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Why it works

Convergence of E[W2(v*, vi")]

(have in mind: v := 1 6y, ds for a process Y)
» Classically, we observe: X* is a perturbed SID...

t t

X: =X+ | (o0 22) 407 aws,

(b(x_:, Xy + nf) ds + f
0

0
forcing 1 = b(XZ,v*) — (X2, vX"), 7 = a(X2 1) — o(X2,vX),

» The Lipschitz assumption leads to
El[lnef + [n7]7] < CE[W%(V*, Vtx*)] = O(t™°) (not obvious!).
» Then stability yields, for any € > 0,
B o] < ¢ (e B[ - P + ).
» and finally

]E[Wg(u*,yf‘)] < 2]E[W§(u*,yf‘) + W§(V*,y5‘)] <C (t—ﬁ*“E[\xg - X0|2] + t‘C)
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Why it works

Convergence of ]E[WQQ(V?( or,) |

(have in mind: (7y») decreasing time step for the scheme, ' = >3/, V)
e We have Wz(ulfi, vr,) < W2(Vrn Vi, &)+ Wz(Vr" or,)
» Second term is a time discretisation error for the integral namely

E[Wi(yﬁi,ﬂrn)] < rifor

E[pa - ;2§|2] ds

» Two key properties of X' (under (HMV), ko 51):

1. SUP;>q E[|Xt|2p] <C (from tedious computations)

=

]E[‘Xt — X£|2p] P C(t — E) (comes from the previous point and Lipschitz assumption)

— And then: W22(V|3i,l7r,,) ( 5 Dkt @)

» For Wa (1, I/rX;)Z See X' (continuous Euler scheme) as a perturbed SID and use

stability property
_ -1 2
E[Wa, )| = o, ((rn@‘l )Y ?)
k=1
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Why it works

Global convergence (L2-case)

> Finally, we obtain E[W5 (vf, 7r,)] = O, ((rn)Q*I St :—E)
k

» Set v, = cn~" for re (0,1) and r* = 1;’% then

_ Yn ifr<r®
E[Wg(’/r)iv”rn)] <SGy dena-£hH-, .
Yn" o if r = r* for every (small) n >0

—> the 'optimal’ rate is r*.

» Since Wo(U*, r,) < Wa(v*, 1) + Wa (145, ir,), one gets
E[WS(V*, Drn)] <Cn 4+ G (1 +Wh (v, [])) nrH

for any (small) 7.

J-F Chassagneux Computing the stationary measure of McKean-Vlasov SDEs



Why it works

Conclusion

> We show that the Euler scheme of the self-interacting diffusion converges to the
stationary measure of the associated MKV SDE

> The convergence is obtained with a rate for Wh-distance in the L% and almost
sure case.

> All the rates are suboptimal...

> What happens when there is more than one stationary measure? (in some special
cases, recall Ornstein-Uhlenbeck example, [KK*12]) shows convergence to a
random limit for the self-interacting diffusion.)
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Why it works
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