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Conformal Field Theory (CFT)

Statistical mechanics systems exhibit conformal symmetry in large spatial
scales at the critical temperature of 2nd order phase transition
▶ Large scale behaviour is independent of small scale details
▶ Universality classes are described by Conformal Field Theories (CFT)
▶ Quantum Field Theories become CFTs in small scales
▶ CFTs have special symmetries allowing for precise conjectures

CFT has also a rich mathematical structure
▶ Representation theory of infinite dimensional Lie algebras (Virasoro,

Kac-Moody, W-algebras)
▶ Geometry of moduli spaces, knot theory,...

However, a rigorous constructive foundation for CFT is still lacking.
In this talk I’ll discuss a probabilistic approach to 2d CFTs .



Conformal invariance

A probabilistic CFT is characterised by a family of random fields

{Vα(x) | x ∈ Rd , α ∈ I}

and their correlation functions

⟨
n∏

i=1

Vαi (xi)⟩.

Correlation functions are invariant under rotations and translations of Rd and
under scaling

⟨
∏

i

Vαi (λxi)⟩ =
∏

i

λ−2∆αi ⟨
∏

i

Vαi (xi)⟩ (∗)

∆α is called scaling dimension or conformal weight.

Conformal invariance: (∗) extends to conformal maps x → Λ(x),

In d = 2: R2 ≃ C and Λ is Möbius map and λ−2∆α → |Λ′(z)|−2∆α .



Structure Constants

Natural setup for 2d CFT is the Riemann sphere: z ∈ Ĉ = C ∪ {∞} (and,
more generally, a Riemann surface).

Using conformal map to send three points z1, z2, z3 ∈ C to {0, 1,∞}

=⇒ 3-point functions are determined up to constants

⟨
3∏

k=1

Vαk (zk )⟩ = |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13 Cα1α2α3

with ∆12 = ∆α3 −∆α1 −∆α2 etc.

Cα1α2α3 = ⟨Vα1(0)Vα2(1)Vα3(∞)⟩

are called the structure constants of the CFT.



Bootstrap hypothesis

Operator Product Expansion (OPE) hypothesis:

⟨Vα1(x1)Vα2(x2)Vα3(x3) . . . ⟩ =
∑
α

Cα1α2αDx2⟨Vα(x2)Vα3(x3) . . . ⟩

▶ Differential operator Dx2 determined by conformal symmetry
▶ Iterating OPE: all correlation functions are determined by Cα1α2α3

How to find CFTs?

Consistency of OPE can be used to guess possible solutions Belavin,
Polyakov, Zamolodchicov, 1984, Rychkov et al 2008

How to justify bootstrap?

Derive it from a probabilistic path integral.



One Dimensional Free Field: Wiener measure

Let X : R → R be two-sided Brownian motion and c ∈ R. The 1d free field

ϕ(t) = c + X (t)

is defined by the measure µ on continuous paths ϕ : R → R with

⟨F ⟩ =
∫

F (ϕ)dµ(ϕ) =
∫
R
E[F (c + X (·))]dc

for suitable F : C(R) → R.
This gives a rigorous sense to the formal path integral

⟨F ⟩ =
∫
ϕ:R→R

F (ϕ)e−S(ϕ)Dϕ

where the action functional is given by

S(ϕ) =
1
2

∫
R
(
dϕ(t)

dt
)2dt



Path integrals
This extends to other action functionals:
▶ Feynman-Kac. Perturb by a function V : R → R:

⟨F ⟩ =
∫
ϕ:R→R

F (ϕ)e− 1
2
∫
R(ϕ̇(t)

2+V (ϕ(t))dtDϕ :=

∫
R
E[F (c+X )e− 1

2
∫
R V (c+X(t)dt

]dc

▶ Sigma model. Let ϕ : R → M, M a manifold with Riemannian metric m

⟨F ⟩ =
∫
ϕ:R→M

F (ϕ)e− 1
2
∫
R |ϕ̇(t)|2mdtDϕ

where in local coordinates of M, |ϕ̇|2m =
∑

ij ϕ̇
i ϕ̇jmij(ϕ). We can define this

in terms of the Brownian motion on M.

The random fields are given then by

Vα(t) = Wα(ϕ(t))

for some functions Wα : M → R and their correlation functions are

⟨
N∏

i=1

Vαi (ti)⟩ =
∫
ϕ:R→R

N∏
i=1

Wαi (ϕ(ti))e
−S(ϕ)Dϕ



Path integral for d>1

Setup:
▶ Field ϕ : Rd → M
▶ Local action functional

S(ϕ) =

∫
Rd

L(ϕ(x),∇ϕ(x))dx

Formal expression for correlation functions

⟨
n∏

i=1

Vi(xi)⟩ =
∫
ϕ:Rd→M

n∏
i=1

Wi(ϕ(xi))e−S(ϕ)Dϕ

▶ How to find candidates for conformally invariant S?
▶ How to construct the path integral?
▶ How to derive bootstrap from path integral?



Classical 2d Conformal Field Theories

In 2d it is natural to replace R2 by a Riemann surface:
▶ Field ϕ : Σ → M. M manifold.
▶ (Σ, h) 2d surface, h Riemannian metric
▶ Action functional S(ϕ, h)

S(ϕ, h) is conformally invariant if
▶ S(ϕ, h) = S(ϕ ◦ ψ,ψ∗h) for ψ : Σ → Σ diffeomorphism.
▶ S is Weyl invariant:

S(ϕ, eσh) = S(ϕ, h), σ ∈ C∞(Σ)

▶ Thus S depends only on the complex structure determined by h



Free field

Let ϕ : Σ → R. Action functional is the Dirichlet energy

S(ϕ, h) =
1

4π

∫
Σ

|dϕ(x)|2h dvh(x)

where dvh is Riemannian volume and | · |h in metric in T ∗Σ.

In complex coordinates z on Σ

S(ϕ, h) =
1
π

∫
Σ

∂zϕ(z)∂z̄ϕ(z) d2z

Weyl invariant. Extrema of S are harmonic functions.



Sigma model

Let (M,m) be a Riemannian manifold and ϕ : Σ → M.

S(ϕ, h) =
1

4π

∫
Σ

|dϕ(x)|2h,m dvh(x)

where | · |h,m is in metric on dϕ(x) ∈ T ∗
x Σ⊗ Tϕ(x)M.

In complex coordinate z on Σ and local coordinates ϕi on M

S(ϕ, h) =
1
π

∫
Σ

∑
ij

∂zϕ
i(z)∂z̄ϕ

j(z)mij(ϕ(z))d2z

with m =
∑

ij m(ϕ)ijdϕi ⊗ dϕj .

Weyl invariant. Extrema harmonic maps Σ → M.



Liouville theory

In general
∫
Σ

V (ϕ(x))dvh(x) is not Weyl invariant.

However, the Liouville action

S(ϕ, h) =
1

4π

∫
Σ

(|dϕ|2h + QRhϕ+ µe2bϕ) dvh

with Rh scalar curvature is covariant if Q = 1
b :

S(ϕ, eσh) = S(ϕ+ σ, h)− 6Q2A(σ, h)

where A(σ, h) is the Weyl anomaly

A(σ, h) =
1

96π

∫
Σ

(|dσ|2h + Rhσ)dvh

Extrema ϕ0 are metrics e2bϕ0 h with constant curvature (Picard, Poincare).



Path integral

How to define the formal path integral for observables F (ϕ)

⟨F ⟩ =
∫
ϕ:Σ→M

F (ϕ)e−S(ϕ)Dϕ ?

Free field: let
ϕ = c + Xh

where c ∈ R and define

⟨F ⟩ := Z (h)
∫
R
EF (c + Xh)dc

▶ Xh is the Gaussian free field (GFF)
▶ Xh ∈ H−s(Σ) is a Gaussian random distribution with covariance

E[Xh(x)Xh(x ′)] = Gh(x , x ′)

Gh is the Green function of the Laplace Beltrami operator ∆h.

▶ Z (h) = (det ′(−∆h))
− 1

2 is the partition function of the GFF



Liouville theory
Non-linear terms in action require renormalisation.

For Liouville theory we need to define e2bϕ for a distribution ϕ:
▶ Mollify the free field ϕ→ ρϵ ∗ ϕ
▶ Renormalise e2bϕ by

e2bϕ(z)dvh(z) := lim
ϵ→0

ϵ2b2
e2bϕϵ(z)dvh(z)

= Gaussian Multiplicative Chaos (GMC) measure.

Then define

⟨F ⟩ := Z (h)
∫
R
EF (c + Xh)e− 1

4π
∫
Σ(QRhϕ+µe2bϕ) dvh dc

Primary fields are vertex operators: For α ∈ C

Vα(z) := lim
ϵ→0

ϵ
α2
2 eαϕϵ

Bootstrap holds for LCFT: C.Guillarmou, A.K., R.Rhodes, V. Vargas, (Annals
2020, Acta 2024, Annals 2026)



Sigma models

Action functional is not a perturbation of GFF.

Mollify ϕ→ ϕϵ, for instance let ϕϵ : ϵZ2 → M

Renormalise S → Sϵ

Typically no conformal invariance as ϵ→ 0.

Example: Heisenberg model M = SN , round metric and N ≥ 2:
▶ Have to renormalise as Sϵ =

1
Tϵ

S
▶ Have to take Tϵ → 0 as ϵ→ 0 (asymptotic freedom, Polyakov 1981)
▶ Limit is believed to be massive (not conformal).

The same holds for all compact symmetric spaces M.



Wess-Zumino-Witten model

Let B =
∑

Bijdϕi ∧ dϕj be a 2-form on M then

Stop =

∫
Σ

ϕ∗B =

∫
Σ

Bij(ϕ(z))dϕi(z) ∧ dϕj(z)

is independent of metric i.e. topological.
Take M = G a compact Lie Group, (e.g. SU(N)). G Lie algebra.
Sigma model action for g : Σ → G

SG(g) = − 1
2π

∫
Σ

Tr(g−1∂zg)(g−1∂z̄g)d2z

Renormalisation as in Heisenberg model SG → T−1
ϵ SG =⇒ not a CFT

Witten (1984): add a topological term with

dB =
1

12πi
Tr(g−1dg ∧ g−1dg ∧ g−1dg)

locally in G. Then, for k ∈ Z, e−kStop(g) is globally defined.



Conformal Field Theory

The formal path integral

⟨F ⟩k =

∫
g:Σ→G

F (g)e−k(SG+Stop)Dg

is expected to give rise to a CFT for all k ∈ N:
▶ WZW model has a Kac-Moody symmetry extending the conformal

symmetry
▶ Most rational CFT’s (e.g. 2d Ising model) can be obtained algebraically

from the WZW model

Rigorous construction of the WZW path integral is still open.

However, if we replace G by positive elements in GC a probabilistic
construction in terms of GMC can be given and leads to an interesting CFT.



GC/G WZW model

Consider WZW action on positive elements P = {gg∗|g ∈ GC} of GC:

SWZW (gg∗), g ∈ GC

P ∼= homogenous space GC/G since gU(gU)∗ = gg∗ if U ∈ G.
Define formally GC/G model by the path integral

⟨F ⟩GC/G =

∫
F (gg∗)ekSWZW (gg∗)D(gg∗)

with D(gg∗) the GC invariant measure on GC/G.

• Tr|(gg∗)−1d(gg∗)]3 is exact and the parameter k ∈ R+ is not quantised.

• Duality between G WZW and GC/G model (Gawedzki ’89, Witten ’91)

• GC/G model admits a probabilistic formulation in terms of GMC!



σ model on hyperbolic space
Let G = SU(2). g ∈ SL(2,C) can uniquely be written g = bU, U ∈ SU(2) and

b =

(
eϕ/2 e−ϕ/2γ

0 e−ϕ/2

)
ϕ ∈ R, γ ∈ C.

The sigma model action becomes

SG(bb∗) = − 1
π

∫
C
(2∂zϕ∂z̄ϕ+ e−2ϕ(|∂zγ|2 + |∂z̄γ|2)d2z.

i.e. a σ- model on 3d hyperbolic space H3:

(ϕ, γ1, γ2) ∈ R3, metric |dϕ||2 + e2ϕ(|dγ1|2 + |dγ2|2)

Stop becomes

Stop(bb∗) = − 1
π

∫
C
(e−2ϕ(|∂z̄γ|2 − |∂zγ|2)d2z.

and altogether

SWZW (bb∗) = − 1
π

∫
C
(∂z̄ϕ∂z̄ϕ+ e−2ϕ|∂z̄γ|2)d2z.



H3 CFT

The formal H3 model path integral is

⟨F ⟩ =
∫

F (ϕ, γ)e− k
π

∫
Σ(|∂z̄ϕ|2+e−2ϕ|∂z̄γ|2)d2z

∏
x

dµ(ϕ(x), γ(x))

with SL(2,C) invariant measure dµ(ϕ, γ) = e2ϕdϕd2γ on H3.

This should give rise to a CFT for k > 2 with central charge c = 3k
k−2 .

▶ Euclidean AdS3 CFT
▶ Admits a map to Liouville CFT
▶ Possible setup for "quantum" Langlands correspondece



Probabilistic formulation of H3 CFT

Action
∫
Σ
(∂zϕ∂z̄ϕ+ e−2ϕ∂z γ̄∂z̄γ) motivates the following:

▶ Let ϕ = c + Xh be the free field
▶
∫
Σ

e−2ϕ|∂z̄γ|2d2z = (γ,Dϕγ)L2(dvh)
where

Dϕ = −∂∗
z̄ e−2ϕ∂z̄

is the Witten Laplacean.
▶ Thus conditionally on ϕ, γ is Gaussian with covariance

Eϕγ(u)γ(v) = D−1
ϕ (u, v) =

1
k

∫
∂−1

z̄ (u, z)∂−1
z̄ (v , z)e2ϕ(z)d2z.

▶ Total mass of this Gaussian is Ray-Singer determinant (on genus 0)

det ′D−1
ϕ = e

2
π

∫
C |∂z̄ϕ|2d2ze− 1

4π
∫
ϕRhdvh det ′D−1

0

▶ Hence k is shifted to k − 2.



Renormalisation

Rescaling ϕ→ bϕ with b = 1√
k−2 we make the

Definition The H3 path integral for Σ = Ĉ is defined by

⟨F (ϕ, γ)⟩H3 := det ′(∆)−
3
2

∫
R×C

E(EXh e− b
4π

∫
ϕRhdvh F (bϕ, γ)) dc d2γ0

where ϕ = c + Xh and γ = γ0 + Γ and conditionally on Xh

EXhΓ(u)Γ(v) =
1
π2

∫
1

u − z
1

v̄ − z̄
e2bϕd2z.

where e2bϕd2z denotes the GMC measure.

Theorem (C.Guillarmou &A.K& R. Rhodes 2025) ⟨−⟩H3 defines a CFT with
central charge c = 3k

k−2 and primary fields

Wj,µ(z) = eµγ(z)−µ̄γ̄(z)e2(j+1)ϕ(z), j , µ ∈ C



H3 - Liouville correspondence

Theorem (GKR2024) The correlation functions of H3 CFT can be expressed in
terms of those of Liouville theory as

⟨
N∏

i=1

Wji ,µi (zi)⟩H3 = F (z, y)⟨
N∏

i=1

Vαi (zi)
N−2∏
j=1

V− 1
b
(yj)⟩L

where F (z, y) is explicit and αi = 2b(ji + 1) + 1
b .

▶ Similar formuli hold for all genus(Σ) > 0 and also for bb∗ twisted by an
arbitrary rank two holomorphic vector bundle on Σ (= gauge field)

▶ These formuli generalise those conjectured by Ribault, Teschner, Hikida,
Schomerus.



(Semi) Classical limit

Path integrals can be studied by large deviation methods as parameters tend
to 0 or ∞. In the Liouville theory this means b → 0 or b → ∞. This leads to
interesting geometry.

Classical limit: k → ∞ ⇔ b → 0

Extremiser of the classical Liouville action is a metric e2bϕ|dz|2 on the surface
Σ with constant (negative) curvature (Picard, Poincare). Vertex operators
create conical singularities in the metric.

Extremiser of classical H3 action is a hermitean metric on a rank 2
holomorphic vector bundle whose unitary connection is flat (Donaldson). The
vertex operators create parabolic structures at zi (Taktajan).

Semiclassical limit = critical limit: k → 2 ⇔ b → ∞

Semiclassical limit of the H3-Liouville correspondence is argued (Gaiotto,
Teschner) to give rise to the analytic Langlands correspondence of Etingof,
Frenkel and Kazhdan

Hence H3-Liouville correspondence has been called "quantum analytic
Langlands correspondence" (Teschner)



Outlook

GFF and GMC seem to be basic ingredients of probabilistic 2d CFT
▶ Toda CFT
▶ Imaginary Liouville theory can be defined in terms of imaginary GMC

and should describe Potts models with c < 1.
▶ Sine-Gordon-Liouville theory and 2d black hole CFT
▶ Supersymmetric Liouville theory

Challenge: d > 2!



Thank You!



Map to Liouville theory
Need to compute

E

(
EX [e− b

4π
∫
ϕRhdvh

N∏
i=1

eµiγ(zi )−µ̄iγ(zi )eαiϕ(zi ))]

)

The conditional γ-expectation is explicit:

EX

N∏
i=1

eµγ(zi )−µ̄γ(zi ) = eγ0
∑

i µi−γ̄0
∑

i µ̄i )e−
∑

ij µ̄iµjEX Γh(zi )Γh(zj )

The γ0 integral gives δ(
∑

i µi) and then using∑
ij

µ̄iµjEXΓh(zi)Γh(zj) =
b
π2

∑
ij

µ̄iµj

∫
1

z̄i − w̄
1

zj − w
e2bϕ(w)d2w

we get ∫
C
EX

N∏
i=1

eµγ(zi )−µ̄γ(zi )d2γ0 = e−
∫
|
∑

i
µi

zi−w )|2e2bϕ(w)d2w



Map to Liouville theory

The function

B(w) =
N∑

i=1

µi

zi − w
=

∑
i µi
∏

j ̸=i(zj − w)∏
i(zi − w)

is meromorphic with N poles at zi and N − 2 zeros at some points yi (since∑
i µi = 0). Hence

|B(w)|2 = C
∏N−2

i=1 |w − yi |2∏N
i=1 |w − zi |2

= Ce
∑N−2

i=1 2 log |w−yi |−
∑N

i=1 2 log |w−zi |

The Green function Gh(w , z) = − log |w − z| plus metric dependent terms.
Hence

|B(w)|2 ∝ e−
∑N−2

i=1 2Gh(w−yi )+
∑N

j=1 2Gh(w−zj )

A (Girsanov) shift in the ϕ integral creates vertex operator insertions V− 1
b
(yi)

and a shift αi → αi +
1
b in the Vαi (zj)
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