Estimation of the parameter of the Skew Brownian motion

Antoine Lejay (IECL \& Inria, Nancy, France)

From joint works with

Sara Mazzonetto (Nancy, France) Ernesto Mordecki (Montevideo, Uruguay) Soledad Torres (Valparaíso, Chile)

24 March 2023 - International Seminar on SDEs and Related Topics

Skew Random Walk (SRW)

SRW = Random walk on \mathbb{Z} with the dynamic

$$
\begin{aligned}
& \mathbb{P}_{\beta}\left[S_{n+1}=x+1 \mid S_{n}=x\right]= \begin{cases}\beta & \text { if } x=0 \\
1 / 2 & \text { if } x \neq 0\end{cases} \\
& \mathbb{P}_{\beta}\left[S_{n+1}=x-1 \mid S_{n}=x\right]= \begin{cases}1-\beta & \text { if } x=0 \\
1 / 2 & \text { if } x \neq 0\end{cases}
\end{aligned}
$$

How to estimate $\beta \in(0,1)$ from one path with N samples ?

Skew Random Walk (SRW)

Skew Random Walk

- The likelihood with N steps is

$$
\begin{aligned}
& \Lambda_{N}(\beta)=\beta^{N_{+}}(1-\beta)^{N_{-} \times} \frac{1}{2}^{N_{-N_{+}-N_{-}}}, \\
& \text {with } N_{+}=\# \text { upward transitions from } 0 \text {, } \\
& N_{-}=\# \text { downward transitions from } 0 .
\end{aligned}
$$

- Only the pairs $\left(S_{k}, S_{k+1}\right)$ with $S_{k}=0$ contains information about β.
- The maximum likelihood estimator (MLE) is

$$
\beta_{N}=\frac{N_{+}}{N_{+}+N_{-}}=\frac{N_{+}}{A} \text { with } A=\#\left\{k \leq N \mid S_{k}=0\right\} .
$$

- $\beta_{N}=\#$ positive excursions / \# excursions

MLE for Skew Random Walk

Theorem (AL, 2018)

(i) β_{N} is a consistent estimator of β, that is β_{N} converges in probability to β under \mathbb{P}_{β}.
(ii) $N^{1 / 4}\left(\beta_{N}-\beta\right)$ converges in distribution to $\sqrt{\beta(1-\beta)} H$ with
$H \stackrel{\text { law }}{=} G / \sqrt{L_{1}}$ mixed normal distribution, $G \sim N(0,1)$,
L_{1} Brownian motion's local time.

Why mixed normal limit? Why $N^{1 / 4}$ and not $N^{1 / 2}$?

- The MLE depends from a random number of samples A (the occupation time).
- The occupation time A at 0 is of order \sqrt{N}.
- A / \sqrt{N} converges in distribution to the local time L_{1} at point 0 ,

$$
L_{1}:=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{0}^{1} 1_{B_{s} \in[-\epsilon, \epsilon]} \text { ds, a.s. }
$$

Rem With $A^{+}:=$time spent above $0, \mathbb{E}\left[A^{+} / N\right]=\beta$.
Yet A^{+} / N converges in distr. to a variant of the arc-sine law
$\Longrightarrow A^{+} / N$ is an useless estimator of β.

Skew Brownian motion (SBM) of parameter $\theta \in(-1,1)$:

$$
X_{t}=B_{t}+\theta L_{t}(X), t \geq 0
$$

with B Brownian motion
$L_{t}(X)$ local time at point 0 of $X(\operatorname{not} B)$
-The SBM is the limit (Donsker) of the Skew Random walk with $\beta=(1+\theta) / 2$.

- There are 10+ possible constructions of the SBM.
- Away from 0, the SBM behaves like a BM.

The local time acts only when the process reaches 0 .

- Its distribution is singular with the one of the BM.

Skew Brownian motion

Density transition function for the SBM

The SBM has an explicit formula for the density transition function (Walsh, 1978)

$$
p_{\theta}(t, x, y)=g(t, y-x)+\theta \operatorname{sgn}(y) \cdot g(t,|x|+|y|)
$$

$g(t, \cdot)$ Gaussian density of $N(0, t)$

MLE for the SBM

Data: $\left\{X_{i \Delta t}\right\}_{i=0, \ldots, n}$ with $\Delta t:=T / n$
\rightsquigarrow high-frequency, up to time T.

$$
\begin{aligned}
& \Lambda_{n}(\theta):=\prod_{i=0}^{n-1} p_{\theta}\left(\Delta t, X_{i \Delta t}, X_{(i+1) \Delta t}\right) \\
& L_{n}(\theta):=\log \Lambda_{n}(\theta) \\
& S_{n}(\theta):=\partial_{\theta} L_{n}(\theta)
\end{aligned}
$$

$$
L_{n}(\theta):=\log \wedge_{n}(\theta) \quad \text { log-likelihood (concave) }
$$

The MLE θ_{n} is

$$
\theta_{n}:=\underset{\theta}{\arg \max } L_{n}(\theta) \text { or equivalently } S_{n}\left(\theta_{n}\right)=0
$$

θ_{n} is easy to compute numerically.

MLE for the SBM

MLE for the SBM

Theorem (AL-EM-ST, 2019; AL-SM, 2023)

(i) θ_{n} is a consistent estimator of θ under \mathbb{P}_{θ}.
(ii) Asymptotic mixed-normality:

$$
n^{1 / 4}\left(\theta_{n}-\theta\right) \xrightarrow[n \rightarrow \infty]{\text { dist }} s(\theta) \frac{W\left(L_{T}\right)}{L_{T}}
$$

with
W Brownian motion indep. from X
L SBM's local time (its law does not depend on θ)

$$
s(\theta) \approx \frac{\sqrt{1-\theta^{2}}}{\sqrt{1.3+0.23 \theta^{2}+0.07 \theta^{4}}} \text { (not exact yet accurate) }
$$

Key result on convergence: LLN

For f such that $\int x^{2}|f(x)| d x<+\infty$,

$$
\begin{aligned}
& \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} f\left(\sqrt{n} X_{i T / n}, \sqrt{n} X_{(i+1) T / n}\right) \xrightarrow[n \rightarrow \infty]{ } c(F) L_{T} \\
& c(F):=(1+\theta) \int_{0}^{+\infty} F(x) \mathrm{d} x+(1-\theta) \int_{-\infty}^{0} F(x) \mathrm{d} x \\
& F(x):=\int_{-\infty}^{+\infty} p_{\theta}(1, x, y) f(x, y) \mathrm{d} y .
\end{aligned}
$$

-(J. Jacod, 1998) for the BM and SDE
-(AL, EM \& ST, 2019) for the SBM

Key result on convergence

This LLN mixes several behaviors:

- transformation into a martingale $\rightsquigarrow F(x):=\mathbb{E}_{x}\left[f\left(x, X_{1}\right)\right]$
- averaging over the invariant measure of the SBM $\left((1 \pm \theta) 1_{ \pm x \geq 0} \mathrm{~d} x\right) \rightsquigarrow$ expression of $c(F)$
- concentration around $0 \rightsquigarrow$ local time

A CLT may also be proved, with more technicality:

- (J. Jacod, 1998) for the BM and SDE
-(S. Mazzonetto, 2019) for SBM, see also (C.Y. Robert, 2022)

Expansion of the MLE

Recall that θ_{n} solves $S_{n}\left(\theta_{n}\right)=0$. Search for θ_{n} in the form

$$
\theta_{n}=\theta+\sum_{k \geq 1} \frac{E_{k, n}(\theta)}{n^{k / 4}}
$$

Expand $S_{n}\left(\theta_{n}\right)$ using the Taylor formula

$$
S_{n}\left(\theta_{n}\right)=\sum_{k \geq 0} \frac{1}{k!} \partial_{\theta}^{k} S_{n}(\theta)\left(\theta_{n}-\theta\right)^{k}
$$

and seek $E_{k, n}(\theta)$ to vanish the expansion.
The $E_{k, n}(\theta)$'s depend on the $\partial_{\theta}^{k} S_{n}(\theta)$. The expansion is not unique. We select $E_{k, n}(\theta)$ so that they converge as $n \rightarrow \infty$.

Expansion of the MLE

$$
\theta_{n}=\theta+\sum_{k \geq 1} \frac{E_{k, n}(\theta)}{n^{k / 4}}
$$

Since

$$
0=S_{n}\left(\theta_{n}\right)=S_{n}(\theta)+\partial_{\theta} S_{n}(\theta) \frac{E_{1, n}(\theta)}{n^{1 / 4}}+\cdots
$$

we identify

$$
E_{1, n}(\theta)=n^{1 / 4} \frac{-S_{n}(\theta)}{\partial_{\theta} S_{n}(\theta)} \xrightarrow[n \rightarrow \infty]{\text { dist }} s(\theta) \frac{W\left(L_{T}\right)}{L_{T}} \text { under } \mathbb{P}_{\theta}
$$

because $S_{n}\left(\theta_{n}\right) / n^{1 / 4}$ and $\partial_{\theta} S_{n}(\theta) / n^{1 / 2}$ converge.

Expansion of the MLE

As $\theta \mapsto p_{\theta}(t, x, y)$ is analytic, define

$$
[S]_{k, n}(\theta):=\frac{1}{\sqrt{n}} \partial_{\theta}^{k} S_{n}(\theta)
$$

Thanks to the LLN or CLT

$$
[S]_{k, n}(\theta) \xrightarrow[n \rightarrow \infty]{\text { proba }} \xi_{k}(\theta) L_{T}
$$

$n^{1 / 4}[S]_{k, n}(\theta) \xrightarrow[n \rightarrow \infty]{\text { stable }} \Xi_{k}(\theta) \sqrt{L_{T}} G$ with $G \sim N(0,1)$ when $\xi_{k}(\theta)=0$.

Expansion of the MLE

$$
d_{k, n}(\theta):=\frac{-1}{k!} \frac{[S]_{k}(\theta)}{[S]_{1}(\theta)} \xrightarrow[n \rightarrow \infty]{\text { proba }} d_{k}(\theta):=\frac{-\xi_{k}(\theta)}{k!\xi_{1}(\theta)} .
$$

- $\xi_{1}(\theta) \neq 0$ (linked to Fisher information)
- If $\theta=0$, then $\xi_{2 k}(0)=0, k \geq 0$.
- Joint convergence holds for $\left([S]_{2 k, n}(0)\right)_{k \leq m}$ toward a Gaussian vector.

The coefficients $\xi_{k}(\theta)$

Expansion for the MLE

Theorem (AL-EM-ST, 2014 for $\theta=0 ;$ AL-SM, 2023)

$$
\theta_{n}=\theta+\sum D_{k, n}(\theta) d_{0, n}(\theta)^{k} \quad\left[\text { Expansion in } n^{-1 / 4}\right]
$$

where $D_{1, n}(\theta):=1$ and

$$
D_{k, n}(\theta):=\sum_{m=2}^{k} d_{m, n}(\theta) \sum_{k_{1}+\cdots+k_{m}=k} D_{k_{1}, n}(\theta) \cdots D_{k_{m}, n}(\theta)
$$

Besides,

$$
n^{1 / 4} d_{0, n}(\theta) \xrightarrow[n \rightarrow \infty]{\text { stable }} s(\theta) \frac{W\left(L_{T}\right)}{L_{T}} \stackrel{\text { law }}{=} s(\theta) \frac{G}{\sqrt{L_{T}}}, G \sim N(0,1) .
$$

KS distance between $D_{k, n}(\theta)$ and $D_{k}(\theta), 1 \leq k \leq 5, \theta_{n}$ and θ

$$
-M L E-0-1-2-3-4-5
$$

The coefficients $D_{k}(\theta)$

Using $D_{k, n}(\theta)$ and $D_{k}(\theta)$ ("proxy") to approximate θ_{n}

$$
\text { - MLE - order } 1 \text { - order 5--- proxy order } 5
$$

- The terms $d_{k, n}(\theta)$ and $D_{k, n}(\theta)$ are related by

$$
\begin{gathered}
f(g(z))=-z \\
\text { with } f(z)=\sum_{k \geq 1} d_{k, n}(\theta) z^{k} \text { and } g(z)=\sum_{k \geq 1} D_{k, n}(\theta) z^{k} .
\end{gathered}
$$

- The $D_{k, n}(\theta)$ are random but $D_{k}(\theta)$ are deterministic.
- For θ close to ± 1, there is a boundary layer: the truncated expansion becomes inacurate as

$$
\left|D_{k}(\theta) s(\theta)^{k}\right|=O\left(\frac{1}{\left(1-\theta^{2}\right)^{k / 2-1}}\right)
$$

-When $\theta=0$ (the SBM is a $B M$), $D_{2, n}(0)$ vanishes asymptotically.

- We then replace the LNN by the CLT when possible \Longrightarrow Some of the $n^{-1 / 2}$ are replaced by $n^{-1 / 4}$.
-When $\theta=0$,

$$
\theta_{n}=d_{0, n}(0)+\sum_{\substack{k \geq 3 \\ k \text { odd }}} \frac{a_{k, n}}{n^{k / 4}}
$$

where the $a_{k, n}$'s are given by a recursive relation, and

$$
a_{k, n}(\theta) \underset{n \rightarrow \infty}{\longrightarrow} \text { polynomial }\left(\sqrt{L_{T}}, G_{1}, \ldots, G_{n}\right)
$$

What we have done?

- Consistency and asymptotic property of the MLE θ_{n} : asymptotic mixed normality, rate of convergence 1/4.
- Convergence of the score of its derivatives.
- Study of the behavior of the coefficients with θ.
\Leftarrow Key methods: extensions of the results of (J. Jacod, 1998).
- Expansion of the MLE of power of $1 / n^{1 / 4}$.
\Leftarrow Key method: "Asymptotic inverse function theorem" (AL-SM, 2022)
- Numerical studies: simulation of the SBM (AL-G. Pichot, 2012)

Still to do...

-The asymptotic expansion aims at quantifying the semiasymptotic behavior of the MLE. We obtained

$$
\begin{gathered}
\theta_{n}=F_{n}\left(P_{n}\right) \\
P_{n} \text { (asymptotically pivotal) } \underset{n \rightarrow \infty}{\text { law }} G / \sqrt{L_{T}} \\
F_{n} \text { (random) } \xrightarrow[n \rightarrow \infty]{\longrightarrow} F \text { (deterministic) }
\end{gathered}
$$

- F_{n} is well approximated by a polynomial of low order (empirically around 5).
- How to control the distance between P_{n} and $G / \sqrt{L_{T}}$?
- How to build confidence intervals beyond Wald's one? Hypotheses tests?

References

- A. Lejay, S. Mazzonetto, Maximum likelihood estimator for skew Brownian motion: the convergence rate, preprint, 2023.
- A. Lejay, S. Mazzonetto, Beyond the delta method, preprint, 2022.
- S. Mazzonetto, Rates of convergence to the local time of Oscillating and Skew Brownian Motions, preprint 2019.
- A. Lejay, E. Mordecki, S. Torres, Two consistent estimators for the Skew Brownian motion, ESAIM Probab. Stat 20, 2019.
- A. Lejay, Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion, Stat. Inference Stoch. Process. 21, 2018.
- A. Lejay, E. Mordecki, S. Torres, Is a Brownian motion skew?, Scand. J. Stat. 5, 2014.

