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Reflected SDEs.

Framework:
@ d>1,D c R bounded open connected.
@ For T>0,D=D'n([0,T] xRY).
@ Slices D; = {x : (t,x) € D} # 0.

Reflected stochastic differential equation: forall 0 <t < T,
Xe = Xo + [y b(r, X,)dr + [ o(r, X,)dW,; + A,
Xt S 517
At = Jo v dIAlL,

where

@ |A| = total variation of A,
@ ~, = direction of the reflection.
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Literature (a non-exhaustive review).

Time-independent domains (D; = D, Vt) ~~ large literature

Tanaka (1979) SDEs with reflecting boundary condition in convex regions.
Lions and Sznitman (1984) SDEs with reflecting boundary conditions.
Saisho (1987) SDEs for multi-dimensional domain with reflecting boundary.

Costantini (1992) The Skorohod oblique reflection problem in domains with corners and
application to SDEs.

Dupuis and Ishii (2008) SDEs with oblique reflections on nonsmooth domains.
Pardoux and Rascanu (2014) SDEs, BSDEs, PDEs. Chapter 4.
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Literature (a non-exhaustive review).

Time-dependent domains

@ Burdzy, Chen & Sylvester (2004) The heat equation and reflected Brownian motion
in time-dependent domains.

@ Costantini, Gobet & El Karoui (2006) Boundary sensitivities for diffusion processes
in time dependent domains.

@ Nystrdm and Onskog (2010). The Skorohod oblique reflection problem in
time-dependent domains.

@ Lundstrém and Onskog (2019). Stochastic and partial differential equations on
nonsmooth time-dependent domains.

Two remarks:
» Smooth domains or smooth directions of reflection (y(s, x) € C'2).
> Weak solution for the reflected SDE.
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A different approach.

In our case:
@ Non-smooth time-dependent domain, but with convex slides.
@ Normal reflection.
@ Existence of a strong solution as limit of solutions of penalized SDEs.
@ Intermediate step: regularization of the domains.

Penalization for time-independent domains:

@ Lions, Menaldi & Sznitman (1981) Construction de processus de diffusion réfléchis
par pénalisation du domaine,.

@ Bahlali, Maticiuc & Zalinescu (2013) Penalization method for a nonlinear Neumann
PDE via weak solution of reflected SDEs.

@ Ren and Wu (2019) Probabilistic approach for nonlinear partial differential equations
and stochastic partial differential equations with Neumann boundary conditions.

A. Popier (Le Mans Université) Reflected SDEs. 13 février 2026. 6/29



o Introduction
e Our framework and main result
e Smooth approximation of the domain

Q Parabolic PDE with Neumann boundary condition



Probabilistic setting.

Given:
@ (Q, F,P) a probability space,
@ a k-dimensional Brownian motion W = (W;)o<:i<T,
o [F = (Ft)o<i<T: completed filtration generated by W,
@ b:[0,T] xRY — R%and 5 : [0, T] x R — R?*K continuous

Assumptions:
(c1) Lipschitz continuity w.r.t. x:

|b(t, x) — b(t,x")| + |o(t, x) —o(t,x)| < C|lx — X'|.

(c2) Linear growth:
[b(t, x)| + |o(t, x)| < C(1 + [x]).
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Time regularity of the domain.

Framework: d > 1, T > 0, D' c R'*9 bounded open connected subset.
D=D'n([0,T] xR, Dy={x:(t,x)€ D} #0 and convex.

N(t, x): cone of unit inward normal vectors at a boundary point x € 9D;.

Distance to the domain:
d(t,x) == inf ly = x| = [x = 7(t,x)|, Vt€[0,T],vx¢€ RY.
yeb;

Assumptions:

(c3) Reference point (P;,0 < t < T) (It6 process with bounded parameters b”, o)
Vte [0, T], B(Pyr)C D, inf_ >R, >0.
te[0,T]

(c4) Time regularity: d(-,x) € W'P([0, T], [0, o0)), with p > 2, uniformly in x.

A. Popier (Le Mans Université) Reflected SDEs. 13 février 2026. 9/29



About the condition (C3).

@ D’ connected open set of R'*9: existence of a continuous path P s.t.

P[ S Dt.
@ D; convex and bounded:
» P; = centroid of D;

> t— P; continuous due to the time regularity condition (C4) and the fact that

vol (D;) # 0. See Schneider (Convex Bodies).

@ Reynolds’ derivation theorems applied to the centroids ~~ t — P; of class

C'. But requires more regularity conditions.

Key properties:
» Regularity of the trajectory of P: P; = Py + fot bl ds + fot ol dWs.
» Condition R, > 0.

Remark: if
B(Po,r) C () D,
te[0,T]

then P; = Py and r; = ry for all t.
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About the condition (C4).

Morrey’s inequality: existence of 1/2 < a« < 1 and K € [0, o0) s.t.
|d(s, x) — d(t, x)] < K|s — t]°.

~» Holder regularity.

For
r)= sup sup inf |[x—y|= sup supd(x,Dy),
s,t€[0,T] xcDg YED: 5,t€[0,T] xcD,
|s—t|<r [s—t|<r

Holder condition equivalent to: ¢(r) < Kr*.

Stronger condition (c4): d(-, x) is Lipschitz continuous, uniformly w.r.t. x
(p=o0). Iff £(r) < Kr.
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Example of a family of convex subsets of R?.

Here: Py =0, ¢(r) < (V2 —1)r.
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Reflected SDEs.

Definition

Let D be a time-dependent domain. For x € Dy, a strong solution of the
reflected SDE in D with initial condition x and normal reflection, is an
[F-adapted stochastic process (X:, At)icjo, 1) S-t. P-almost surely, for all
te[o, T],

Xe = x + [3 b(r, X,)dr + [ o(r, X,)dW; + As;

X: € Dy;

Ale = Jo 1 seo0n A1 < 0o;

At = fot v d|A|r, v € N(r, X;) d|A| — a.s., when X; € 0D;.

N(t, x): cone of unit inward normal vectors at a boundary point x € 9D;.
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Penalized SDEs and main result.

Foralln>1,vte|0,T],
t t t

X[ =x +/ b(r, X,”)dr+/ a(r, X)) dW, — n/ (X! — w(r, X"))dr,
0 0 0
t t
= x+/ b(r, X,”)dr+/ a(r, X")dW, + A}

0 0

Total variation of A”

t
A = n/o d(r, X"adr.

Under our setting, the penalization scheme converges to a pair of processes
(X, A). The limiting pair (X, A) provides the unique solution to the normally
reflected SDE with initial condition x € Dy and coefficients b and o.
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Scheme for the proof.

Step 1, a priori estimate:

sup E
n>1

sup | X129 + sup |/\"?] < 0.
0<I<T

X

Apply 1td’s formula to | X — P;[? (condition (C3)).

Step 2, uniform control of the distance: there exists C s.t.

>
0<I<T

vn>=1, E l sup d(t,X[’)p] < c
n—z

and

9]

)
vn =1, EV d(t,X,”)pdtlgp.
0 nz

Regularization of the domain (see later).
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Scheme for the proof.

Step 3, Cauchy sequence:

m,n—s oo 0<t<T m,n— oo

lim E [ sup |X{’—X{"|q] =0 lim E

sup |A} — /\?’q] =0.

0<I<T

[t6’s formula:
t
X — X2 < MM+ HM 4 / Cb.o | XI — XM 2ds,
0
with M™" |ocal martingale and

t
H™ =2(m + n)/ d(s, X{)d(s, X{")ds
0

t
<4 sup d(t,X[") x m/ d(s, Xsm)ds—4< sup d(t,X,”)) IA™)¢
0

0<I<T 0T
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Scheme for the proof.

Step 3, Cauchy sequence:

lim E| sup | X/ = X" =0 lim E
m,n—oo o<t T m,n—oo

sup |A —A{"|9| =0.
0<t<T

Define (X, A) as the limit:
t t
Xi=x+ / b(r, X;)dr + / o(r, X)dW, + A;.
0 0
Step 4, minimality condition: (adaptation of Gégout-Petit & Pardoux)

t
A = /0 1, 00, dIAL,

and existence of a vector field v s.t. v5 € N(s, X;) for d|A|-almost s € [0, T] with

t
/\[ = J/P ’YS(1|/\|S'
0

Step 5, uniqueness.
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Step 2, uniform control of the distance.

There exists C s.t.

=
|

o<t<T n

vn>1, E l sup d(hX,")p] < 92,

and

9]

T
¥n> 1, El/ d(t,Xf)Pdt]g,,.
0 nz

» Idea of the proof: apply 1t6’s formula with X" and
o(t,y) = (d(t,y))’ = |y — =(t,y)I".

» Problem: d and ¢ not regular !
» Tool: replace d by a smooth approximation d. and establish a uniform
control of (d.(t, X["))P.
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Approximation of the domain: the result.

Let e > 0, there exists a smooth time-dependent domain D¢ s.t.:
(i) Ds is an open convex and 0Dy is C*°-smooth for every t € [0, T].
(i) The projection map m(t,-) onto Dy, is 1-Lipschitz and differentiable with

[|0xme(t, X)|| < 1.
(iiiy The map (t,x) — d.(t,x) := d(x, Df) is of class C'3([0, T] x RY) and for
any x, t — d.(t, x) belongs to W'P([0, T], [0, 00)), uniformly w.r.t. x and e.
(iv) D; and Ds satisfy:
h(Dy, Df) < e, Vt € [0, T].
Hausdorff distance between F and G:
h(F, G) = max(sup{d(y, F) : y € G},sup{d(y,G) : y € F}).

Announced in Nystrdm and Olofsson (2016) Reflected BSDE of Wiener-Poisson type

in time-dependent domains.
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Approximation of the domain: the proof.
Regularization of the distance: define the smooth mollification gs of d

0i(t.y) =05+ d(t.y) = [ [ os(t=s.y — x)al(s. ).

Smooth function with:
@ x — gs(t, x) convex ;
@ [g5(t,x) — d(¢, x)| < max(Kd§*,J) ;
® (995 (-, X) e < 104, X) |-
New domain: forn > 0

D= {(t,x) € [0, T] x R? : gs(t,x) < n}.

@ Open and bounded in R'*9.

@ 9D%" = {(t,x) : gs(t,x) = n} smooth hypersurface whenever , regular value of
9s-
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Approximation of the domain: the proof.

Regularization of the distance: define the smooth mollification gs of d

g5(t,y) == s xd(t,y) = // ps(t— s,y — x)d(s, x)dxds.
New domain: forn > 0

D= {(t,x) € [0, T] x R? : gs(t,x) < n}.

@ Open and bounded in R'*9.

@ 0D%" = {(t,x) : gs(t, x) = n} smooth hypersurface whenever 1, regular value of
9s-

Regularity of the slices D) = {x, (t,x) € D%}

» Convexity: orthogonal projection of x on Df’" = ms,,(t, x) and

4,
X — w5, (t, X) = s, (t, X)0; " (75,5 (1, X)).
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Approximation of the domain: the proof.
Regularization of the distance: define the smooth mollification gs of d
gs(t,y) =¢sxd(ty) = // ¢s(t — s,y — x)d(s, x)dxds.
New domain: forn > 0
D= {(t,x) € [0, T} x RY : gs(t,x) < n}.

Regularity of the slices D" = {x, (t,x) € D%}
» Convexity: orthogonal projection of x on Df’” =7s5,(t, Xx) and

X — s (t, X) = s (£, X)R (5.0 (1, X)).

There exists a constant 6* = 6*(n) > 0 such that if 0 < § < §*, then every
point (t, x) € [0, T] x RY satisfying gs(t, x) = n verifies |V gs(t, x)| > 1/2.

> The slice D" = {x € RY, (t,x) € D*"} has a smooth boundary.
» ds,(t,-) is smooth.
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Approximation of the domain: the proof.

Regularization of the distance: define the smooth mollification gs of d

g5(t,y) == s xd(t,y) = // ps(t— s,y — x)d(s, x)dxds.
New domain: forn > 0
D= {(t,x) € [0, T] x RY : gs(t,x) < n}.

Regularity of the slices D" = {x, (t,x) € D®"}
» ds,(t,-) is smooth.
Time regularity: t — ds,(t, x) is of class C' with

ogs(t,m(t,y)) . A

if D

Ous(t.y) = Vags(tm(tyy] Y ED
0 if y € Dy.

Hausdorff distance: h(Dy, D) < 27
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Using the approximation of the domain.

(t,x) — d.(t,x) := d(x, Df) is of class C'2([0, T] x RY)
> 1t6 formula to (1, y) == (.(t. )P = ly — m.(t, y)|P.

t t
P, XT) = 0o (0, X5) + | Bupe(s, XT)ds + / (Oxpe(s, XT), b(s, X7))ds
0 0
t
n % / 7 (8, XD)Dwepe(8, XD (s, XD) s
0

t t
_n / (Deoe(s, X7), XD — (s, XT))ds + / (Deoe(s, X0), (5, X)aW).
0 0

Young’s inequality:

/8fgoesX)ds<c1n/ de(s, XJ)Pds + =5 /|81 s, XJ))"|Pds.
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Using the approximation of the domain.

(t, x) — d.(t,x) := d(x, Df) is of class C'2([0, T] x RY)
> t6 formulato o (t,y) := (d.(t, ¥))P = |y — me(t, y)|P.

t t
pe(t, X)) = 9e(0,X5) + | Orpe(s, Xs")d3+/ (Oxpe(s, X5), b(s, X{))ds
0 0

t
+;/0 o' (8, XD)oxxpe (s, XM o (s, X)ds

t t
“n / (Ope(8. XT), X2 — m(5, X0))dls + / (Oxoe(5, XT), (5, XT)dW).
0 0

Similarly
ot t
| @ueulo.x0). bl X0 ds < can [ al(s.XD) ")Pds,
0 0
t t
;/0 (0T Oxpec) (s, XJ)ds < c‘o,n/0 d.(s, X" M|Pds.
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Using the approximation of the domain.

(t,x) = d.(t,x) == d(x, D5) is of class C'2([0, T] x RY)
> 1t formula to ¢ (t,y) := (dc(t,¥))P = [y — 7 (L, y)IP.

t t
ot X7) = 0. 0.X9) + [ Dol XD)ds + [ (orp(s.XD).bls, XD)) s
0 0

t
+% /O T (8, XMoo (8, X0 (5, X) s

t t
n / (Dxe(8,XD), X7 — 7(5, XT))ds + / (Dvoe(8, XD), (5, XT) W)
0 0

There exists a constant ¢ > 0, s.t.
) |7(t, y)—me(t, ¥)| < cmin(y/€2 + ed.(t, ¥); Ve(1+d.(t, y¥)); /€ + ed(t, y)),
) |7(t,y) — 7e(t, y)| < c/e\/d.(t, y) whenever d.(t,y) > e.
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Using the approximation of the domain.

(t,x) — d.(t,x) := d(x, Df) is of class C'2([0, T] x RY)
> 1t6 formula to (1, y) = (.(t. )P = ly — m.(t.y)|P.

pelt. XI) = (0. X5) + /0 el XD + /0 {05, X0), 05 X0l
+ % /O o (5, X0 (5 X0)o(5. X0)dls
—n /Ot<axsae(s, X9, Xg = (s, X{))ds + /Ot@soe(a X3), o(s X5)aWs).
Thus

t
n / (Dee(8, XY, X7 — 7.(5, XT) + (8, XT) — (s, X)) s
0

t t
< —pn/ soe(s,Xs”)dercw/ d.(5, X0 ds + Can P + CsneP~+.
0 0
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Using the approximation of the domain.

(t,x) — d.(t,x) := d(x, Df) is of class C'2([0, T] x RY)
> 1t6 formula to (1, y) == (.(t. )P = ly — m.(t.y)|P.

t t
et XP) = (0, X5) + / Orpe(s. XD)ds + / (Oxpe(5, XC), b(s, X0))ds
0 0

t
s /O o T (8, XD)uxise (5, XC)o (5, XT)dis

t t
“n / (Deoe(s, XT), XD — 7(s, XT))ds + / (Deoe(s, X0), (5, X)dW).
0 0

Burkholder-Davis-Gundy inequality and Gronwall’s lemma:

C

p=2"
n—=

E

sup d.(t, X")P| < (cP + cn®)eP + cneP~% +
o<t<T

Hausdorff distance h(D;, D5) < e.
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Our context.

Semilinear PDE:
oru(t, x) + Lu(t, x) + f(t, x, u(t, x),aT(t, x)oxu(t,x)) =0, (t x)e D",

with terminal Cauchy condition u(T, x) = h(x) for x € Dr,
and Neumann boundary condition

ou

8ﬁ(t7 X) + 1/1(1‘7 X, U(t, X)) =0, (tv X) € aDa

where:
e D°=D'n([0,T) x RY)
@ OD=(D'\D)n ([0, T)xRY)
@ and
Lop(t,x) = % Tr((00 " )(t, X)0%cp(x)) + b (, X)Dxp(x).
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Neumann boundary condition.

Regular case: unique normal at each boundary point thus
ou

8ﬁ(t’ x) = (Oyu(t, x),n(t, x)).
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Neumann boundary condition.

Regular case: unique normal at each boundary point thus
ou
on

Non smooth case: multiple inward normals at a given point. Define:

thx(q) = _inf (a, _ﬁ>’ N;x(q) = _sup (q, _ﬁ>
neN(t,x) neN(t,x)

(t,x) = (Oxu(t, x),n(t, x)).
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Neumann boundary condition.

Regular case: unique normal at each boundary point thus
ou
on

Non smooth case: multiple inward normals at a given point. Define:

thx(q) = _inf (q, _ﬁ>’ thjx(q) = _sup (q, _ﬁ>

AeN(t,x) REN(t,x)

(t,x) = (Oxu(t, x),n(t, x)).

Viscosity subsolution u € USC if
@ u(T,x) < h(x) forany x € Dr

e forany ¢ € C'2([0, T] x RY) s.t. (t,x) € D local maximum of u — ¢
o Either (¢, x) € D° and

—0rp(t, X) — Lop(t, x) — F(t, x, u(t, x), 0" (t,x)dxp(t, X)) <0,
e Or (t,x) € 9D and

— Orp(t, X) — Lop(t, X)—F(t, x, u(t, x), 0" (t,x)dxep(t, x))}

A | N (Oxep(t, X)) — (1, x, u(t, x))} <0.
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Assumptions.

(H1) his continuous and is of polynomial growth.
(H2) (i) (t,x)— f(t,x,y,2) and (t, x) — ¥(t, x, y) are continuous, uniformly with
respect to (y, z) and y respectively.
(i) (t x)— £(t,x,0,0) and (¢, x) — 2(t, x, 0) are of polynomial growth.
(iii) fis Lipschitz continuous with respect to (y, z):
|f(t7 X,y, Z) - f(t,X,yl,Z/)‘ < CL(U’ - yl| + |Z - zl|)'
(iv) There exists 5 < 0 such that
v =Y )(txy) =t x,y) <Bly—y .

For some continuous and non-decreasing function ® : R, — Ry

|w(tvxay) - ’(/)(l‘,X,O)‘ < ¢(|y|)
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Forward backward system.

For (t, x) € D fixed, reflected SDE:

X = x+ [7b(r, XP¥)dr + [Fo(r, XP)dW, + NS
Xs* € Ds,
N = [ x

NS = [P dIA,,

d|AbX|,,

{xbXecoapry

Generalized BSDE:

.
YoX = h(X3X) +/ f(r, XP, YPX, ZP ) dr
S

T T
+/ o(r, XPX, Y,”X)d\A”X|,—/ ZHaw,
S S

A. Popier (Le Mans Université) Reflected SDEs. 13 février 2026.

25/29



Existence and continuity result.

Pardoux & Rascanu: (Y"*, Z!) exists and for any g > 1
T q
E l sup | Y&¥ |9+ (/ |Z,”X|2dr> 1 < 0.
t<s<T t
The mapping (t,x) € D+ (X", AbX) is continuous and there exists a
constant C such that for all (¢, x) and (¢, x’) in D:

IEI[ sup | XEX = XPVP 4+ sup [ ASK — NS |2] <Clx—xP+Clt—t]z.
0<s<T 0<s<T

We do not know if the total variation (t, x) € D — |Ab] :
@ is continuous ?
@ has an exponential moment: Ee#\""I7 < o0 ?
except if the domains are smooth.
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Our result.

Approximation:
opu"(t, x) + Lau(t, x) + f(t, x, u"(t, x),0 T (t, X)0xu"(t, x)) = 0,
{u"(T, x) = h(x),
with
Tr (o(t, X)o(t, x) T Z.0(t, X))

+ (b(t.x) — n(x —=(t X)))T(?X(p(t, X).

When ¢ = 0, the function u : D — R defined by u(t, x) = Y/ is a continuous
viscosity solution of the PDE with Neumann boundary condition. Furthermore,
for all (t,x) € D,

- _
nll)n;ou (t, x) = u(t, x).
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Idea of the proof.

Step 1, continuity: use continuity result for standard BSDEs.
Step 2, viscosity solution: based on

The operator (t, x) — N, (q) (resp. (t, x) — N+ (q)) is lower semicontinuous
(resp. upper semicontinuous).

Step 3, approximation: define
XM = x+ [ b(r, XPXMdr + [ o (r, XM dW, + AGOT;
/\tX n —_n ft XtX n__ (r7 Xrt’)(,n))dr,
N =[5 n|XPO" — w(r, XPX™) | dir

and

T T
VT = O [ X e ZEendr [z,
S

s

Then u"(t,x) = Y}*" and stability result for standard BSDEs.
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Conclusion.
Extension when ¢ # 0, for PDE in smooth time-dependent domain:
@ Continuity of (t,x) — |[AbX |,

o E[erN"ls] < C(u, 8).

Paper available on HAL (hal-04118563).

In progress:

@ Similar results for PDE for non-smooth domains when ¢ # 0 ?
@ Non-convex slices ?

Thank you for your attention !
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