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Stationary distribution of MKV SDEs

Let pΩ,A,P,Fq :“ pFtqtě0q be a filtered probability space, with F satisfying the usual
conditions. W is F-Brownian motion (independent of F0). Consider

§ a McKean-Vlasov SDE: (rξs is the law of the random variable ξ)

dXt “ bpXt , rXtsq dt ` σpXt , rXtsqdWt ,

§ As you know: generally obtained as limit of particles systems weakly interacting.
Here we are interested in the long time behavior - convergence to equilibrium of
this equation ; stationary distribution.

§ A stationary distribution ν‹ is such that rXts “ ν‹ for all t ě 0

§ Starting with X ‹
0 „ ν‹ we have simply

dX ‹
t “ bpX ‹

t , ν
‹
q dt ` σpX ‹

t , ν
‹
q dWt

ãÑ A ‘classical’ diffusion...

Goal: Find a way to compute ν‹ (provided it exists!)
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Computing the stationary distribution of classical SDE

For a classical SDEs dXt “ BpXtqdt ` ΣpXtqdWt with stationary distribution µ̂.

§ First approach. Use Euler scheme with step h for the SDE:

Xpn`1qh “ Xnh ` hBpXnhq ` ΣpXnhqpWpn`1qh ´ Wnhq

Simulate M samples pXm
nhq1ďmďM with pM, nq large to obtain 1

M

řM
m“1 δXm

nh
» µ̂

§ Second approach. From the fact 1
t

şt

0
δXs ds Ñ µ̂ (a.k.a. ergodic behavior under

some good conditions)

1. First idea: Use the scheme pXnhq and let it run forever to obtain
1
n

řn´1
k“0 δXkh Ñ µ̂...`bias.

2. Better idea: Use adaptative time stepping to kill the bias asymptotically.
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Computing the stationary distribution of SDE

§ Let pγnqně1 be a non-increasing sequence of positive steps satisfying

γn Ñ 0 and Γn :“
n

ÿ

k“1

γk “ `8 as n Ñ `8

ãÑ Define then X̄ the Euler scheme with decreasing step size:

X̄Γn “ X̄Γn´1 ` γnBpX̄Γn´1q `
?
γnΣpX̄Γn´1qZn, with Zn “

WΓn ´ WΓn´1
?
γn

and then set ν̄Γn “ 1
Γn

řn
k“1 γkδX̄k´1

, n ě 1

§ One expects ν̄Γn Ñ µ̂ when n goes to infinity.

§ Lamberton-Pagès [LP02, LP03] give a complete picture of the convergence
results and how to chose the step optimally in various contexts.

(In particular, γn “ γ1n
´ 1

3 )

§ How to adapt this to our framework?
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Computing the stationary distribution (MKV)

§ Obstruction for MKV: pBpxq,Σpxqq “ pbpx , ν‹
q, σpx , ν‹

qq and ν‹ is what we
want to compute...

§ Solution: Replace ν‹ by the empirical measure in the coefficients.
Introduce first (the self-interacting diffusion)

dXt “ bpXt , ν
X
t qdt ` σpXt , ν

X
t q dWt with νX

t :“
1

t

ż t

0

δXs ds.

Then consider its Euler Scheme pX̄Γn qně0 the scheme, which is defined by

X̄Γn “ X̄Γn´1 ` γnbpX̄Γn´1 , ν̄Γn´1q `
?
γnσpX̄Γn´1 , ν̄Γn´1qZn,

with ν̄Γn :“
1

Γn

n
ÿ

k“1

γkδX̄Γk´1
, Zn :“

WΓn ´ WΓn´1
?
γn

.

§ 0ne expects ν̄Γn Ñ ν‹.

§ Observe that this is in sharp contrast with the basic idea of simulating a particles
system and letting time run forever ; only one particle is simulated here!
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Related literature and contributions

The idea of using self-interacting diffusion to approximate stationary measure of MKV
SDEs is not new.

§ The paper [ABRS19] from CEMRACS 2017 mentions this approach.

§ The paper [DJL23] studies the convergence with a rate for E
“

W2
2 pν‹, ν̄Γn q

‰

(very
inspiring) Their setting is the closest to ours.

§ The paper [KK`12] (and references therein) give some almost sure rate of
convergence: application to physics.

§ The paper [DRSW23] uses exponentially weighted empirical measure and
combines this with an annealing method to obtain convergence.

Our main contributions:

1. We focus on the implemented scheme.

2. We obtain rate of convergence for W2pν‹, ν̄Γn q both in the L2 and almost sure
case where

W2pµ, νq :“ inf
pX ,Y qs.t.X„ν,Y„µ

E
”

|X ´ Y |
2
ı 1

2
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Main setting

1. Lipschitz coefficient: this is because we consider the error for the Euler scheme.

|bpx , µq ´ bpy , νq| ` }σpx , µq ´ σpy , νq}F ď L p|x ´ y | ` W2pµ, νqq .

2. Confluence pHCqp,α,β : for every x , y P Rd and every µ, ν P P2pRd
q, pb, σq satisfies:

2pbpx , µq ´ bpy , νq | x ´ y
˘

` p2p ´ 1q}σpx , µq ´ σpy , νq}
2
F

ď ´α|x ´ y |
2

` βW2
2 pµ, νq.

with α ą β ě 0.

ãÑ pH‹
q=pHLq & pHCq1,α,β hold and we set ϑ‹ :“ 1 ´

β
α
.

3. Mean-reversion: to obtain some integrability pHMV qp,K 1,α1,β1 : For every x , y P Rd

and every µ P P2pRd
q,

2pbpx , µq | x
˘

` p2p ´ 1q}σpx , µq}
2
F

ď K 1
´ α1

|x |
2

` β1W2
2 pµ, δ0q.

with α1
ą β1

ě 0

4. σ is uniformly elliptic, to obtain the almost sure rate of convergence only.

(There are links between assumptions 1,2 & 3)
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On the stationary process X ‹

‚ For µ P P2pRd
q, denote Πpµq the set of invariant measure for

dXµ
t “ bpXµ

t , µq dt ` σpXµ
t , µq dWt and Xµ

0 „ µ

§ Under the confluence assumption, Πpµq is single valued and

W2pΠpµq,Πpνqq ď

c

β

α
W2pµ, νq

§ Work in the case where α ą β ě 0: ν‹ is the fixed point of Π then (X ‹
“ X ν‹

).

§ The mean-reversion assumption allows then to ”control” the level of integrability of
ν‹ (minimal case is L2p‹

, for some p‹
ą 1)

§ Example ”OU like process”: dXt “ pbErXts ´ Xtq dt `
?
2 dWt . Set mt “ ErXts, so

that dmt “ pb ´ 1qmt and mt “ ErX0s epb´1qt
@t

1. if |b| ă 1, (H‹) holds: dX ‹
t “ ´X ‹

t dt `
?
2 dWt , O.U. process ν‹

“ N p0, 1q.

2. if b “ 1: dX ‹
t “ pm0 ´ X ‹

t q dt `
?
2 dWt Stationary distributions ν‹

“ N pm0, 1q

parametrised by initial mean m0...

3. if b ă ´1: (H‹) does not hold but stationary distribution ν‹
“ N p0, 1q
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Some computations for the contraction property

‚ i “ 1, 2, µi
P P2

pRd
q, dX i

t “ bpX i
t , µ

i
qdt ` σpX i

t , µ
i
q dWt , X

i
„ Πrµi

s (stationary)

§ Apply Ito’s formula to peαt
|X 1

t ´ X 2
t |

2
qtě0:

eαt
|X 1

t ´ X 2
t |

2
“ |X 1

0 ´ X 2
0 |

2
` α

ż t

0

eαs
|X 1

s ´ X 2
s |

2 ds ` Mtploc.mart.q

`

ż t

0

eαs
´

2
`

bpX 1
s , µ

1
q ´ bpX 2

s , µ
2
q|X 1

s ´ X 2
s

˘

` }σpX 1
s , µ

1
q ´ σpX 2

s , µ
2
q}

2
F

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

via pHCqď´α|X 1
s ´X 2

s |2`βW2
2 pµ1,µ2q

¯

ds

§ After localization if need be:

E
”

|X 1
t ´ X 2

t |
2
ı

loooooooomoooooooon

ěW2
2 pΠrµ1s,Πrµ2sq

ď e´αtE
”

|X 1
0 ´ X 2

0 |
2
ı

` βW2
2 pµ1, µ2

q

ż t

0

eαps´tq ds

§ Integrating and letting t Ñ `8, we do obtain

W2
2 pΠrµ1

s,Πrµ2
sq ď

β

α
W2

2 pµ1, µ2
q
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Convergence results, see [CP24].

‚ We obtain rates of convergence for W2pν‹, ν̄Γn q in the L2 and a.s. sense where:

ãÑ ν‹ is the unique stationary distribution of the MKV SDE (distribution of X ‹)

ãÑ ν̄Γn :“ 1
Γn

řn
k“1 γkδX̄Γk´1

with X̄ Euler scheme with stepsize pγnq for the SID.

‚ Results in the L2 sense. pH‹
q holds. Denote r‹ :“ ϑ‹

1`ϑ‹ P p0, 1q with ϑ‹
“ 1 ´

β
α
.

Set γn “ γ1n
´r‹

, γ1 ą 0.

i) for any small η ą 0, set ζp‹ :“ 2p‹´1
2p2pd`2q`p2p‹´1qpd`3qq

ÝÑ
p‹Ñ8

1
2pd`3q

,

E
”

W2
2 pν‹, ν̄Γn q

ı 1
2

“ Oη

´

n´p1´r‹qζp‹

¯

looooooooomooooooooon

convergence of νX‹
to ν‹

` p1 ` W2pν‹, rX0sqq oη
´

n´ r‹

2
`η

¯

loooooooooooooooooooomoooooooooooooooooooon

rate for the Euler scheme to the SID

ii) If moreover, σ is bounded then

E
”

W2
2 pν‹, ν̄Γn q

ı 1
2

“ O

ˆ

n
´

1´r‹

2pd`3q logpnq
d`2

2pd`3q

˙

loooooooooooooooomoooooooooooooooon

improved rate

`

´

1 ` W2
2 pν‹, rX0sq

¯

oη
´

n´ r‹

2
`η

¯

.

Note: If one has E
”

W2
2 pνX‹

t , ν‹
q

ı 1
2

“ Opt´ζ
q then it can be used above!
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Convergence results in the a.s. sense

‚ pH‹
q + pHMV q2 + σ unif. elliptic: Set γn “ γ1n

´pr‹^ 1
3

q

i) for any small η1, η ą 0, set ζ̂p‹ :“ p2p‹´1q2

2p2p‹`1qt2pd`2q`pd`3qpd`2p‹´1qu

W2pν‹, ν̄Γn q “ oη1

´

n´p1´pr‹^ 1
3

qqζ̂p‹ logpnq
1
2

`η1
¯

loooooooooooooooooooomoooooooooooooooooooon

convergence of νX‹
to ν‹

` p1 ` |X ‹
0 ´ X0|q oη

´

n´p r‹

2
^ 1

6
q`η

¯

looooooooooooooooooooomooooooooooooooooooooon

rate for the Euler scheme to the SID

ii) If moreover, σ is bounded then, for any small η1, η ą 0,

W2pν‹, ν̄Γn q “ oη1

˜

n
´

1´pr‹^ 1
3

q

2pd`3q logpnq
1
2

`η1

¸

loooooooooooooooooomoooooooooooooooooon

improved rate

` p1 ` |X ‹
0 ´ X0|q oη

´

n´p r‹

2
^ 1

6
q`η

¯

.
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Numerical illustration

§ MKV Example: dXt “ pbErXts ´ Xtq dt `
?
2 dWt pb P Rq

- Stationary version: dX ‹
t “ ´X ‹

t dt `
?
2 dWt (OU process)

- Stationary distribution b ă 1: ν‹
“ LpX ‹

t q “ N p0, 1q

§ Scheme for this equation is easy to implement:

X̄Γn “ X̄Γn´1 ` γnpbm̄n´1 ´ XΓn´1q `
?
2γnZn with m̄n´1 “ 1

Γn´1

řn´1
k“1 γkXk´1

(observe that mn “
γn
Γn
Xn´1 ` p1 ´

γn
Γn

qmn´1)

§ Question: how to choose the step rate r in γn “ γ1n
´r?

ãÑ Previous theoretical results indicates r‹ :“ ϑ‹

1`ϑ‹ P p0, 1q with ϑ‹
“ 1 ´

β
α
.

An upper bound for ϑ‹ here is 1 ´ b2
ÝÑ ”L2 step rate” on the graph.

ãÑ we also consider r‹
^ 1

3
: ”as step rate” and r “ 1

3
(classical SDE case).

§ We estimate convergence rate for E
“

W2
2 pν̄Γn , ν

‹
q
‰ 1
2 (emp. mean on 500 samples,

n up to N “ 100000):
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Empirical estimation of the convergence rate as a function of b. Tests realised for three
different specifications of the algorithm input step rate, N “ 100000 and M “ 500.
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Is there an optimal step rate?

Figure: Comparison of optimal rates for b “ 0.9 (left) and b “ 0.5 (right).
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Empirical convergence for r “ 1
3

(a) Empirical mean of pX̄Γn q (M=10000)
for various values of b

(b) Convergence rate as a function of
the parameter b. (M “ 500)
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Global approach to the problem

‚ We decompose the main error as follows:

W2pν‹, ν̄Γn q ď W2pν‹, νX
Γn q ` W2pνX

Γn , ν̄Γn q

§ The term W2pν‹, νX
Γn q reveals the ergodic behavior of X at the limit. It is further

controled by

W2pν‹, νX‹

Γn q ` W2pνX‹

Γn , νX
Γn q

§ The term W2pνX
Γn , ν̄Γn q is linked to discretisation errors. It is further controled by

W2pνX
Γn , ν

X̄
Γn q ` W2pνX̄

Γn , ν̄Γn q

ãÑ Notation: X̄ is the continuous Euler scheme:

X̄t “ X̄0 `

ż t

0

bpX̄s , ν̄sqds `

ż t

0

σpX̄s , ν̄sq dWs with s :“ Γn if s P rΓn, Γn`1q

§ For the blue terms (distance between empirical measures):

W2
2 pνY

t , ν
Z
t q ď

1

t

ż t

0

|Ys ´ Zs |
2 ds, using the transport plan πp dy, dzq “

1

t

ż t

0
δpYs ,Zs qp dy, dzq ds.

They both involve the self-interacting diffusion.
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Stability for self-interacting diffusion (L2-case)

‚ Under our Lipschitz assumption, it is not too difficult to obtain existence and
uniqueness for the SID.

‚ However, we need to for some p ě 1 (using mean reversion assumption)

sup
tě0

E
”

|Xt |
2p

ı

ă `8

‚ Stability: Consider, for some perturbation ηb, ησ

X̃t “ X̃0 `

ż t

0

´

bpX̃s , ν
X̃
s q ` ηb

s

¯

ds `

ż t

0

´

σpX̃s , ν
X̃
s q ` ησ

s

¯

dWs .

Then, for any ϑ P p0, ϑ‹
q, the following holds

1

t

ż t

0

E
”

|X̃s ´ Xs |
2
ı

ds ď Ct´ϑ

ˆ

E
”

|X̃0 ´ X0|
2
ı

` Cϑ‹´ϑ

ż t

0

sϑ´1Er|ηb
s |

2
` |ησ

s |
2
s ds

˙

.

‚ Example of application: say perturbation Er|ηb
s |

2
` |ησ

s |
2
s “ Ops´a

q,

then overall error is: Opt´ϑE
”

|X̃0 ´ X0|
2
ı

q ` Opt´a
q
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Some Computations for stability

‚ SID: dXt “ bpXt , ν
X
t q dt ` dWt , perturbation X̃ .

§ Applying Ito’s formula to peαt
|Xt ´ X̃t |

2
qtě0:

eαt
|Xt ´ X̃t |

2
“ |X0 ´ X̃0|

2
` α

ż t

0

eαs
|Xs ´ X̃s |

2 ds ` Mtploc.mart.q

`

ż t

0

eαs
´

2
`

bpXs , ν
X
s q ´ bpX̃s , ν

X̃
s q|Xs ´ X̃s

˘

loooooooooooooooooooooomoooooooooooooooooooooon

via pHCqď´α|Xs´X̃s |2`βW2
2 pνX

s ,νX̃
s q

`perturbation
¯

ds

§ Since W2
2 pνX

t , νX̃
t q ď 1

t

şt

0
|Xs ´ X̃s |

2 ds, taking expectation (localizing if need be)

E
”

|Xt ´ X̃t |
2
ı

ď e´αtE
”

|X0 ´ X̃0|
2
ı

` β

ż t

0

e´αps´tq 1

s

ż s

0

E
”

|Xu ´ X̃u|
2
ı

du ds ` ...

§ Set gptq :“ 1
t

şt

0
E

”

|Xs ´ X̃s |
2
ı

ds, integrate the previous inequality + some Fubini:

gptq ď
β

α

1

t

ż t

0

gpsq ds ` ...

say equality holds with ... “ 0, ”t gptq “
β
α

şt

0
gpsq ds”, gptq „ t

β
α

´1 ( β
α

´ 1 ă 0)
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Convergence of E
“

W2
2 pν‹, νXt q

‰

(have in mind: νY
t :“ 1

t

şt

0
δYs ds for a process Y )

§ Classically, we observe: X ‹ is a perturbed SID...

X ‹
t “ X ‹

0 `

ż t

0

´

bpX ‹
s , ν

X‹

s q ` ηb
s

¯

ds `

ż t

0

´

σpX ‹
s , ν

X‹

s q ` ησ
s

¯

dWs ,

forcing ηb
s “ bpX ‹

s , ν
‹
q ´ bpX ‹

s , ν
X‹

s q, ησ
s “ σpX ‹

s , ν
‹
q ´ σpX ‹

s , ν
X‹

s q.

§ The Lipschitz assumption leads to

Er|ηb
t |

2
` |ησ

t |
2
s ď CE

”

W2
2 pν‹, νX‹

t q

ı

“ Opt´ζ
q (not obvious!).

§ Then stability yields, for any ϵ ą 0,

E
”

W2
2 pνX‹

t , νX
t q

ı

ď Cϵ

´

t´ϑ‹`ϵE
”

|X ‹
0 ´ X0|

2
ı

` t´ζ
¯

.

§ and finally

E
”

W2
2 pν‹, νX

t q

ı

ď 2E
”

W2
2 pν‹, νX

t q ` W2
2 pν‹, νX

t q

ı

ď Cϵ

´

t´ϑ‹`ϵE
”

|X ‹
0 ´ X0|

2
ı

` t´ζ
¯
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Convergence of E
“

W2
2 pνXΓn, ν̄Γnq

‰

(have in mind: pγnq decreasing time step for the scheme, Γn “
řn

k“1 γk)

‚ We have W2pνX
Γn , ν̄Γn q ď W2pνX

Γn , ν
X̄
Γn q ` W2pνX̄

Γn , ν̄Γn q

§ Second term is a time discretisation error for the integral namely

E
”

W2
2 pνX̄

Γn , ν̄Γn q

ı

ď
1

Γn

ż Γn

0

E
”

|X̄s ´ X̄s |
2
ı

ds

§ Two key properties of X̄ (under pHMV qp,K 1,α1,β1):

1. suptě0 E
“

|X̄t |
2p

‰

ď C (from tedious computations)

2. E
“

|X̄t ´ X̄t |
2p

‰ 1
p ď Cpt ´ tq (comes from the previous point and Lipschitz assumption)

ãÑ And then: W2
2 pνX̄

Γn , ν̄Γn q “ O
´

1

Γ
1´ϱ
n

řn
k“1

γ2
k

Γ
ϱ
k

¯

§ For W2pνX
Γn , ν

X̄
Γn q: See X̄ (continuous Euler scheme) as a perturbed SID and use

stability property

E
”

W2pνX
Γn , ν

X̄
Γn q

ı

“ Oϱ

˜

pΓnq
ϱ´1

n´1
ÿ

k“1

γ2
k

Γϱ
k

¸
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Global convergence (L2-case)

§ Finally, we obtain E
“

W2
2 pνX

Γn , ν̄Γn q
‰

“ Oϱ

´

pΓnq
ϱ´1 řn´1

k“1

γ2
k

Γ
ϱ
k

¯

.

§ Set γn “ cn´r for r P p0, 1q and r‹
“ ϑ‹

1`ϑ‹ then

E
”

W2
2 pνX

Γn , ν̄Γn q

ı

ď Cη

#

γn if r ă r‹

γ
p 1
r

´1qp1´
β‹

α‹ q´η
n if r ě r‹ for every (small) η ą 0

ãÑ the ’optimal’ rate is r‹.

§ Since W2pν‹, ν̄Γn q ď W2pν‹, νX
Γn q ` W2pνX

Γn , ν̄Γn q, one gets

E
”

W2
2 pν‹, ν̄Γn q

ı

ď Cn´ζ
` Cηp1 ` W2pν‹, rX0sqq n´r‹`η

for any (small) η.
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Conclusion

§ We show that the Euler scheme of the self-interacting diffusion converges to the
stationary measure of the associated MKV SDE

§ The convergence is obtained with a rate for W2-distance in the L2 and almost
sure case.

§ All the rates are suboptimal...

§ What happens when there is more than one stationary measure? (in some special
cases, recall Ornstein-Uhlenbeck example, [KK`12]) shows convergence to a
random limit for the self-interacting diffusion.)
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