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ANNs: For every d ∈ N, x = (x1, . . . , xd) ∈ Rd let
A(x) = (max{x1, 0}, . . . ,max{xd , 0}),

let N = ∪L∈N ∪ℓ0,...,ℓL∈N (×L
n=1(Rℓn×ℓn−1 × Rℓn)),

and ∀ L∈N, ℓ0, . . . , ℓL∈N, U = ((W1, B1), . . . , (WL, BL))∈×L
n=1(Rℓn×ℓn−1×Rℓn)

let RU : Rℓ0 → RℓL and PU ∈ N satisfy for all x0 ∈ Rℓ0 , . . . , xL ∈ RℓL with
∀ n ∈ {1, . . . , L} : xn = A(Wnxn−1 + Bn) that

RU(x0) = WLxL−1 + BL, PU =
∑L

n=1(ℓnℓn−1 + ℓn).

Theorem (Hutzent.-J-Kruse-Nguyen 2020 PDEA; Ackerm.-Kruse-Kuck.-J-Padgett 2024)

Let T , κ > 0, let f : R → R be Lipschitz, ∀ d ∈ N let gd ∈ C1(Rd ,R) and
ud : [0, T ]× Rd → R be an at most poly. grow. solution of

∂ud
∂t = ∆x ud + f(ud), ud(0, ·) = gd

with |gd(x)|+ ∥(∇gd)(x)∥ ≤ κdκ(1 + ∥x∥κ), and assume ∀ d ∈ N, ε ∈ (0, 1] :
∃G ∈ N : ∀ x ∈ Rd : |gd(x)−RG(x)| ≤ εκdκ(1 + ∥x∥κ) and PG ≤κdκε−κ.
Then ∃ c > 0 : ∀ d ∈ N, ε ∈ (0, 1] : ∃U ∈ N :∫

[0,T ]×[0,1]d |ud(y)−RU(y)| dy ≤ ε and PU ≤ c dcε−c.

Hutzenthaler-J-Kruse-Nguyen-von Wurstemberger 2020 PRSA,
Gonon-Graeber-J 2023, Becker-J-Müller-von Wurstemberger 2023 Math. Finance
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Theorem (Hannibal, J, & Thang 2024; J & Riekert 2024 SIAM JUQ (to appear))

Let d ∈ N, a ∈ R, b > a, let (Ω,F ,P) be prob. sp., for every m, n ∈ N0 let
X m

n : Ω → [a, b]d and Y m
n : Ω → R be RVs, assume for all i ∈ N, j ∈ N\{i} that

P(X i
0 = X j

0) = 0, for every k ∈ N0 let dk , Lk ∈ N\{1}, lk = (l0k , . . . , lLk
k ) ∈ NLk+1

satisfy l0k = d, lLk
k = 1, and dk =

∑L
i=1 lik(l

i−1
k + 1), for every k, n ∈ N0, θ ∈ Rdk let

N v,θ
k = (N v,θ

k,1 , . . . ,N
v,θ
k,lvk

) : Rd → Rlvk , v ∈ {0, 1, . . . , Lk}, satisfy for all x ∈ Rd ,

i ∈ {1, . . . , lv+1
k } that

N v+1,θ
k,i (x) = θlv+1

k lvk+i+
∑v

h=1 lhk (lh−1
k +1)

+
∑lvk

j=1 θ(i−1)lvk+j+
∑v

h=1 lhk (lh−1
k +1)

(
xj1{0}(v) + max{N v,θ

k,j (x), 0}1N(v)
)
,

for every k, n ∈ N0 let Mk
n ∈ N, γk

n ∈ R, let Rk
n : Rdk × Ω → R satisfy

Rk
n(θ) =

1
Mk

n

[∑Mk
n

m=1|N
Lk ,θ
k (X m

n )− Y m
n |2

]
,

let Gk
n : Rdk × Ω → Rdk be generalized gradient of Rk

n , and let Θk
n : Ω → Rdk be

RV, assume ∀ k, n ∈ N : Θk
n = Θk

n−1 − γk
nG

k
n(Θ

k
n−1), lim infk→∞ l1k = ∞, and

lim infk→∞ P
(
infθ∈Rdk Rk

0(θ) > 0
)
= 1, let (ck)k∈N ⊆ (0,∞) satisfy for all

k ∈ N that ckΘ
k
0 is standard normal. Then

lim inf
k→∞

P
(

inf
n∈N0

Rk
0(Θ

k
n) > inf

θ∈Rdk
Rk

0(θ)

)
= 1.



Theorem (Dereich & J 2024: Convergence rates for Adam; Dereich, Graeber, & J 2024)

Let (Ω,F ,P) be prob. sp., let d ∈ N, a ∈ R, b > a, let Xn,m : Ω → [a, b]d ,
(n,m) ∈ N2, be i.i.d. RVs, let l : Rd × Rd → R satisfy for all θ, x ∈ Rd that

l(θ, x) = ∥θ − x∥2,

let ξ ∈ Rd , p, ε, α ∈ (0,∞), β ∈ (α2, 1), (γn)n∈N ⊆ (0,∞) satisfy
lim supn→∞(γn + γ−2

n |γn − γn+1|) = 0, for every M ∈ N let MM : N0 ×Ω → Rd ,
MM : N0 × Ω → Rd , and ΘM : N0 × Ω → Rd be stoch. proc. satisfying for all
n ∈ N, i ∈ {1, . . . , d} that

MM
0 = 0, MM

n = αMM
n−1 +

(1 − α)

M

[
M∑

m=1
(∇θl)(Θ

M
n−1, Xn,m)

]
,

MM,i
0 = 0, MM,i

n = βMM,i
n−1 +

(1 − β)

M2

[
M∑

m=1

(
∂
∂θi

l
)
(ΘM

n−1, Xn,m)

]2

,

ΘM
0 = ξ, ΘM,i

n = ΘM,i
n−1 − γn

[
ε+ [(1 − βn)−1

M
M,i
n ]1/2

]−1MM,i
n ,

Then there exist c > 0, (ϑM)M∈N ⊆ Rd such that for all n ∈ N, M ∈ N ∩ [c,∞) :

P
(
lim supN→∞ ∥ΘM

N − ϑM∥ = 0
)
= 1,(

E[∥ΘM
n − ϑM∥p]

)1/p ≤ c
√
γn, and

∥ϑM − E[X1,1]∥ ≤ c M−1.
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