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Lévy’s stochastic area formula

Part II Infinite dimensional Wishart processes

Part III Signature SDEs from an affine and polynomial perspective

Christa Cuchiero (Uni Vienna) Affine and polynomial processes March 2023 2 / 30



Outline

Part I An overview of affine and polynomial processes by means of
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Part I

An overview of affine and polynomial

processes by means of Lévy’s stochastic area

formula
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Lévy’s stochastic area

In the article “Le mouvement Brownien plan” (1940), P. Lévy began
studying what he called the “stochastic area”, i.e., the signed area enclosed
by the trajectory of a 2-dimensional Brownian motion W and its chord.

Source: S. J. Malham, Anke Wiese

In formulas, up to a factor of 1
2 Lévy’s stochastic area is thus given by

Lt :=

∫ t

0

W 1
s dW 2

s −W 2
s dW 1

s , t ≥ 0.
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Lévy’s stochastic area formula

In subsequent papers, P. Lévy then answered the following ...

Questions:

What is the characteristic function of Lt , i.e., E[e iλLt ] for λ ∈ R.

What is the conditional characteristic function of Lt given Wt , i.e.,
E[e iλLt |Wt = y ] for y ∈ R2 and λ ∈ R?

Lévy’s formula was generalized and studied by many authors, see e.g.,
M. Yor (1980), Helmes and Schwane (1983) and the references therein.

Alternatively to these proofs the above formulas can be derived via the
theory of affine processes, in spirit of C.C., S. Svaluto-Ferro & J. Teichmann,
“Signature SDEs from an affine and polynomial perspective” (’23).

Christa Cuchiero (Uni Vienna) Affine and polynomial processes March 2023 5 / 30
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Definition of affine diffusion processes

Simplest setting (for illustrative purposes): Itô diffusion with state space S ⊆ Rd .

dXt = b(Xt)dt +
√

a(Xt)dWt , X0 = x , (∗)

with a : Rd → S+(Rd) and b : Rd → Rd continuous functions and W a Brownian
motion on Rd .

Definition

A weak solution X of (∗) is called affine process if b and a are affine functions,
i.e.,

b(x) = b +
d∑

i=1

βixi , a(x) = a +
d∑

i=1

αixi ,

for characteristics b, βi ∈ Rd and a, αi ∈ Rd×d .

From this definition affine processes appear as a narrow class, whose universal
character announced in the title of this talk is at this stage by no means visible.
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Affine transform formula - Riccati ODEs

The remarkable implication is that exponential moments, i.e., E[exp(〈u,Xt〉)] for
u ∈ Cd , can be expressed as solutions of Riccati ordinary differential equations
(ODEs).

Theorem (D. Duffie, D. Filipovic & W. Schachermayer (’03), C.C. &
J. Teichmann (’13))

Let (Xt)t≥0 be an affine process and let u ∈ Cd such that E[exp(|〈u,Xt〉|)|] <∞.
Then,

Ex [exp(〈u,Xt〉)] = Φ(t) exp(〈ψ(t), x〉),

where Φ and ψ solve the Riccati ODEs given by

∂tΦ(t) = Φ(t)F (ψt), Φ(0) = 1, ∂tψ(t) = R(ψ(t)), ψ(0) = u,

where

F (u) = b>u + u>au, Ri = β>i u + u>αiu, i = 1, . . . , d .
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Back to Lévy’s stochastic area formula

The affine transform formula is thus tailor-made to compute the characteristic
function of the Lévy stochastic area L, if we can embed it within an affine process.

Lemma
Let W be a 2-dimensional Brownian motion and consider the 4-dimensional
process (Xt)t≥0 = (x1 + W 1

t , x2 + W 2
t , x3 + Lt , ‖(x1, x2)> + Wt‖2)t≥0.

Then X is an affine process with initial value x = (x1, x2, x3, ‖(x1, x2)>‖2) ∈ R4

and characteristics

a =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , b =


0
0
0
2

 ,

α1 =


0 0 0 2
0 0 1 0
0 1 0 0
2 0 0 0

 , α2 =


0 0 −1 0
0 0 0 2
−1 0 0 0
0 2 0 0

 , α4 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 4

 ,

and all others are 0.

Key idea: lift the process of interest to a higher-dimensional state to make it affine
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Lévy’s stochastic area formula via affine processes

To compute E[e iλLt ], set R4 3 u = (0, 0, iλ, 0). Then the Riccati ODEs reduce to
ψ1 = ψ2 = 0, ψ3 = iλ and

∂tψ4(t) =
1

2
(4(ψ4(t))2 − λ2), ψ4 = 0, ∂tΦ(t) = 2Φ(t)ψ4(t), Φ(t) = 1,

whose solutions are given by

ψ4(t) = −λ tanh(λt)

2
, Φ(t) =

1

cosh(λt)
.

Theorem
The characteristic function of x3 + Lt is given by

Ex [e iλ(x3+Lt)] =
1

cosh(λt)
exp(x3iλ+ ‖(x1, x2)>‖2ψ4), λ ∈ R.

By setting x = 0, we then get the first Lévy stochastic area formula

E[e iλLt ] =
1

cosh(λt)
, λ ∈ R.
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Lévy’s stochastic area formula via affine processes

For the second one, we can compute the joint characteristic function
E0[e iλLt+i〈v ,Wt〉] by solving additionally to ψ4 from above the “Riccati” ODEs(

∂tψ1(t)
∂tψ2(t)

)
=

(
4ψ4(t) 2iλ
−2iλ 4ψ4(t)

)(
ψ1(t)
ψ2(t)

)
,

(
ψ1(0)
ψ2(0)

)
= iv ,

∂tΦ(t) = Φ(t)(ψ2
1(t) + ψ2

2(t) + 2ψ4(t)), Φ(0) = 1,

which yields

E0[e iλLt+i〈v ,Wt〉] =
1

cosh(λt)
exp(− ‖v‖2

2λ coth(λt)
)

Since E0[e iλLt+i〈v ,Wt〉] =
∫
R2 e i〈v ,y〉E[e iλLt |Wt = y ] 1

2πt e−
1
2t ‖y‖

2

dy holds,
Fourier inversion yields...

Theorem

E[e iλLt |Wt = y ] =
λt

sinhλt
exp

(
‖y‖2 1− λt coth(λt)

2t

)
, λ ∈ R.
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Definition of polynomial diffusion processes

As any affine diffusion process is also a polynomial process, moments of the Lévy
area can be computed by polynomial technology.

Definition

A weak solution X of (∗) is called polynomial process if b is affine and a
quadratic.

In this finite dimensional diffusion framework polynomial processes are
always more general than affine ones. This does not necessarily hold true in
the presence of jumps.

As we shall see, in certain infinite dimensional setups the notions of affine
and polynomial diffusion processes coincide.

Denote by Pk polynomials on S ⊆ Rd up to degree k ∈ N, i.e.
Pk = {x 7→

∑k
|i|=0 uix

i | ui ∈ R}, where we use multi-index notation

i = (i1, . . . , in) ∈ Nn, |i| = i1 + · · ·+ in and x i = x i1 · · · x in . The dimension of
Pk is denoted by N.
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Moment formula

We write u ∈ RN for the coefficients vector and define p(x , u) :=
∑k
|i|=0 uix

i.

Note that for a polynomial process, the generator A maps Pk to Pk ,
i.e. polynomials to polynomials of same or smaller degree.

Hence there is a linear map LN from RN to RN such that

A(p(·, u))(x) = p(x , LNu).

Theorem (C.C., M. Keller-Ressel & J. Teichmann (’12), D. Filipovic
& M. Larsson (’16))

Let (Xt)t∈[0,T ] be a polynomial process. Denote by c(t) the solution of the linear
ODE given by

∂tc(t) = LNc(t), c(0) = u ∈ RN .

Then,

Ex [
k∑
|i|=0

uiX
i
t ] =

k∑
|i|=0

ci(t)x i.
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Affine and polynomial processes as universal model class?

Despite the rather narrow definition of affine and polynomial processes,
already the finite dimensional setting contains many well-known processes,
e.g.,

I Ornstein-Uhlenbeck, Feller-type and Wishart processes, the
Black-Scholes and the Heston model, the Fisher-Snedecor process, the
Wright-Fisher diffusion as well as all possible combinations thereof.

As we shall see, the true universal character becomes visible in infinite
dimensional setups.

Infinite dimensional affine and polynomial processes appear either as infinite
dimensional analogs of the finite dimensional ones, usually with a much
more intricate structure, or as lifts, in spirit of the lift of the Lévy area.

I Infinite dimensional analogs can often be realized as measure valued or
Hilbert space valued processes.

I Markovian lifts appear for instance as lifts of stochastic Volterra
processes or signature lifts.
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Infinite dimensional examples and their applications

Measure-valued affine and polynomial processes:
I Most prominent examples: Dawson-Watanabe and Flemming-Viot type

processes
I Measure-valued branching processes in the sense of Z. Li
I Characterization of (probability) measure-valued affine and polynomial

diffusions: C.C., L. Di Persio, F. Guida & S. Svaluto-Ferro (’21) and
C.C., M. Larsson & S. Svaluto-Ferro (’19).

I Applications: population genetics, chemistry, energy market modeling
and stochastic portfolio theory

Hilbert space valued processes:
I e.g., T. Schmidt, S. Tappe and W. Yu (’20), S. Cox, S.Karbach &

A. Khedher (’22) or C.C. & S. Svaluto-Ferro (’21)
I S. Cox, C.C., A. Khedher (’23): Infinite dimensional Wishart processes
I Applications: Infinite dim. covariance modeling, limits of random

matrices (as e.g. in C. Bertucci, M. Debbah, J.-M. Lasry, and
P.-L. Lions (’22))
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Infinite dimensional examples and their applications

Markovian lifts of Volterra processes:

I E. Abi Jaber & O. El Euch (’19): Markovian structure of the Volterra
Heston model

I C.C. & J. Teichmann (’20): Generalized Feller processes and
Markovian lifts of stochastic Volterra processes: the affine case

I Applications: Rough volatility modeling and forward curve modeling

Signature lifts:

I I. Arribas, C. Salvi & L. Szpruch (’20): Sig-SDEs model for
quantitative finance

I C.C., S. Svaluto-Ferro & J. Teichmann (’23): Signature SDEs from an
affine and polynomial perspective

I Applications: Signature-based models, see e.g. C.C., G. Gazzani,
J. Möller & S. Svaluto-Ferro (’23)
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Part II

Infinite dimensional Wishart processes

based on joint works with S. Cox and A. Khedher (’23)
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Infinite dimensional Wishart processes

Finite dimensional Wishart processes, introduced by F. Bru (’91), are affine
processes taking values in the cone of positive semidefinite matrices S+(Rn).

The infinite dimensional analog of S+(Rn) is S+
1 (H), the cone of positive

self-adjoint trace class operators on a separable real Hilbert space H.

We define an infinite-dimensional Wishart process as an S+
1 (H)-valued

solution (in an appropriate sense) to the following SDE:

dXt = (αQ + XtA + A∗Xt) dt +
√

Xt dWt

√
Q +

√
Q dW ∗

t

√
Xt , X0 = x ,

I α ∈ R,

I A : D(A) ⊂ H → H is the generator of a C0-semigroup,

I x and Q are a positive self-adjoint bounded operators,

I (Wt)t≥0 is an L2(H)-cylindrical Brownian motion (where L2(H) is the
space of Hilbert Schmidt operators on H).

Note that the affine structure is analogous to the finite dimensional case and
visible from the characteristics.
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The infinite dimensional analog of S+(Rn) is S+
1 (H), the cone of positive

self-adjoint trace class operators on a separable real Hilbert space H.

We define an infinite-dimensional Wishart process as an S+
1 (H)-valued

solution (in an appropriate sense) to the following SDE:

dXt = (αQ + XtA + A∗Xt) dt +
√

Xt dWt

√
Q +

√
Q dW ∗

t

√
Xt , X0 = x ,

I α ∈ R,

I A : D(A) ⊂ H → H is the generator of a C0-semigroup,

I x and Q are a positive self-adjoint bounded operators,

I (Wt)t≥0 is an L2(H)-cylindrical Brownian motion (where L2(H) is the
space of Hilbert Schmidt operators on H).

Note that the affine structure is analogous to the finite dimensional case and
visible from the characteristics.
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Questions and challenges

Questions:

Under which parameter conditions do infinite dimensional Wishart processes
exist?

Do infinite rank Wishart processes exist?

What is the evolution of the eigenvalues?

To explain the challenges consider the finite-dimensional setting, with
A ∈ Rn×n, Q ∈ S+(Rn), W is a standard Rn×n-valued Brownian motion.

If Q is injective, then a finite-dimensional Wishart process exists if and only
if either

α ∈ [n − 1,∞) or α ∈ {0, . . . , n − 2}
and rank(x) ≤ α. In case of the latter one has rank(Xt) ≤ α a.s. for all
t ≥ 0; see P. Graczyk, J. Malecki, and E. Mayerhofer (’18).

When translated to the infinite-dimensional setting this suggests that
Wishart processes of infinite rank might not exist.
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Main result

Theorem (S. Cox, C.C. & A. Khedher (’23))

If Q and A are such that
∫ t

0
‖esA
√

Q‖L2(H) ds <∞ for all t > 0 and if
additionally

Q is injective and

there exists a t > 0 such that the semigroup etA is injective,

then an analytically and probabilistically weak solution to the Wishart SDE exists
if and only if

α ∈ N and rank(x) ≤ α.

In this case, rank(Xt) = α a.s. for almost all t > 0, the solution is an affine
process, whose Laplace transform is given by

Ex [exp(−Tr(uXt)] = det(IH + 2
√

uQt

√
u)−

α
2 e

(
−Tr

(
etA
√
u(IH+2

√
uQt
√
u)−1√uetA

∗
x
))

with Qt =
∫ t

0
esA∗

QesA ds.

Remark: If A is bounded or selfadjoint, the injectivity condition on etA is satisfied.
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Eigenvalue equation

The following eigenvalue equation generalizes also the finite dimensional results.

Theorem (S. Cox, C.C. & A. Khedher (’23))

Under the above assumptions, each eigenvalue λi for i = 1, . . . , α satisfies

dλit = 2
√
λit(V ∗t QVt)iidB i

t + Tr(Q)dt + 2λit(V ∗t AVt)iidt

+
∑
k 6=i

1

λit − λkt
(λkt (V ∗t QVt)kk + λit(V ∗t QVt)ii )dt,

until the stopping time where they collide. Here, V denotes the orthonormal
operator containing the eigenvectors of X and B is an α-dim. Brownian motion.

Remaining open questions:

Do infinite rank Wishart processes exist when the injectivity conditions are
not satisfied?

How does the finite dimensional characterization of non-central Wishart
distributions look like when Q is not of full rank?
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Part III

Signature SDEs from an affine and

polynomial perspective

based on joint work with S. Svaluto-Ferro and J. Teichmann (’23)
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Signature SDEs from an affine and polynomial perspective

Research question:

Prove universal approximation features of the affine and polynomial model
class in the space of all stochastic processes driven by, say, Brownian motion.

One step in this direction by “linearizing” generic classes of stochastic
processes called signature SDEs

Develop an affine and polynomial theory for their prolongations, being the
process’ signature

Introduce a novel and proper notion of entire and real-analytic functions on
group-like elements, being the state space of the signature process

⇒ Essentially all real-analytic path-dependent characteristics become
power (or rather linear) series in the signature components.

Analysis of class that is universal within Itô processes with path-dependent
characteristics and whose full law on path space can be characterized via the
explicitly computable Fourier-Laplace transform
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The signature of a continuous semimartingale

Signature goes back to K. Chen (’57) and plays a prominent in rough path
theory (T. Lyons (’98), P. Friz & N. Victoir (’10), P. Friz & M. Hairer (’14)).

For an Rd -valued continuous semimartingale X , its signature is given by
iterated Stratonovich integrals, i.e.,

Xt :=
(

1,

∫ t

0

◦dXs ,

∫ t

0

∫ s2

0

◦dXs1 ⊗ ◦dXs2 , . . . ,

. . . ,

∫ t

0

∫ sn

0

· · ·
∫ s2

0

◦dXs1 ⊗ · · · ⊗ ◦dXsn , . . .
)
,

which is an element in the extended tensor algebra T ((Rd)).

Example (d=2)

Xt =

(
1,

(
X 1
t − X 1

0

X 2
t − X 2

0

)
,

(
1
2 (X 1

t − X 1
0 )2

∫ t

0

∫ s

0
◦dX 1

u ◦ dX 2
s∫ t

0

∫ s

0
◦dX 2

u ◦ dX 1
s

1
2 (X 2

t − X 2
0 )2

)
, . . .

)

For a semimartingale with state space S ⊆ Rd , we denote by S(S) the set of
so-called group like elements of T ((Rd)) whose first level lies in S (i.e. the
correct state space of the signature).
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Linear functions on signature and universal approximation

For a multi-index I = {i1, ..., im} ∈ {1, . . . , d}m we denote by
eI := ei1 ⊗ ...⊗ eim the basis elements of (Rd)⊗m.

We call
L(Xt) =

∑
0≤|I |≤n

αI 〈eI ,Xt〉 for n ∈ N

with αI ∈ R, linear functions of the signature.

Key properties to obtain a Universal Approximation Theorem (UAT) for linear
functions of the signature

Point-separation: for X̂t := (t,Xt), its signature X̂T determines (X̂t)t∈[0,T ]

uniquely.

Algebra: the product of linear functions of the signature is again a linear
function of the signature, precisely 〈eI ,Xt〉〈eJ ,Xt〉 = 〈eI � eJ ,Xt〉.

⇒ Use Stone-Weierstrass Theorem to approximate continuous (with respect to
a certain p-variation norm) path functionals f (X[0,t]) via L(X̂t) uniformly on
compact sets of paths.
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Entire functions of the signature

For x ∈ S(S) and u ∈ T ((Rd)) + iT ((Rd)) set |u|x =
∑∞

n=0 |〈πn(u), πn(x)〉|,
where πn denotes the projection on (Rd)⊗n.

Dual elements:
S(S)∗ := {u ∈ T ((Rd)) + iT ((Rd)) : |u|x <∞ for all x ∈ S(S)}.
For u ∈ S(S)∗ entire maps of group like elements are defined as

S(S) 3 x 7→ 〈u, x〉 := lim
N→∞

N∑
n=0

〈πn(u), πn(x)〉.

Products of entire functions are again entire functions which extends the algebra
property of linear functions of the signature expressed via the shuffle product �.

Proposition (Shuffle property)

Let (Xt)t∈[0,T ] be a continuous Rd -valued semimartingale and u, v ∈ S(S)∗.
Then u� v ∈ S(S)∗ and

〈u,X〉〈v,X〉 = 〈u� v,X〉.
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Signature SDEs

We introduce signature SDEs with state space S ⊆ Rd driven by some
d-dimensional Brownian motion W via

dXt = b(Xt)dt +
√

a(Xt)dWt , X0 = x . (Sig-SDE)

The coefficients b : S(S)→ Rd and a : S(S)→ Sd+ are componentwise
entire maps of group-like elements, i.e.

bi (x) = 〈bi , x〉 and aij(x) = 〈aij , x〉,

where bi , aij ∈ S(S)∗.

In the one-dimensional case this corresponds to an SDE with real-analytic
coefficients. Neural SDEs with real-analytic activation functions are also
included.

Universality within Itô-proceses as all continuous path-functionals can be
approximated by linear and thus entire functions of the signature.

By the shuffle property the characteristics of X are again entire functions.
⇒ X is a S(S) valued affine and polynomial process
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Main result

Theorem (C.C., S. Svaluto-Ferro, J.Teichmann (’23))

Let X be given by (Sig-SDE) and fix U ⊆ S(S)∗. Consider the maps
R : U → T ((Rd)) and L : U → T ((Rd)) given by

R(u) = b> � u(1) +
1

2
Tr
(
a�

(
u(2) + u(1)

� (u(1))>
))
,

L(u) = b> � u(1) +
1

2
Tr
(
a� u(2)

)
,

where u(1),u(2) denotes certain shifts of u. Under some technical conditions, X is
an S(S)-valued affine and polynomial process satisfying

E[exp(〈u,Xt〉] = exp(〈ψ(t),X0〉), E[〈u,Xt〉] = 〈c(t),X0〉,

where ψ and c are U-valued solutions of the extended tensor algebra valued
Riccati and linear ODEs, i.e.

ψ(t) = u +

∫ t

0

R(ψ(s)ds, c(t) = u +

∫ t

0

L(c(s))ds.
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Numerical illustration

Computation of the Laplace transform of a geometric Brownian motion, i.e.,
E[exp(−λ exp(Xt))] where X is a one-dimensional Brownian motion and
λ ∈ R.

In the one dimensional setup Xt := (1,Xt ,
X 2
t

2! , . . .), and the function R is
sequence-valued and here of the form

R(u)k =
1

2

(
uk+2 +

∑
i+j=k

(
k

i

)
ui+1uj+1

)
, k ∈ N,

such that E[exp(−λ exp(Xt))] = E[exp(〈u,Xt〉)] = exp(〈ψ(t),X0〉), where
u = −λ(1, 1, 1, . . .) and ∂tψ(t) = R(ψ(t)).

Numerical implementation for
λ = 1 via a standard ODE
solver for the truncated Riccati
ODEs with truncation level 20.

t 7→ E[exp(− exp(Wt))]
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Conclusion and Outlook

Conclusion

Lévy’s stochastic area formula as an early example from the literature
showing the powerfulness of the unifying affine framework. It can actually be
also embedded in the signature SDE framework (going just up to level 2).

Infinite dimensional Wishart processes as infinite dimensional affine process
with intricate parameter restrictions and state space constraints

Signature SDEs as generic class of Itô-processes that is affine and
polynomial when lifted to the state space of group-like elements

⇒ One step in the direction of universality of affine processes

⇒ Converging power series for the Fourier-Laplace transform and the
expected value of entire functions of the signature process

⇒ Tractability properties for neural SDEs and Sig-SDE models, in
particular systematic polynomial way to compute expected values
which is important in many machine learning applications
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Conclusion and Outlook

Outlook and ongoing work

Weighted Stone Weierstrass theorems to prove universality features without
compactness criteria (joint work with P. Schmocker and J.Teichmann)

Existence and uniqueness theory for signature SDEs

Theory of entire and real-analytic processes, including jumps, extending the
theory of polynomial processes to semigroups mapping real-analytic
functions to real-analytic functions (joint work with F. Primavera and
S. Svaluto-Ferro)

Analysis of non-seminartingale setups

Reading universality property backwards to obtain stochastic representations
of generic non-linear partial differential equations via vector measure-valued
affine process

Thank you for your attention!
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