Probabilistic Conformal Field Theory

Antti Kupiainen

International Seminar on SDEs and Related Topics 11/2025

Conformal Field Theory (CFT)

Statistical mechanics systems exhibit conformal symmetry in large spatial scales at the critical temperature of 2nd order phase transition

- Large scale behaviour is independent of small scale details
- ► Universality classes are described by Conformal Field Theories (CFT)
- Quantum Field Theories become CFTs in small scales
- CFTs have special symmetries allowing for precise conjectures

CFT has also a rich mathematical structure

- Representation theory of infinite dimensional Lie algebras (Virasoro, Kac-Moody, W-algebras)
- ► Geometry of moduli spaces, knot theory,...

However, a rigorous constructive foundation for CFT is still lacking. In this talk I'll discuss a **probabilistic** approach to 2d CFTs.

Conformal invariance

A probabilistic CFT is characterised by a family of random fields

$$\{V_{\alpha}(x) \mid x \in \mathbb{R}^d, \alpha \in I\}$$

and their correlation functions

$$\langle \prod_{i=1}^n V_{\alpha_i}(x_i) \rangle.$$

Correlation functions are invariant under rotations and translations of \mathbb{R}^d and under scaling

$$\langle \prod_{i} V_{\alpha_{i}}(\lambda x_{i}) \rangle = \prod_{i} \lambda^{-2\Delta_{\alpha_{i}}} \langle \prod_{i} V_{\alpha_{i}}(x_{i}) \rangle$$
 (*)

 Δ_{α} is called scaling dimension or **conformal weight**.

Conformal invariance: (*) extends to conformal maps $x \to \Lambda(x)$,

In d=2: $\mathbb{R}^2\simeq\mathbb{C}$ and Λ is Möbius map and $\lambda^{-2\Delta_\alpha}\to |\Lambda'(z)|^{-2\Delta_\alpha}$.

Structure Constants

Natural setup for 2d CFT is the Riemann sphere: $z \in \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (and, more generally, a Riemann surface).

Using conformal map to send three points $z_1, z_2, z_3 \in \mathbb{C}$ to $\{0, 1, \infty\}$

⇒ 3-point functions are determined up to constants

$$\langle \prod_{k=1}^{3} V_{\alpha_k}(z_k) \rangle = |z_1 - z_2|^{2\Delta_{12}} |z_2 - z_3|^{2\Delta_{23}} |z_1 - z_3|^{2\Delta_{13}} C_{\alpha_1 \alpha_2 \alpha_3}$$

with $\Delta_{12} = \Delta_{\alpha_3} - \Delta_{\alpha_1} - \Delta_{\alpha_2}$ etc.

$$C_{\alpha_1\alpha_2\alpha_3} = \langle V_{\alpha_1}(0)V_{\alpha_2}(1)V_{\alpha_3}(\infty) \rangle$$

are called the **structure constants** of the CFT.

Bootstrap hypothesis

Operator Product Expansion (OPE) hypothesis:

$$\langle V_{\alpha_1}(x_1)V_{\alpha_2}(x_2)V_{\alpha_3}(x_3)\ldots\rangle = \sum_{\alpha} C_{\alpha_1\alpha_2\alpha}\mathcal{D}_{x_2}\langle V_{\alpha}(x_2)V_{\alpha_3}(x_3)\ldots\rangle$$

- \triangleright Differential operator \mathcal{D}_{x_2} determined by conformal symmetry
- Iterating OPE: all correlation functions are determined by C_{α1α2α3}

How to find CFTs?

Consistency of OPE can be used to guess possible solutions Belavin, Polyakov, Zamolodchicov, 1984, Rychkov et al 2008

How to justify bootstrap?

Derive it from a probabilistic path integral.

One Dimensional Free Field: Wiener measure

Let $X : \mathbb{R} \to \mathbb{R}$ be two-sided Brownian motion and $c \in \mathbb{R}$. The 1d free field

$$\phi(t) = c + X(t)$$

is defined by the measure μ on continuous paths $\phi: \mathbb{R} \to \mathbb{R}$ with

$$\langle F \rangle = \int F(\phi) d\mu(\phi) = \int_{\mathbb{R}} \mathbb{E}[F(c + X(\cdot))] dc$$

for suitable $F: C(\mathbb{R}) \to \mathbb{R}$.

This gives a rigorous sense to the formal path integral

$$\langle F \rangle = \int_{\phi: \mathbb{R} \to \mathbb{R}} F(\phi) e^{-S(\phi)} D\phi$$

where the action functional is given by

$$S(\phi) = \frac{1}{2} \int_{\mathbb{D}} (\frac{d\phi(t)}{dt})^2 dt$$

Path integrals

This extends to other action functionals:

Feynman-Kac. Perturb by a function $V : \mathbb{R} \to \mathbb{R}$:

$$\langle F \rangle = \int_{\phi: \mathbb{R} \to \mathbb{R}} F(\phi) e^{-\frac{1}{2} \int_{\mathbb{R}} (\dot{\phi}(t)^2 + V(\phi(t)) dt} D\phi := \int_{\mathbb{R}} \mathbb{E}[F(c+X) e^{-\frac{1}{2} \int_{\mathbb{R}} V(c+X(t) dt}] dc$$

Sigma model. Let $\phi : \mathbb{R} \to M$, M a manifold with Riemannian metric m

$$\langle F \rangle = \int_{\phi: \mathbb{R} \to M} F(\phi) e^{-\frac{1}{2} \int_{\mathbb{R}} |\dot{\phi}(t)|_m^2 dt} D\phi$$

where in local coordinates of M, $|\dot{\phi}|_{m}^{2} = \sum_{ij} \dot{\phi}^{i} \dot{\phi}^{j} m_{ij}(\phi)$. We can define this in terms of the Brownian motion on M.

The random fields are given then by

$$V_{\alpha}(t) = W_{\alpha}(\phi(t))$$

for some functions $W_{\alpha}: M \to \mathbb{R}$ and their **correlation functions** are

$$\langle \prod_{i=1}^N V_{\alpha_i}(t_i)
angle = \int_{\phi: \mathbb{R} o \mathbb{R}} \prod_{i=1}^N W_{\alpha_i}(\phi(t_i)) e^{-S(\phi)} D\phi$$

Path integral for d>1

Setup:

- ▶ Field $\phi : \mathbb{R}^d \to M$
- Local action functional

$$S(\phi) = \int_{\mathbb{R}^d} L(\phi(x), \nabla \phi(x)) dx$$

Formal expression for correlation functions

$$\langle \prod_{i=1}^n V_i(x_i) \rangle = \int_{\phi: \mathbb{R}^d \to M} \prod_{i=1}^n W_i(\phi(x_i)) e^{-S(\phi)} D\phi$$

- ▶ How to find candidates for conformally invariant S?
- How to construct the path integral?
- How to derive bootstrap from path integral?

Classical 2d Conformal Field Theories

In 2d it is natural to replace \mathbb{R}^2 by a Riemann surface:

- ▶ Field $\phi : \Sigma \to M$. M manifold.
- \triangleright (Σ , h) 2d surface, h Riemannian metric
- ▶ Action functional $S(\phi, h)$

 $S(\phi, h)$ is conformally invariant if

- $S(\phi, h) = S(\phi \circ \psi, \psi^* h)$ for $\psi : \Sigma \to \Sigma$ diffeomorphism.
- ► S is Weyl invariant:

$$S(\phi, e^{\sigma}h) = S(\phi, h), \quad \sigma \in C^{\infty}(\Sigma)$$

▶ Thus S depends only on the complex structure determined by h

Free field

Let $\phi: \Sigma \to \mathbb{R}$. Action functional is the Dirichlet energy

$$S(\phi,h) = rac{1}{4\pi} \int_{\Sigma} |d\phi(x)|_h^2 dv_h(x)$$

where dv_h is Riemannian volume and $|\cdot|_h$ in metric in $T^*\Sigma$.

In complex coordinates z on Σ

$$S(\phi, h) = \frac{1}{\pi} \int_{\Sigma} \partial_z \phi(z) \partial_{\bar{z}} \phi(z) d^2 z$$

Weyl invariant. Extrema of S are harmonic functions.

Sigma model

Let (M, m) be a Riemannian manifold and $\phi : \Sigma \to M$.

$$S(\phi,h) = rac{1}{4\pi} \int_{\Sigma} |d\phi(x)|_{h,m}^2 dv_h(x)$$

where $|\cdot|_{h,m}$ is in metric on $d\phi(x) \in T_x^*\Sigma \otimes T_{\phi(x)}M$.

In complex coordinate z on Σ and local coordinates ϕ^i on M

$$S(\phi, h) = \frac{1}{\pi} \int_{\Sigma} \sum_{ij} \partial_z \phi^i(z) \partial_{\bar{z}} \phi^j(z) m_{ij}(\phi(z)) d^2 z$$

with $m = \sum_{ij} m(\phi)_{ij} d\phi^i \otimes d\phi^j$.

Weyl invariant. Extrema harmonic maps $\Sigma \to M$.

Liouville theory

In general $\int_{\Sigma} V(\phi(x)) dv_h(x)$ is **not** Weyl invariant.

However, the Liouville action

$$S(\phi,h) = rac{1}{4\pi} \int_{\Sigma} (|d\phi|_h^2 + QR_h\phi + \mu e^{2b\phi}) dV_h$$

with R_h scalar curvature is covariant if $Q = \frac{1}{b}$:

$$S(\phi, e^{\sigma}h) = S(\phi + \sigma, h) - 6Q^{2}A(\sigma, h)$$

where $A(\sigma, h)$ is the Weyl anomaly

$$A(\sigma,h) = \frac{1}{96\pi} \int_{\Sigma} (|d\sigma|_h^2 + R_h \sigma) dv_h$$

Extrema ϕ_0 are metrics $e^{2b\phi_0}h$ with constant curvature (Picard, Poincare).

Path integral

How to define the formal path integral for observables $F(\phi)$

$$\langle F \rangle = \int_{\phi: \Sigma \to M} F(\phi) e^{-S(\phi)} D\phi$$
 ?

Free field: let

$$\phi = c + X_h$$

where $c \in \mathbb{R}$ and define

$$\langle F \rangle := Z(h) \int_{\mathbb{R}} \mathbb{E} F(c + X_h) dc$$

- ► X_h is the Gaussian free field (GFF)
- ▶ $X_h \in H^{-s}(\Sigma)$ is a Gaussian random distribution with covariance

$$\mathbb{E}[X_h(x)X_h(x')] = G_h(x,x')$$

 G_h is the Green function of the Laplace Beltrami operator Δ_h .

 $ightharpoonup Z(h) = (\det'(-\Delta_h))^{-\frac{1}{2}}$ is the partition function of the GFF

Liouville theory

Non-linear terms in action require **renormalisation**.

For **Liouville theory** we need to define $e^{2b\phi}$ for a distribution ϕ :

- ▶ Mollify the free field $\phi \to \rho_{\epsilon} * \phi$
- **Renormalise** $e^{2b\phi}$ by

$$e^{2b\phi(z)}dv_h(z) := \lim_{\epsilon \to 0} \epsilon^{2b^2}e^{2b\phi_\epsilon(z)}dv_h(z)$$

= Gaussian Multiplicative Chaos (GMC) measure.

Then define

$$\langle F \rangle := Z(h) \int_{\mathbb{R}} \mathbb{E} F(c + X_h) e^{-\frac{1}{4\pi} \int_{\Sigma} (QR_h \phi + \mu e^{2b\phi}) \, dV_h} dc$$

Primary fields are **vertex operators**: For $\alpha \in \mathbb{C}$

$$V_{\alpha}(z) := \lim_{\epsilon \to 0} \epsilon^{\frac{\alpha^2}{2}} e^{\alpha \phi_{\epsilon}}$$

Bootstrap holds for LCFT: C.Guillarmou, A.K., R.Rhodes, V. Vargas, (Annals 2020, Acta 2024, Annals 2026)

Sigma models

Action functional is **not** a perturbation of GFF.

Mollify $\phi \to \phi_{\epsilon}$, for instance let $\phi_{\epsilon} : \epsilon \mathbb{Z}^2 \to M$

Renormalise $\mathcal{S} o \mathcal{S}_\epsilon$

Typically **no** conformal invariance as $\epsilon \to 0$.

Example: Heisenberg model $M = S^N$, round metric and $N \ge 2$:

- ▶ Have to renormalise as $S_{\epsilon} = \frac{1}{T_{\epsilon}}S$
- ▶ Have to take $T_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$ (asymptotic freedom, Polyakov 1981)
- ► Limit is believed to be massive (not conformal).

The same holds for all compact symmetric spaces M.

Wess-Zumino-Witten model

Let $B = \sum B_{ij} d\phi^i \wedge d\phi^j$ be a 2-form on M then

$$S_{top} = \int_{\Sigma} \phi^* B = \int_{\Sigma} B_{ij}(\phi(z)) d\phi^i(z) \wedge d\phi^j(z)$$

is independent of metric i.e. topological.

Take M = G a compact Lie Group, (e.g. SU(N)). G Lie algebra.

Sigma model action for $g: \Sigma \to G$

$$S_G(g) = -rac{1}{2\pi}\int_{\Sigma} {
m Tr}(g^{-1}\partial_z g)(g^{-1}\partial_{ar{z}}g) d^2z$$

Renormalisation as in Heisenberg model $S_G \to T_{\epsilon}^{-1} S_G \implies \text{not}$ a CFT Witten (1984): add a topological term with

$$dB = \frac{1}{12\pi i} \text{Tr}(g^{-1}dg \wedge g^{-1}dg \wedge g^{-1}dg)$$

locally in G. Then, for $k \in \mathbb{Z}$, $e^{-kS_{top}(g)}$ is globally defined.

Conformal Field Theory

The formal path integral

$$\langle F \rangle_{k} = \int_{g: \Sigma \to G} F(g) e^{-k(S_G + S_{lop})} Dg$$

is expected to give rise to a CFT for all $k \in \mathbb{N}$:

- WZW model has a Kac-Moody symmetry extending the conformal symmetry
- Most rational CFT's (e.g. 2d Ising model) can be obtained algebraically from the WZW model

Rigorous construction of the WZW path integral is still open.

However, if we replace G by **positive** elements in $G^{\mathbb{C}}$ a probabilistic construction in terms of GMC can be given and leads to an interesting CFT.

$G^{\mathbb{C}}/G$ WZW model

Consider WZW action on **positive** elements $\mathcal{P} = \{gg^* | g \in G^{\mathbb{C}}\}$ of $G^{\mathbb{C}}$:

$$S_{\mathit{WZW}}(gg^*), \;\; g \in \mathit{G}^{\mathbb{C}}$$

 $\mathcal{P}\cong$ homogenous space $G^{\mathbb{C}}/G$ since $gU(gU)^*=gg^*$ if $U\in G$. Define formally $G^{\mathbb{C}}/G$ model by the path integral

$$\langle F \rangle_{G^{\mathbb{C}}/G} = \int F(gg^*) e^{kS_{WZW}(gg^*)} D(gg^*)$$

with $D(gg^*)$ the $G^{\mathbb{C}}$ invariant measure on $G^{\mathbb{C}}/G$.

- $\operatorname{Tr}[(gg^*)^{-1}d(gg^*)]^3$ is **exact** and the parameter $k \in \mathbb{R}_+$ is **not** quantised.
- ullet Duality between G WZW and $G^{\mathbb{C}}/G$ model (Gawedzki '89, Witten '91)
- $G^{\mathbb{C}}/G$ model admits a probabilistic formulation in terms of GMC!

σ model on hyperbolic space

Let G = SU(2). $g \in SL(2, \mathbb{C})$ can uniquely be written g = bU, $U \in SU(2)$ and

$$b=\left(egin{array}{cc} e^{\phi/2} & e^{-\phi/2}\gamma \ 0 & e^{-\phi/2} \end{array}
ight) \ \phi\in\mathbb{R}, \gamma\in\mathbb{C}.$$

The sigma model action becomes

$$S_G(bb^*) = -rac{1}{\pi}\int_{\mathbb{C}}(2\partial_z\phi\partial_{ar{z}}\phi + e^{-2\phi}(|\partial_z\gamma|^2 + |\partial_{ar{z}}\gamma|^2)d^2z.$$

i.e. a σ - model on **3d hyperbolic space** H_3 :

$$(\phi, \gamma_1, \gamma_2) \in \mathbb{R}^3$$
, metric $|d\phi||^2 + e^{2\phi}(|d\gamma_1|^2 + |d\gamma_2|^2)$

Stop becomes

$$S_{top}(bb^*) = -\frac{1}{\pi} \int_{\mathbb{S}} (e^{-2\phi} (|\partial_{\bar{z}}\gamma|^2 - |\partial_z\gamma|^2) d^2z.$$

and altogether

$$S_{WZW}(bb^*) = -rac{1}{\pi}\int_{\mathbb{C}}(\partial_{\overline{z}}\phi\partial_{\overline{z}}\phi + e^{-2\phi}|\partial_{\overline{z}}\gamma|^2)d^2z.$$

H₃ CFT

The formal H_3 model path integral is

$$\langle F \rangle = \int F(\phi, \gamma) e^{-\frac{k}{\pi} \int_{\Sigma} (|\partial_{\bar{z}} \phi|^2 + e^{-2\phi} |\partial_{\bar{z}} \gamma|^2) d^2 z} \prod_{x} d\mu(\phi(x), \gamma(x))$$

with $SL(2,\mathbb{C})$ invariant measure $d\mu(\phi,\gamma)=e^{2\phi}d\phi d^2\gamma$ on H_3 .

This should give rise to a CFT for k > 2 with central charge $c = \frac{3k}{k-2}$.

- ► Euclidean AdS₃ CFT
- Admits a map to Liouville CFT
- Possible setup for "quantum" Langlands correspondece

Probabilistic formulation of H_3 CFT

Action $\int_{\Sigma} (\partial_z \phi \partial_{\bar{z}} \phi + e^{-2\phi} \partial_z \bar{\gamma} \partial_{\bar{z}} \gamma)$ motivates the following:

- ▶ Let $\phi = c + X_h$ be the free field
- lacksquare $\int_{\Sigma}e^{-2\phi}|\partial_{ar{z}}\gamma|^2d^2z=(\gamma,\mathcal{D}_{\phi}\gamma)_{L^2(dv_h)}$ where

$$\mathcal{D}_{\phi} = -\partial_{\bar{z}}^* e^{-2\phi} \partial_{\bar{z}}$$

is the Witten Laplacean.

▶ Thus **conditionally on** ϕ , γ is Gaussian with covariance

$$\mathbb{E}_{\phi}\overline{\gamma(u)}\gamma(v) = \mathcal{D}_{\phi}^{-1}(u,v) = \frac{1}{k}\int \overline{\partial_{\bar{z}}^{-1}(u,z)}\partial_{\bar{z}}^{-1}(v,z)e^{2\phi(z)}d^2z.$$

► Total mass of this Gaussian is Ray-Singer determinant (on genus 0)

$$\det{}'\mathcal{D}_{\phi}^{-1} = e^{\frac{2}{\pi}\int_{\mathbb{C}}|\partial_{\bar{z}}\phi|^2d^2z}e^{-\frac{1}{4\pi}\int\phi R_hdv_h}\det{}'\mathcal{D}_0^{-1}$$

 \blacktriangleright Hence k is shifted to k-2.

Renormalisation

Rescaling $\phi \to b\phi$ with $b = \frac{1}{\sqrt{k-2}}$ we make the

Definition The H_3 path integral for $\Sigma = \hat{\mathbb{C}}$ is defined by

$$\langle F(\phi,\gamma)\rangle_{H_3}:=\det{}'(\Delta)^{-\frac{3}{2}}\int_{\mathbb{R}\times\mathbb{C}}\mathbb{E}(\mathbb{E}_{X_h}e^{-\frac{b}{4\pi}\int\phi R_hdv_h}F(b\phi,\gamma))\,dc\,d^2\gamma_0$$

where $\phi = c + X_h$ and $\gamma = \gamma_0 + \Gamma$ and conditionally on X_h

$$\mathbb{E}_{X_h}\overline{\Gamma(u)}\Gamma(v) = \frac{1}{\pi^2} \int \frac{1}{u-z} \frac{1}{\bar{v}-\bar{z}} e^{2b\phi} d^2z.$$

where $e^{2b\phi}d^2z$ denotes the **GMC measure**.

Theorem (C.Guillarmou &A.K& R. Rhodes 2025) $\langle - \rangle_{H_3}$ defines a CFT with central charge $c = \frac{3k}{k-2}$ and primary fields

$$W_{j,\mu}(z) = e^{\mu\gamma(z)-\bar{\mu}\bar{\gamma}(z)}e^{2(j+1)\phi(z)}, \quad j,\mu\in\mathbb{C}$$

H₃ - Liouville correspondence

Theorem (GKR2024) The correlation functions of H_3 CFT can be expressed in terms of those of Liouville theory as

$$\langle \prod_{i=1}^N W_{j_i,\mu_i}(z_i) \rangle_{H_3} = F(\mathbf{z},\mathbf{y}) \langle \prod_{i=1}^N V_{\alpha_i}(z_i) \prod_{j=1}^{N-2} V_{-\frac{1}{b}}(y_j) \rangle_L$$

where $F(\mathbf{z}, \mathbf{y})$ is explicit and $\alpha_i = 2b(j_i + 1) + \frac{1}{b}$.

- Similar formuli hold for all genus(Σ) > 0 and also for bb* twisted by an arbitrary rank two holomorphic vector bundle on Σ (= gauge field)
- These formuli generalise those conjectured by Ribault, Teschner, Hikida, Schomerus.

(Semi) Classical limit

Path integrals can be studied by large deviation methods as parameters tend to 0 or ∞ . In the Liouville theory this means $b \to 0$ or $b \to \infty$. This leads to interesting geometry.

Classical limit: $k \to \infty \Leftrightarrow b \to 0$

Extremiser of the classical Liouville action is a metric $e^{2b\phi}|dz|^2$ on the surface Σ with constant (negative) curvature (Picard, Poincare). Vertex operators create conical singularities in the metric.

Extremiser of classical H_3 action is a hermitean metric on a rank 2 holomorphic vector bundle whose unitary connection is flat (Donaldson). The vertex operators create parabolic structures at z_i (Taktajan).

Semiclassical limit = critical limit: $k \to 2 \Leftrightarrow b \to \infty$

Semiclassical limit of the H_3 -Liouville correspondence is argued (Gaiotto, Teschner) to give rise to the analytic Langlands correspondence of Etingof, Frenkel and Kazhdan

Hence H_3 -Liouville correspondence has been called "quantum analytic Langlands correspondence" (Teschner)

Outlook

GFF and GMC seem to be basic ingredients of probabilistic 2d CFT

- ▶ Toda CFT
- Imaginary Liouville theory can be defined in terms of imaginary GMC and should describe Potts models with c < 1.</p>
- Sine-Gordon-Liouville theory and 2d black hole CFT
- Supersymmetric Liouville theory

Challenge: d > 2!

Thank You!

Map to Liouville theory

Need to compute

$$\mathbb{E}\left(\mathbb{E}_{X}[e^{-\frac{b}{4\pi}\int\phi R_{h}dv_{h}}\prod_{i=1}^{N}e^{\mu_{i}\gamma(z_{i})-\bar{\mu}_{i}\overline{\gamma(z_{i})}}e^{\alpha_{i}\phi(z_{i})})]\right)$$

The conditional γ -expectation is explicit:

$$\mathbb{E}_{X} \prod_{i=1}^{N} e^{\mu \gamma(z_{i}) - \bar{\mu} \overline{\gamma(z_{i})}} = e^{\gamma_{0} \sum_{i} \mu_{i} - \bar{\gamma}_{0} \sum_{i} \bar{\mu}_{i})} e^{-\sum_{ij} \bar{\mu}_{i} \mu_{j} \mathbb{E}_{X} \overline{\Gamma_{h}(z_{i})} \Gamma_{h}(z_{j})}$$

The γ_0 integral gives $\delta(\sum_i \mu_i)$ and then using

$$\sum_{ij} \bar{\mu}_i \mu_j \mathbb{E}_X \overline{\Gamma_h(z_i)} \Gamma_h(z_j) = \frac{b}{\pi^2} \sum_{ij} \bar{\mu}_i \mu_j \int \frac{1}{\bar{z}_i - \bar{w}} \frac{1}{z_j - w} e^{2b\phi(w)} d^2w$$

we get

$$\int_{\mathbb{C}} \mathbb{E}_{X} \prod_{i=1}^{N} e^{\mu \gamma(z_{i}) - \bar{\mu} \overline{\gamma(z_{i})}} d^{2} \gamma_{0} = e^{-\int |\sum_{i} \frac{\mu_{i}}{z_{i} - w})|^{2} e^{2b\phi(w)} d^{2}w}$$

Map to Liouville theory

The function

$$B(w) = \sum_{i=1}^{N} \frac{\mu_i}{z_i - w} = \frac{\sum_{i} \mu_i \prod_{j \neq i} (z_j - w)}{\prod_{i} (z_i - w)}$$

is meromorphic with N poles at z_i and N-2 zeros at some points y_i (since $\sum_i \mu_i = 0$). Hence

$$|B(w)|^2 = C \frac{\prod_{i=1}^{N-2} |w - y_i|^2}{\prod_{i=1}^{N} |w - z_i|^2} = C e^{\sum_{i=1}^{N-2} 2 \log |w - y_i| - \sum_{i=1}^{N} 2 \log |w - z_i|}$$

The Green function $G_h(w, z) = -\log |w - z|$ plus metric dependent terms. Hence

$$|B(w)|^2 \propto e^{-\sum_{i=1}^{N-2} 2G_h(w-y_i) + \sum_{j=1}^{N} 2G_h(w-z_j)}$$

A (Girsanov) shift in the ϕ integral creates vertex operator insertions $V_{-\frac{1}{b}}(y_i)$ and a shift $\alpha_i \to \alpha_i + \frac{1}{b}$ in the $V_{\alpha_i}(z_i)$