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Skew Random Walk (SRW)

SRW = Random walk on ℤ with the dynamic

ℙ𝛽[𝑆𝑛+1 = 𝑥 + 1 | 𝑆𝑛 = 𝑥] = {
𝛽 if 𝑥 = 0
1/2 if 𝑥 ≠ 0

ℙ𝛽[𝑆𝑛+1 = 𝑥 − 1 | 𝑆𝑛 = 𝑥] = {
1 − 𝛽 if 𝑥 = 0
1/2 if 𝑥 ≠ 0

How to estimate 𝛽 ∈ (0, 1) from one path with 𝑁 samples ?
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Skew Random Walk (SRW)
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Skew Random Walk
• The likelihood with 𝑁 steps is

Λ𝑁(𝛽) = 𝛽
𝑁+(1 − 𝛽)𝑁−×1

2
𝑁−𝑁+−𝑁−,

with 𝑁+ = # upward transitions from 0,
𝑁− = # downward transitions from 0.

• Only the pairs (𝑆𝑘, 𝑆𝑘+1) with 𝑆𝑘 = 0 contains information
about 𝛽.
• The maximum likelihood estimator (MLE) is

𝛽𝑁 =
𝑁+

𝑁+ + 𝑁−
=
𝑁+
𝐴
with 𝐴 = #{𝑘 ≤ 𝑁 | 𝑆𝑘 = 0}.

•𝛽𝑁 = # positive excursions / # excursions
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MLE for Skew Random Walk

Theorem (AL, 2018)
(i)𝛽𝑁 is a consistent estimator of 𝛽, that is 𝛽𝑁
converges in probability to 𝛽 under ℙ𝛽.

(ii)𝑁1/4(𝛽𝑁 − 𝛽) converges in distribution to √𝛽(1 − 𝛽)𝐻
with

𝐻 law= 𝐺/√𝐿1 mixed normal distribution,
𝐺 ∼ 𝑁(0, 1),
𝐿1Brownian motion’s local time.
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Why mixed normal limit ? Why 𝑁1/4 and not 𝑁1/2?

• The MLE depends from a random number of samples 𝐴
(the occupation time).
• The occupation time 𝐴 at 0 is of order √𝑁.
•𝐴/√𝑁 converges in distribution to the local time 𝐿1 at
point 0,

𝐿1 ∶= lim𝜖→0

1
2𝜖∫

1

0
1𝐵𝑠∈[−𝜖,𝜖] d𝑠, a.s.

Rem With 𝐴+ ∶= time spent above 0, 𝔼[𝐴+/𝑁] = 𝛽.
Yet 𝐴+/𝑁 converges in distr. to a variant of the arc-sine
law
⟹𝐴+/𝑁 is an useless estimator of 𝛽.
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Skew Brownian motion

Skew Brownian motion (SBM) of parameter 𝜃 ∈ (−1, 1):
𝑋𝑡 = 𝐵𝑡 + 𝜃𝐿𝑡(𝑋), 𝑡 ≥ 0

with 𝐵 Brownian motion
𝐿𝑡(𝑋) local time at point 0 of 𝑋 (not 𝐵)

• The SBM is the limit (Donsker) of the Skew Random walk
with 𝛽 = (1 + 𝜃)/2.
• There are 10+ possible constructions of the SBM.
•Away from 0, the SBM behaves like a BM.
The local time acts only when the process reaches 0.
• Its distribution is singular with the one of the BM.
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Skew Brownian motion
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Density transition function for the SBM
The SBM has an explicit formula for the density transition
function (Walsh, 1978)

𝑝𝜃(𝑡, 𝑥, 𝑦) = 𝑔(𝑡, 𝑦 − 𝑥) + 𝜃 sgn(𝑦) ⋅ 𝑔(𝑡, |𝑥| + |𝑦|)

𝑔(𝑡, ⋅) Gaussian density of 𝑁(0, 𝑡)
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MLE for the SBM

Data: {𝑋𝑖Δ𝑡}𝑖=0,…,𝑛 with Δ𝑡 ∶= 𝑇/𝑛
 high-frequency, up to time 𝑇.

Λ𝑛(𝜃) ∶=
𝑛−1

∏
𝑖=0
𝑝𝜃(Δ𝑡, 𝑋𝑖Δ𝑡, 𝑋(𝑖+1)Δ𝑡) likelihood

𝐿𝑛(𝜃) ∶= log Λ𝑛(𝜃) log-likelihood (concave)
𝑆𝑛(𝜃) ∶= 𝜕𝜃𝐿𝑛(𝜃) score

The MLE 𝜃𝑛 is
𝜃𝑛 ∶= argmax

𝜃
𝐿𝑛(𝜃) or equivalently 𝑆𝑛(𝜃𝑛) = 0.

𝜃𝑛 is easy to compute numerically.
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MLE for the SBM
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MLE for the SBM
Theorem (AL-EM-ST, 2019; AL-SM, 2023)
(i)𝜃𝑛 is a consistent estimator of 𝜃 under ℙ𝜃.
(ii) Asymptotic mixed-normality:

𝑛1/4(𝜃𝑛 − 𝜃)
𝑑𝑖𝑠𝑡−−−−−−→
𝑛→∞

𝑠(𝜃)
𝑊(𝐿𝑇)
𝐿𝑇

with
𝑊 Brownian motion indep. from 𝑋
𝐿 SBM’s local time (its law does not depend on 𝜃)

𝑠(𝜃) ≈
√1 − 𝜃2

√1.3 + 0.23𝜃2 + 0.07𝜃4
(not exact yet accurate)
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Key result on convergence: LLN

For 𝑓 such that ∫𝑥2|𝑓(𝑥)| d𝑥 < +∞,

1
√𝑛

𝑛−1

∑
𝑖=0
𝑓(√𝑛𝑋𝑖𝑇/𝑛, √𝑛𝑋(𝑖+1)𝑇/𝑛) −−−−−−→𝑛→∞

𝑐(𝐹)𝐿𝑇

𝑐(𝐹) ∶= (1 + 𝜃)∫
+∞

0
𝐹(𝑥) d𝑥 + (1 − 𝜃)∫

0

−∞
𝐹(𝑥) d𝑥

𝐹(𝑥) ∶= ∫
+∞

−∞
𝑝𝜃(1, 𝑥, 𝑦)𝑓(𝑥, 𝑦) d𝑦.

• (J. Jacod, 1998) for the BM and SDE
• (AL, EM & ST, 2019) for the SBM
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Key result on convergence

This LLN mixes several behaviors:
• transformation into a martingale  𝐹(𝑥) ∶= 𝔼𝑥[𝑓(𝑥, 𝑋1)]
• averaging over the invariant measure of the SBM
((1 ± 𝜃)1±𝑥≥0 d𝑥)  expression of 𝑐(𝐹)
• concentration around 0  local time

A CLT may also be proved, with more technicality:
• (J. Jacod, 1998) for the BM and SDE
• (S. Mazzonetto, 2019) for SBM, see also (C.Y. Robert,
2022)
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Expansion of the MLE

Recall that 𝜃𝑛 solves 𝑆𝑛(𝜃𝑛) = 0. Search for 𝜃𝑛 in the form

𝜃𝑛 = 𝜃 +∑
𝑘≥1

𝐸𝑘,𝑛(𝜃)

𝑛𝑘/4
.

Expand 𝑆𝑛(𝜃𝑛) using the Taylor formula

𝑆𝑛(𝜃𝑛) = ∑
𝑘≥0

1
𝑘!
𝜕𝑘𝜃𝑆𝑛(𝜃)(𝜃𝑛 − 𝜃)

𝑘

and seek 𝐸𝑘,𝑛(𝜃) to vanish the expansion.
The 𝐸𝑘,𝑛(𝜃)’s depend on the 𝜕

𝑘
𝜃𝑆𝑛(𝜃). The expansion is not

unique. We select 𝐸𝑘,𝑛(𝜃) so that they converge as 𝑛 → ∞.
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Expansion of the MLE

𝜃𝑛 = 𝜃 +∑
𝑘≥1

𝐸𝑘,𝑛(𝜃)

𝑛𝑘/4
Since

0 = 𝑆𝑛(𝜃𝑛) = 𝑆𝑛(𝜃) + 𝜕𝜃𝑆𝑛(𝜃)
𝐸1,𝑛(𝜃)

𝑛1/4
+ ⋯ ,

we identify

𝐸1,𝑛(𝜃) = 𝑛
1/4 −𝑆𝑛(𝜃)
𝜕𝜃𝑆𝑛(𝜃)

dist−−−−−−→
𝑛→∞

𝑠(𝜃)
𝑊(𝐿𝑇)
𝐿𝑇

under ℙ𝜃

because 𝑆𝑛(𝜃𝑛)/𝑛
1/4 and 𝜕𝜃𝑆𝑛(𝜃)/𝑛

1/2 converge.
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Expansion of the MLE

As 𝜃 ↦ 𝑝𝜃(𝑡, 𝑥, 𝑦) is analytic, define

[𝑆]𝑘,𝑛(𝜃) ∶=
1
√𝑛
𝜕𝑘𝜃𝑆𝑛(𝜃).

Thanks to the LLN or CLT
[𝑆]𝑘,𝑛(𝜃)

proba
−−−−−−−→
𝑛→∞

𝜉𝑘(𝜃)𝐿𝑇

𝑛1/4[𝑆]𝑘,𝑛(𝜃)
stable−−−−−−−→
𝑛→∞

Ξ𝑘(𝜃)√𝐿𝑇𝐺 with 𝐺 ∼ 𝑁(0, 1) when 𝜉𝑘(𝜃) = 0.
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Expansion of the MLE

𝑑𝑘,𝑛(𝜃) ∶=
−1
𝑘!
[𝑆]𝑘(𝜃)
[𝑆]1(𝜃)

proba
−−−−−−→
𝑛→∞

𝑑𝑘(𝜃) ∶=
−𝜉𝑘(𝜃)
𝑘!𝜉1(𝜃)

.

• 𝜉1(𝜃) ≠ 0 (linked to Fisher information)
• If 𝜃 = 0, then 𝜉2𝑘(0) = 0, 𝑘 ≥ 0.
• Joint convergence holds for ([𝑆]2𝑘,𝑛(0))𝑘≤𝑚 toward a
Gaussian vector.
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The coefficients 𝜉𝑘(𝜃)
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Expansion for the MLE

Theorem (AL-EM-ST, 2014 for 𝜃 = 0; AL-SM, 2023)

𝜃𝑛 = 𝜃 +∑
𝑘≥1

𝐷𝑘,𝑛(𝜃)𝑑0,𝑛(𝜃)
𝑘 [Expansion in 𝑛−1/4]

where 𝐷1,𝑛(𝜃) ∶= 1 and

𝐷𝑘,𝑛(𝜃) ∶=
𝑘

∑
𝑚=2

𝑑𝑚,𝑛(𝜃) ∑
𝑘1+⋯+𝑘𝑚=𝑘

𝐷𝑘1,𝑛(𝜃)⋯𝐷𝑘𝑚,𝑛(𝜃).

Besides,

𝑛1/4𝑑0,𝑛(𝜃)
stable−−−−−−−→
𝑛→∞

𝑠(𝜃)
𝑊(𝐿𝑇)
𝐿𝑇

law= 𝑠(𝜃) 𝐺

√𝐿𝑇
, 𝐺 ∼ 𝑁(0, 1).
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KS distance between 𝐷𝑘,𝑛(𝜃) and 𝐷𝑘(𝜃), 1 ≤ 𝑘 ≤ 5, 𝜃𝑛 and 𝜃
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The coefficients 𝐷𝑘(𝜃)
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Using 𝐷𝑘,𝑛(𝜃) and 𝐷𝑘(𝜃) (“proxy”) to approximate 𝜃𝑛
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More on the expansion

• The terms 𝑑𝑘,𝑛(𝜃) and 𝐷𝑘,𝑛(𝜃) are related by
𝑓(𝑔(𝑧)) = −𝑧

with 𝑓(𝑧) = ∑
𝑘≥1

𝑑𝑘,𝑛(𝜃)𝑧
𝑘 and 𝑔(𝑧) = ∑

𝑘≥1
𝐷𝑘,𝑛(𝜃)𝑧

𝑘.

• The 𝐷𝑘,𝑛(𝜃) are random but 𝐷𝑘(𝜃) are deterministic.

• For 𝜃 close to ±1, there is a boundary layer: the truncated
expansion becomes inacurate as

|𝐷𝑘(𝜃)𝑠(𝜃)
𝑘| = O( 1

(1 − 𝜃2)𝑘/2−1
).
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Phase transition

•When 𝜃 = 0 (the SBM is a BM), 𝐷2,𝑛(0) vanishes asymptoti-
cally.
•We then replace the LNN by the CLT when possible
⟹ Some of the 𝑛−1/2 are replaced by 𝑛−1/4.
•When 𝜃 = 0,

𝜃𝑛 = 𝑑0,𝑛(0) + ∑
𝑘≥3
𝑘 odd

𝑎𝑘,𝑛
𝑛𝑘/4

where the 𝑎𝑘,𝑛’s are given by a recursive relation, and

𝑎𝑘,𝑛(𝜃) −−−−−−→𝑛→∞
polynomial(√𝐿𝑇, 𝐺1, … , 𝐺𝑛).
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What we have done?

• Consistency and asymptotic property of the MLE 𝜃𝑛:
asymptotic mixed normality, rate of convergence 1/4.
• Convergence of the score of its derivatives.
• Study of the behavior of the coefficients with 𝜃.

⇐Key methods: extensions of the results of (J. Jacod, 1998).
• Expansion of the MLE of power of 1/𝑛1/4.

⇐Key method: “Asymptotic inverse function theorem”
(AL-SM, 2022)
• Numerical studies: simulation of the SBM (AL-G. Pichot,
2012)
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Still to do...

• The asymptotic expansion aims at quantifying the semi-
asymptotic behavior of the MLE. We obtained

𝜃𝑛 = 𝐹𝑛(𝑃𝑛)
𝑃𝑛 (asymptotically pivotal)

law−−−−−−→
𝑛→∞

𝐺/√𝐿𝑇
𝐹𝑛 (random) −−−−−−→𝑛→∞

𝐹 (deterministic)

• 𝐹𝑛 is well approximated by a polynomial of low order
(empirically around 5).
• How to control the distance between 𝑃𝑛 and 𝐺/√𝐿𝑇?
• How to build confidence intervals beyond Wald’s one?
Hypotheses tests?
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