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Reflected SDEs.

Framework:
d ⩾ 1, D′ ⊂ R1+d bounded open connected.
For T > 0, D = D′ ∩

(
[0,T ]× Rd

)
.

Slices Dt = {x : (t , x) ∈ D} ≠ ∅.

Reflected stochastic differential equation: for all 0 ⩽ t ⩽ T ,
Xt = X0 +

∫ t
0 b(r ,Xr )dr +

∫ t
0 σ(r ,Xr )dWr + Λt ,

Xt ∈ Dt ,

Λt =
∫ t

0 γr d |Λ|r ,

where
|Λ| = total variation of Λ,
γr = direction of the reflection.
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Literature (a non-exhaustive review).

Time-independent domains (Dt = D, ∀t)⇝ large literature
Tanaka (1979) SDEs with reflecting boundary condition in convex regions.

Lions and Sznitman (1984) SDEs with reflecting boundary conditions.

Saisho (1987) SDEs for multi-dimensional domain with reflecting boundary.

Costantini (1992) The Skorohod oblique reflection problem in domains with corners and
application to SDEs.

Dupuis and Ishii (2008) SDEs with oblique reflections on nonsmooth domains.

Pardoux and Rascanu (2014) SDEs, BSDEs, PDEs. Chapter 4.
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Literature (a non-exhaustive review).

Time-dependent domains
Burdzy, Chen & Sylvester (2004) The heat equation and reflected Brownian motion
in time-dependent domains.

Costantini, Gobet & El Karoui (2006) Boundary sensitivities for diffusion processes
in time dependent domains.

Nyström and Önskog (2010). The Skorohod oblique reflection problem in
time-dependent domains.

Lundström and Önskog (2019). Stochastic and partial differential equations on
nonsmooth time-dependent domains.

Two remarks:
▶ Smooth domains or smooth directions of reflection (γ(s, x) ∈ C1,2).
▶ Weak solution for the reflected SDE.
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A different approach.

In our case:
Non-smooth time-dependent domain, but with convex slides.
Normal reflection.
Existence of a strong solution as limit of solutions of penalized SDEs.
Intermediate step: regularization of the domains.

Penalization for time-independent domains:
Lions, Menaldi & Sznitman (1981) Construction de processus de diffusion réfléchis
par pénalisation du domaine,.

Bahlali, Maticiuc & Zalinescu (2013) Penalization method for a nonlinear Neumann
PDE via weak solution of reflected SDEs.

Ren and Wu (2019) Probabilistic approach for nonlinear partial differential equations
and stochastic partial differential equations with Neumann boundary conditions.
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Probabilistic setting.

Given:
(Ω,F ,P) a probability space,
a k -dimensional Brownian motion W = (Wt)0⩽t⩽T ,
F = (Ft)0⩽t⩽T : completed filtration generated by W ,
b : [0,T ]× Rd −→ Rd and σ : [0,T ]× Rd −→ Rd×k continuous

Assumptions:
(C1) Lipschitz continuity w.r.t. x :

|b(t , x)− b(t , x ′)|+ |σ(t , x)− σ(t , x ′)| ⩽ C|x − x ′|.

(C2) Linear growth:
|b(t , x)|+ |σ(t , x)| ⩽ C(1 + |x |).
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Time regularity of the domain.

Framework: d ⩾ 1, T > 0, D′ ⊂ R1+d bounded open connected subset.

D = D′ ∩
(
[0,T ]× Rd), Dt = {x : (t , x) ∈ D} ≠ ∅ and convex.

N(t , x): cone of unit inward normal vectors at a boundary point x ∈ ∂Dt .

Distance to the domain:

d(t , x) := inf
y∈Dt

|y − x | = |x − π(t , x)|, ∀t ∈ [0,T ],∀x ∈ Rd .

Assumptions:
(C3) Reference point (Pt ,0 ⩽ t ⩽ T ) (Itô process with bounded parameters bP , σP )

∀t ∈ [0,T ], B(Pt , rt) ⊂ Dt , inf
t∈[0,T ]

rt ≥ R⋆ > 0.

(C4) Time regularity: d(·, x) ∈ W1,p([0,T ], [0,∞)), with p > 2, uniformly in x .
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About the condition (C3).

D′ connected open set of R1+d : existence of a continuous path P s.t.
Pt ∈ Dt .
Dt convex and bounded:
▶ Pt = centroid of Dt
▶ t 7→ Pt continuous due to the time regularity condition (C4) and the fact that

vol (Dt) ̸= 0. See Schneider (Convex Bodies).

Reynolds’ derivation theorems applied to the centroids⇝ t 7→ Pt of class
C1. But requires more regularity conditions.

Key properties:
▶ Regularity of the trajectory of P: Pt = P0 +

∫ t
0 bP

s ds +
∫ t

0 σ
P
s dWs.

▶ Condition R⋆ > 0.

Remark: if
B(P0, r0) ⊂

⋂
t∈[0,T ]

Dt ,

then Pt = P0 and rt = r0 for all t .
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About the condition (C4).

Morrey’s inequality: existence of 1/2 < α < 1 and K ∈ [0,∞) s.t.

|d(s, x)− d(t , x)| ⩽ K |s − t |α.

⇝ Hölder regularity.

For
ℓ(r) = sup

s,t∈[0,T ]
|s−t|⩽r

sup
x∈Ds

inf
y∈Dt

|x − y | = sup
s,t∈[0,T ]
|s−t|⩽r

sup
x∈Ds

d(x ,Dt),

Hölder condition equivalent to: ℓ(r) ⩽ Krα.

Stronger condition (C4): d(·, x) is Lipschitz continuous, uniformly w.r.t. x
(p = ∞). Iff ℓ(r) ≤ Kr .
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Example of a family of convex subsets of R2.

D0 = B(0,1), D1 = {(x , y), |x | ≤ 1, |y | ≤ 1}.

Here: Pt = 0, ℓ(r) ⩽ (
√

2 − 1)r .
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Reflected SDEs.

Definition

Let D be a time-dependent domain. For x ∈ D0, a strong solution of the
reflected SDE in D with initial condition x and normal reflection, is an
F-adapted stochastic process (Xt ,Λt)t∈[0,T ] s.t. P-almost surely, for all
t ∈ [0,T ],

Xt = x +
∫ t

0 b(r ,Xr )dr +
∫ t

0 σ(r ,Xr )dWr + Λt ;

Xt ∈ Dt ;

|Λ|t =
∫ t

0 1{Xr ∈∂Dr }
d |Λ|r <∞;

Λt =
∫ t

0 γr d |Λ|r , γr ∈ N(r ,Xr ) d |Λ| − a.s., when Xr ∈ ∂Dr .

N(t , x): cone of unit inward normal vectors at a boundary point x ∈ ∂Dt .
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Penalized SDEs and main result.

For all n ⩾ 1, ∀t ∈ [0,T ],

X n
t = x +

∫ t

0
b(r ,X n

r )dr +
∫ t

0
σ(r ,X n

r )dWr − n
∫ t

0
(X n

r − π(r ,X n
r ))dr ,

= x +

∫ t

0
b(r ,X n

r )dr +
∫ t

0
σ(r ,X n

r )dWr + Λn
t

Total variation of Λn

|Λn|t = n
∫ t

0
d(r ,X n

r )dr .

Theorem
Under our setting, the penalization scheme converges to a pair of processes
(X ,Λ). The limiting pair (X ,Λ) provides the unique solution to the normally
reflected SDE with initial condition x ∈ D0 and coefficients b and σ.
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Scheme for the proof.

Step 1, a priori estimate:

sup
n⩾1

E

[
sup

0⩽t⩽T
|X n

t |2q + sup
0⩽t⩽T

|Λn|qt

]
<∞.

Apply Itô’s formula to |X n
t − Pt |2 (condition (C3)).

Step 2, uniform control of the distance: there exists C s.t.

∀n ⩾ 1, E

[
sup

0⩽t⩽T
d(t ,X n

t )
p

]
⩽

C

n
p−2

2

,

and

∀n ⩾ 1, E

[∫ T

0
d(t ,X n

t )
pdt

]
⩽

C
n

p
2
.

Regularization of the domain (see later).
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Scheme for the proof.

Step 3, Cauchy sequence:

lim
m,n→∞

E

[
sup

0⩽t⩽T
|X n

t − X m
t |q
]
= 0 lim

m,n→∞
E

[
sup

0⩽t⩽T
|Λn

t − Λm
t |q
]
= 0.

Itô’s formula:

|X n
t − X m

t |2 ⩽ Mm,n
t + Hm,n

t +

∫ t

0
cb,σ|X n

s − X m
s |2ds,

with Mm,n local martingale and

Hm,n
t =2(m + n)

∫ t

0
d(s,X n

s )d(s,X
m
s )ds

⩽ 4 sup
0⩽t⩽T

d(t ,X n
t )× m

∫ t

0
d(s,X m

s )ds = 4

(
sup

0⩽t⩽T
d(t ,X n

t )

)
|Λm|t
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Scheme for the proof.
Step 3, Cauchy sequence:

lim
m,n→∞

E

[
sup

0⩽t⩽T
|X n

t − X m
t |q
]
= 0 lim

m,n→∞
E

[
sup

0⩽t⩽T
|Λn

t − Λm
t |q
]
= 0.

Define (X ,Λ) as the limit:

Xt = x +

∫ t

0
b(r ,Xr )dr +

∫ t

0
σ(r ,Xr )dWr + Λt .

Step 4, minimality condition: (adaptation of Gégout-Petit & Pardoux)

|Λ|t =
∫ t

0
1{Xr ∈∂Dr }

d |Λ|r ,

and existence of a vector field γ s.t. γs ∈ N(s,Xs) for d |Λ|-almost s ∈ [0,T ] with

Λt =

∫ t

0
γsd |Λ|s.

Step 5, uniqueness.
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Step 2, uniform control of the distance.

There exists C s.t.

∀n ⩾ 1, E

[
sup

0⩽t⩽T
d(t ,X n

t )
p

]
⩽

C

n
p−2

2

,

and

∀n ⩾ 1, E

[∫ T

0
d(t ,X n

t )
pdt

]
⩽

C
n

p
2
.

▶ Idea of the proof: apply Itô’s formula with X n and

φ(t , y) := (d(t , y))p = |y − π(t , y)|p.

▶ Problem: d and φ not regular !
▶ Tool: replace d by a smooth approximation dϵ and establish a uniform

control of (dϵ(t ,X n
t ))

p.
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Approximation of the domain: the result.

Proposition
Let ϵ > 0, there exists a smooth time-dependent domain Dϵ s.t.:

(i) Dϵ
t is an open convex and ∂Dϵ

t is C∞-smooth for every t ∈ [0,T ].

(ii) The projection map πϵ(t , ·) onto Dϵ
t , is 1-Lipschitz and differentiable with

∥∂xπϵ(t , x)∥ ⩽ 1.

(iii) The map (t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd ) and for

any x, t 7→ dϵ(t , x) belongs to W1,p([0,T ], [0,∞)), uniformly w.r.t. x and ϵ.
(iv) Dt and Dϵ

t satisfy:
h(Dt ,Dϵ

t ) ⩽ ϵ, ∀t ∈ [0,T ].

Hausdorff distance between F and G:

h(F ,G) = max(sup{d(y ,F ) : y ∈ G}, sup{d(y ,G) : y ∈ F}).

Announced in Nyström and Olofsson (2016) Reflected BSDE of Wiener-Poisson type
in time-dependent domains.
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Approximation of the domain: the proof.

Regularization of the distance: define the smooth mollification gδ of d

gδ(t , y) := ϕδ ∗ d(t , y) =
∫
R

∫
Rd
ϕδ(t − s, y − x)d(s, x)dxds.

Smooth function with:
x 7→ gδ(t , x) convex ;
|gδ(t , x)− d(t , x)| ⩽ max(K δα, δ) ;
∥∂tgδ(·, x)∥Lp ⩽ ∥∂td(·, x)∥Lp .

New domain: for η > 0

Dδ,η :=
{
(t , x) ∈ [0,T ]× Rd : gδ(t , x) < η

}
.

Open and bounded in R1+d .
∂Dδ,η = {(t , x) : gδ(t , x) = η} smooth hypersurface whenever η regular value of
gδ .
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∂Dδ,η = {(t , x) : gδ(t , x) = η} smooth hypersurface whenever η regular value of
gδ .

Regularity of the slices Dδ,η
t = {x , (t , x) ∈ Dδ,η}

▶ Convexity: orthogonal projection of x on Dδ,η
t = πδ,η(t , x) and

x − πδ,η(t , x) = dδ,η(t , x)n⃗
δ,η
t (πδ,η(t , x)).
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Approximation of the domain: the proof.
Regularization of the distance: define the smooth mollification gδ of d

gδ(t , y) := ϕδ ∗ d(t , y) =
∫
R

∫
Rd
ϕδ(t − s, y − x)d(s, x)dxds.

New domain: for η > 0

Dδ,η :=
{
(t , x) ∈ [0,T ]× Rd : gδ(t , x) < η

}
.

Regularity of the slices Dδ,η
t = {x , (t , x) ∈ Dδ,η}

▶ Convexity: orthogonal projection of x on Dδ,η
t = πδ,η(t , x) and

x − πδ,η(t , x) = dδ,η(t , x)n⃗
δ,η
t (πδ,η(t , x)).

Lemma

There exists a constant δ∗ = δ∗(η) > 0 such that if 0 < δ ⩽ δ∗, then every
point (t , x) ∈ [0,T ]× Rd satisfying gδ(t , x) = η verifies |∇xgδ(t , x)| ⩾ 1/2.

▶ The slice Dδ,η
t = {x ∈ Rd , (t , x) ∈ Dδ,η} has a smooth boundary.

▶ dδ,η(t , ·) is smooth.
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Approximation of the domain: the proof.

Regularization of the distance: define the smooth mollification gδ of d

gδ(t , y) := ϕδ ∗ d(t , y) =
∫
R

∫
Rd
ϕδ(t − s, y − x)d(s, x)dxds.

New domain: for η > 0

Dδ,η :=
{
(t , x) ∈ [0,T ]× Rd : gδ(t , x) < η

}
.

Regularity of the slices Dδ,η
t = {x , (t , x) ∈ Dδ,η}

▶ dδ,η(t , ·) is smooth.
Time regularity: t 7→ dδ,η(t , x) is of class C1 with

∂tdδ,η(t , y) =


∂tgδ(t , π(t , y))

|∇xgδ(t , π(t , y))|
if y ̸∈ Dt

0 if y ∈ Dt .

Hausdorff distance: h(Dt ,D
δ,η
t ) ⩽ 2η.
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Using the approximation of the domain.

(t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd )

▶ Itô formula to φϵ(t , y) := (dϵ(t , y))p = |y − πϵ(t , y)|p.

φϵ(t ,X n
t ) = φϵ(0,X n

0 ) +

∫ t

0
∂tφϵ(s,X n

s )ds +

∫ t

0
⟨∂xφϵ(s,X n

s ),b(s,X
n
s )⟩ds

+
1
2

∫ t

0
σ⊤(s,X n

s )∂xxφϵ(s,X n
s )σ(s,X

n
s )ds

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − π(s,X n

s )⟩ds +

∫ t

0
⟨∂xφϵ(s,X n

s ), σ(s,X
n
s )dWs⟩.

Young’s inequality:∫ t

0
∂tφϵ(s,X n

s )ds ⩽ c1n
∫ t

0
dϵ(s,X n

s )
pds +

C1

np−1

∫ t

0
|(∂tdϵ(s,X n

s ))
+|pds.
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Using the approximation of the domain.

(t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd )

▶ Itô formula to φϵ(t , y) := (dϵ(t , y))p = |y − πϵ(t , y)|p.

φϵ(t ,X n
t ) = φϵ(0,X n

0 ) +

∫ t

0
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s )ds +

∫ t

0
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n
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1
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∫ t

0
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s )∂xxφϵ(s,X n
s )σ(s,X

n
s )ds

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − π(s,X n

s )⟩ds +

∫ t

0
⟨∂xφϵ(s,X n

s ), σ(s,X
n
s )dWs⟩.

Similarly∫ t

0
⟨∂xφϵ(s,X n

s ),b(s,X
n
s )⟩ds ⩽ c2n

∫ t

0
dϵ(s,X n

s )
pds +

C2

np−1

∫ t

0
|b(s,X n

s )|pds,

1
2

∫ t

0
(σ⊤∂xxφϵσ

)
(s,X n

s )ds ⩽ c3n
∫ t

0
dϵ(s,X n

s )
pds +

C3

n
p−2

2

∫ t

0
|σ(s,X n

s )|pds.
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Using the approximation of the domain.

(t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd )

▶ Itô formula to φϵ(t , y) := (dϵ(t , y))p = |y − πϵ(t , y)|p.

φϵ(t ,X n
t ) = φϵ(0,X n

0 ) +

∫ t

0
∂tφϵ(s,X n

s )ds +

∫ t

0
⟨∂xφϵ(s,X n

s ),b(s,X
n
s )⟩ds

+
1
2

∫ t

0
σ⊤(s,X n

s )∂xxφϵ(s,X n
s )σ(s,X

n
s )ds

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − π(s,X n

s )⟩ds +

∫ t

0
⟨∂xφϵ(s,X n

s ), σ(s,X
n
s )dWs⟩.

Lemma
There exists a constant c ⩾ 0, s.t.

(i) |π(t , y)−πϵ(t , y)| ⩽ c min(
√
ϵ2 + ϵdϵ(t , y);

√
ϵ(1+dϵ(t , y));

√
ϵ2 + ϵd(t , y)),

(ii) |π(t , y)− πϵ(t , y)| ⩽ c
√
ϵ
√

dϵ(t , y) whenever dϵ(t , y) > ϵ.
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Using the approximation of the domain.

(t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd )

▶ Itô formula to φϵ(t , y) := (dϵ(t , y))p = |y − πϵ(t , y)|p.

φϵ(t ,X n
t ) = φϵ(0,X n

0 ) +

∫ t

0
∂tφϵ(s,X n

s )ds +

∫ t

0
⟨∂xφϵ(s,X n

s ),b(s,X
n
s )⟩ds

+
1
2

∫ t

0
σ⊤(s,X n

s )∂xxφϵ(s,X n
s )σ(s,X

n
s )ds

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − π(s,X n

s )⟩ds +

∫ t

0
⟨∂xφϵ(s,X n

s ), σ(s,X
n
s )dWs⟩.

Thus

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − πϵ(s,X n

s ) + πϵ(s,X n
s )− π(s,X n

s )⟩ds

⩽ −pn
∫ t

0
φϵ(s,X n

s )ds + c4n
∫ t

0
dϵ(s,X n

s )
pds + C4n

1
2p ϵp + C5nϵp−

1
2 .
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(t , x) 7→ dϵ(t , x) := d(x ,Dϵ
t ) is of class C1,2([0,T ]× Rd )

▶ Itô formula to φϵ(t , y) := (dϵ(t , y))p = |y − πϵ(t , y)|p.

φϵ(t ,X n
t ) = φϵ(0,X n

0 ) +

∫ t

0
∂tφϵ(s,X n

s )ds +

∫ t

0
⟨∂xφϵ(s,X n

s ),b(s,X
n
s )⟩ds

+
1
2

∫ t

0
σ⊤(s,X n

s )∂xxφϵ(s,X n
s )σ(s,X

n
s )ds

− n
∫ t

0
⟨∂xφϵ(s,X n

s ),X
n
s − π(s,X n

s )⟩ds +

∫ t

0
⟨∂xφϵ(s,X n

s ), σ(s,X
n
s )dWs⟩.

Burkholder-Davis-Gundy inequality and Gronwall’s lemma:

E

[
sup

0⩽t⩽T
dϵ(t ,X n

t )
p

]
⩽ (cp + cn

1
2p )ϵp + cnϵp−

1
2 +

C

n
p−2

2

.

Hausdorff distance h(Dt ,Dϵ
t ) < ϵ.
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Our context.

Semilinear PDE:

∂tu(t , x) + Lu(t , x) + f (t , x ,u(t , x), σ⊤(t , x)∂xu(t , x)) = 0, (t , x) ∈ Do,

with terminal Cauchy condition u(T , x) = h(x) for x ∈ DT ,
and Neumann boundary condition

∂u
∂n⃗

(t , x) + ψ(t , x ,u(t , x)) = 0, (t , x) ∈ ∂D,

where:
Do = D′ ∩

(
[0,T )× Rd

)
∂D =

(
D′ \ D′) ∩ ([0,T )× Rd

)
and

Lφ(t , x) = 1
2
Tr((σσ⊤)(t , x)∂2

xxφ(x)) + b⊤(t , x)∂xφ(x).
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Neumann boundary condition.
Regular case: unique normal at each boundary point thus

∂u
∂n⃗

(t , x) = ⟨∂xu(t , x), n⃗(t , x)⟩.

Non smooth case: multiple inward normals at a given point. Define:

N−
t,x(q) := inf

n⃗∈N(t,x)
⟨q,−n⃗⟩, N+

t,x(q) := sup
n⃗∈N(t,x)

⟨q,−n⃗⟩.

Viscosity subsolution u ∈ USC if
u(T , x) ⩽ h(x) for any x ∈ DT

for any ϕ ∈ C1,2([0,T ]× Rd ) s.t. (t , x) ∈ D̃ local maximum of u − ϕ
Either (t , x) ∈ Do and

−∂tφ(t , x)− Lφ(t , x)− f (t , x , u(t , x), σ⊤(t , x)∂xφ(t , x)) ⩽ 0,

Or (t , x) ∈ ∂D and[
− ∂tφ(t , x)− Lφ(t , x)−f (t , x , u(t , x), σ⊤(t , x)∂xφ(t , x))

]
∧
[
N−

t,x(∂xφ(t , x))− ψ(t , x , u(t , x))
]
⩽ 0.
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Assumptions.

(H1) h is continuous and is of polynomial growth.
(H2) (i) (t , x) 7−→ f (t , x , y , z) and (t , x) 7−→ ψ(t , x , y) are continuous, uniformly with

respect to (y , z) and y respectively.
(ii) (t , x) 7−→ f (t , x , 0, 0) and (t , x) 7−→ ψ(t , x , 0) are of polynomial growth.
(iii) f is Lipschitz continuous with respect to (y , z):

|f (t , x , y , z)− f (t , x , y ′, z′)| ⩽ CL(|y − y ′|+ |z − z′|).

(iv) There exists β ⩽ 0 such that

(y − y ′)(ψ(t , x , y)− ψ(t , x , y ′)) ⩽ β | y − y ′ |2 .

For some continuous and non-decreasing function Φ : R+ → R+

|ψ(t , x , y)− ψ(t , x , 0)| ⩽ Φ(|y |).
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Forward backward system.

For (t , x) ∈ D fixed, reflected SDE:

X t,x
s = x +

∫ s
t b(r ,X t,x

r )dr +
∫ s

t σ(r ,X
t,x
r )dWr + Λt,x

s ;

X t,x
s ∈ Ds,

|Λt,x |s =
∫ s

t χ{Xt,x
r ∈∂Dr }

d |Λt,x |r ,

Λt,x
s =

∫ s
t γ

t,x
r d |Λt,x |r ,

Generalized BSDE:

Y t,x
s = h(X t,x

T ) +

∫ T

s
f (r ,X t,x

r ,Y t,x
r ,Z t,x

r )dr

+

∫ T

s
ψ(r ,X t,x

r ,Y t,x
r )d |Λt,x |r −

∫ T

s
Z t,x

r dWr
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Existence and continuity result.
Pardoux & Rascanu: (Y t,x ,Z t,x) exists and for any q > 1

E

[
sup

t⩽s⩽T
| Y t,x

s |q +

(∫ T

t
||Z t,x

r ||2dr

)q]
<∞.

The mapping (t , x) ∈ D 7→ (X t,x ,Λt,x) is continuous and there exists a
constant C such that for all (t , x) and (t ′, x ′) in D:

E

[
sup

0⩽s⩽T
| X t′,x ′

s − X t,x
s |2 + sup

0⩽s⩽T
| Λt′,x ′

s − Λt,x
s |2

]
⩽ C|x − x ′|2 + C|t − t ′| 1

2 .

Remark
We do not know if the total variation (t , x) ∈ D 7→ |Λt,x |.:

is continuous ?
has an exponential moment: Eeµ|Λt,x |T <∞ ?

except if the domains are smooth.
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Our result.
Approximation:∂tun(t , x) + Lnun(t , x) + f (t , x ,un(t , x), σ⊤(t , x)∂xun(t , x)) = 0,

un(T , x) = h(x),

with

Lnφ(t , x) =
1
2
Tr
(
σ(t , x)σ(t , x)⊤∂2

xxφ(t , x)
)

+
(

b(t , x)− n
(
x − π(t , x)

))⊤
∂xφ(t , x).

Theorem

When ψ = 0, the function u : D̃ 7→ R defined by u(t , x) = Y t,x
t is a continuous

viscosity solution of the PDE with Neumann boundary condition. Furthermore,
for all (t , x) ∈ D̃,

lim
n→∞

un(t , x) = u(t , x).
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Idea of the proof.
Step 1, continuity: use continuity result for standard BSDEs.
Step 2, viscosity solution: based on

Lemma

The operator (t , x) 7→ N−
t,x(q) (resp. (t , x) 7→ N+

t,x(q)) is lower semicontinuous
(resp. upper semicontinuous).

Step 3, approximation: define
X t,x,n

s = x +
∫ s

t b(r ,X t,x,n
r )dr +

∫ s
t σ(r ,X

t,x,n
r )dWr + Λt,x,n

s ;

Λt,x,n
s = −n

∫ s
t (X

t,x,n
r − π(r ,X t,x,n

r ))dr ,

|Λt,x,n|s =
∫ s

0 n|X t,x,n
r − π(r ,X t,x,n

r )|dr .

and

Y t,x,n
s = h(X t,x,n

T ) +

∫ T

s
f (r ,X t,x,n

r ,Y t,x,n
r ,Z t,x,n

r )dr −
∫ T

s
Z t,x,n

r dWr .

Then un(t , x) = Y t,x,n
t and stability result for standard BSDEs.
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Conclusion.

Extension when ψ ̸= 0, for PDE in smooth time-dependent domain:
Continuity of (t , x) 7→ |Λt,x |.
E[eµ|Λt,x |s ] ⩽ C(µ, s).

Paper available on HAL (hal-04118563).

In progress:
Similar results for PDE for non-smooth domains when ψ ̸= 0 ?
Non-convex slices ?

Thank you for your attention !
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