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The Navier-Stokes equations on a domain @ € RY, d =2, 3:

{ Orv =vAv+(v-V)v+Vp,

divv =0,

with suitable boundary conditions and initial condition.

» The starting point of some models trying to represent the
small scales is to split the velocity into a large scale
component u and the small scales modelled by a white noise
in time: v = u+£.



The Navier-Stokes equations on a domain @ € RY, d =2, 3:

{ Orv =vAv+(v-V)v+Vp,

divv =0,

with suitable boundary conditions and initial condition.

» The starting point of some models trying to represent the
small scales is to split the velocity into a large scale
component u and the small scales modelled by a white noise
in time: v =u+¢.

> A white noise in time is delta correlated in time:

E(&(t,x)&(s, ¥)) = c(x, y)0e—s
» This is an idealization of a process which has a small
correlation length. It can be approximated by %m(e%,x).

» This assumes a strong (infinite) separation of scales.



> |dealised configuration of the North Atlantic ocean thanks to
the primitive equations.

» The figure on the left (resp. center) is done with a fine (resp.
coarse) grid and a deterministic equation.

» The figure on the right introduces stochasticity in the coarse
simulation through the LU form of the primitive equations.
(Li-Mémin)



Classical derivation of Navier-Stokes equations

OeXe = v(t, X¢) (1)

A conserved quantities g satisifies:
/ q(t,y)dy = / q(0, y)dy,
Vi Vo
where V; is the image of V/{ by the flow of (2).

Using classical arguments, we find that a conserved quantities ¢
satisifies:

Drq = 0:q(t, x) + div (v(t, x)q(t, x)) = 0.
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Classical derivation of Navier-Stokes equations

OeXe = v(t, X¢) (1)

A conserved quantities g satisifies:

/ q(t,y)dy = / q(0, y)dy,
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where V; is the image of V/ by the flow of (2).
Using classical arguments, we find that a conserved quantities ¢
satisifies:
D:q = 0¢q(t, x) + div (v(t, x)q(t, x)) = 0.
Take g = p:
atp(ta X) + div (V(tv X)p(tv X)) =0

and for an incompressible fluid:

div v(t,x) =0



Classical derivation of Navier-Stokes equations

OeXe = v(t, X¢) (2)

A conserved quantities g satisifies:
/ q(t,y)dy = / q(0, y)dy,
Ve J Vo

where V; is the image of V by the flow of (2).
Using classical arguments, we find that a conserved quantities g
satisifies:

Drqg = 0:q(t, x) + div (v(t, x)q(t, x)) = 0.

From Newton's law, we obtain the equation for the momentum
g = pv (take p = 1):

Orv+v-Vv=rvAv+ Vp.



LU model

> For the derivation of LU model (Mikulevicius-Rozovsky,
Mémin), we choose v = u + £ with:

g(t,x)dt:/oa(x,y)dvv(t,y):dW(t,x)

aw

a correlated noise in space, ;-

» Write

is a space time white noise.

dX; = u(t, Xe)dt + dW(t, X;)

and compute a stochastic transport using Ito calculus and
Ito-Wentzel formula.



LU model

> For the derivation of LU model (Mikulevicius-Rozovsky,
Mémin), we choose v = u + £ with:

g(t,x)dt:/oa(x,y)dvv(t,y):dW(t,x)

aw

a correlated noise in space, ;-

» Write

is a space time white noise.

dX; = u(t, Xe)dt + dW(t, X;)

and compute a stochastic transport using Ito calculus and
Ito-Wentzel formula.

> We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise (Mémin):

du+(u7us)-Vudt+dV|N/oVu: vAudt+vAdW +V pdt,



» We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise:

du+(u—us)-Vudt+dWoVu=vAudt+vAdW+V pdt,
» o is the Stratonovich product:

dWoVu=dW - Vu+ idiv(a- Vu),
with a;i(x) = /Oa,-k(x,y)akj(y,x)dy.



» We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise:

du+(u—us)-Vudt+dWoVu=vAudt+vAdW+V pdt,
» o is the Stratonovich product:

dWoVu=dW - Vu+ idiv(a- Vu),
with a;i(x) = /Oa,-k(x,y)akj(y,x)dy.

» The Stratonovich form of the stochastic lagrangian equation
for the particles is

dX

u(t, Xe)dt + dW(t, X;)

= u(t, X¢)dt — usdt + d°W(t, X¢),

with us = %diva.



We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise:

du+(u—us)-Vudt+dWoVu=vAudt+vAdW+V pdt,
o is the Stratonovich product:

dWoVu=dW - Vu+ idiv(a- Vu),
with a;i(x) = /Oa,-k(x,y)akj(y,x)dy.

The Stratonovich form of the stochastic lagrangian equation
for the particles is

dX, = u(t, Xe)dt + dW(t, X;)

= u(t, X¢)dt — usdt + d°W(t, X¢),

with us = %diva.
Thanks to the Stratonovich product, the energy equality holds
(formally):

1 . 1
§d||u\|§2 + | Vul|Tdt = v(u, AdW) > + 5 Codt.



Correlated noise

> Replace the time white noise by a correlated noise, i.e. do not
assume complete separation of scales, and replace d W/ (t, X;)
by %m(e%a XI’): 1
atXt = [j (t Xt) + - m( Xt)

m is a centered, stationary and ergodic process.

» Then standard calculus can be used to derived a stochastic
transport theorem with corraled noise. A conserved quantities
q satisifies:

D = Dea(t,x) + div ((#(t,x) + - m( 5. x))a(t,x) = 0.



Correlated noise

> Replace the time white noise by a correlated noise, i.e. do not
assume complete separation of scales, and replace d W/ (t, X;)
by %m(e%a XI’): 1
atXt = [j (t Xt) + - m( Xt)

m is a centered, stationary and ergodic process.

» Then standard calculus can be used to derived a stochastic
transport theorem with corraled noise. A conserved quantities
q satisifies:

D = Dea(t,x) + div ((#(t,x) + - m( 5. x))a(t,x) = 0.

» We have to be careful, the limit ¢ — 0 will be a Stratonovich
equation.



> In 1 t
atXt = lje(t,Xt) + Em(?,Xt),

» The noise is stationary (in time) and has a zero average:

/ m(t,x)du(m) = 0.
E

But, this does not imply, that m(G%,Xt) has zero averaged or
that it is decorrelated to i°(t, X;). Contrary to a lto noise.
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> In 1t
atXt = lje(t,Xt) + Em(?,Xt),

» The noise is stationary (in time) and has a zero average:

/ m(t,x)du(m) = 0.
E

But, this does not imply, that m(e%,Xt) has zero averaged or
that it is decorrelated to i°(t, X;). Contrary to a lto noise.
» Assume for simplicity that m has correlation length 1:

%E (m(é,Xﬂ) = %E (m(eiz,Xt) - m(é,Xt_Ez))

1 ¢ t e 1 s
== E]E o Vm(:z,XS) \u (S,Xs) + gm(?,xs) ds

1 ‘ t s
~ ?E (/ 2Vm(€2,Xt)-m(€2,Xt)d5>
t—e - -

€



> In 1t
atXt = lje(t,Xt) + Em(6—27Xt),

» The noise is stationary (in time) and has a zero average:

/ m(t,x)du(m) = 0.
E

But, this does not imply, that m(e%,Xt) has zero averaged or
that it is decorrelated to i°(t, X;). Contrary to a lto noise.
» Assume for simplicity that m has correlation length 1:

E (m(i X)) = 11@ (m( 5, %)~ m( 5. X))
E (/ vm(. X -(ﬁ6(57X5)+1m(€52,X5)> ds)
612 (/ ¥ m( 2,Xt m(5 ,Xt)ds>

(Vm( Xe) - L(m)(=5 )(xt)),
where L(m f E(m(t + s))ds.



> In 1
atXt = lj (t Xt) + - m( Xt)

The noise has not a zero average (whlch should be the case
for a Ito noise). Assume for simplicity that m has correlation
length 1:

EE (m(é’xt)> ~E (Vm(ﬁ%,xt) - L(m)(

t
€ €2
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where L(m f E(m(t + s))ds. This is the inverse of
the generator of m applled to the function /(m) = m.



> In 1
atXt = lj (t Xt) + - m( Xt)

The noise has not a zero average (whlch should be the case
for a Ito noise). Assume for simplicity that m has correlation
length 1:

EE (m(é’xt)> ~E (Vm(ﬁ%,xt) - L(m)(

t
€ €2

(X)) -

where L(m)(t) = [EOC E(m(t + s))ds. This is the inverse of
the generator of m applied to the function /(m) = m.

» Finally, using stationarity of m and the fast decorrelation:
1
“E ( (3 (/ Vn(X:) - L(n)(Xe)dv(n )> .
€

» This is precisely the lto-Stokes drift us of the expected limit
equation.

» The large scale velocity is in fact v = i€ + us.



Stochastic transport theorem with decorraled noise
e 1
81-Xt =u (t Xt) + — m( Xt)
Using classical arguments, we find that a conserved quantities g
satisifies:

» 1t
Diq = 9eq + (@(t, x) + —m(,x)) - Vg =0.

From Newton's law, we obtain the equation for the momentum of
the large scales (take p = 1):

1 t
Oru + (U — us + fm(—2,x)) -Vu©

1 t
= VA — i+ —m(5, X)) + V"



Stochastic transport theorem with decorraled noise
. 1
81-Xt = u (t Xt) + — m( Xt)

Using classical arguments, we find that a conserved quantities g
satisifies:

» 1t
Diq = 9eq + (@(t, x) + —m(,x)) - Vg =0.

From Newton's law, we obtain the equation for the momentum of
the large scales (take p = 1):

1 t
Oru + (U — us + fm(—2,x)) -Vu©

1 t
= VAW~ u + (5 20] + T
At the limit € — 0, we obtain (AD-Hug—Memln).
du+(u—us)-Vvdt+dWoVu = vA(u—us)dt+vAdW+V p dt,

with a noise W whose correlation operator o is explicit in terms of
m.



|dea of the limit.
Rewrite the equation as:

1 t 1 t
oru® = E(uf, p°) — Em(?,x) -Vu + EyAm(?,x)

and compute

Ot (ue(t,x) - e/t/oi m(s, x)ds - Vu€(t,x)>



Idea of the limit.
Rewrite the equation as:

1 t t
Oru = E(us, p° )—zm(6 x)-Vu+ yAm( , X)

and compute

/\

‘(t,x) m(s, x)ds - Vu€(t,x)>

2
=E(us, p)+ I/Am(i x)

/ m(s, x)ds - VE(u, p)
t

€2

+ m(s, x)ds - ((m(eiz,x) -Vut + uAm(eiz,x))

t/e?



Idea of the limit.
Rewrite the equation as:

1 t t
Oru = E(us, p° )—zm(6 x)-Vu+ yAm( , X)

and compute

€2

/\

‘(t,x) m(s, x)ds - Vu€(t,x)>

=E(us, p)+ szm(i x)
m(s, x)ds VE(uS, p)

t/e?

" (s, x)ds - V ((m(eiz,x) Vet yAm(g%,x))

+

t/e?
[ o) T vt
n)(x)V(n(x)

[

x) - Vu®+ vAn)dv(n)

m



Remarks

» The proof uses the perturbed test function method based on
Markov generators, correctors, martingale problems ....

> The limit in

1 t
Bt + (U — U + —m(—, x)) - Vi
cu€ + (u u5+6m(62,x)) u

1t
=vA[u® — u§ + Em(?,x)] + Vp©.

can also be done using rough path theory (Hofmanova-Leahy-
Nilsen) but we need to assume more on the small scales: they
should converge to a white noise in the sense of rougth paths.

» The method is very robust and can be applied to many fluid
models.



The perturbed test function method

Let us illustrate this method on a model inspired by works by A.
Majda, P. Kramer, |I. Timorfeyev, E. Van den Eijden, F. Flandoli
proposed to study a multiscale fluid equation:

Oru=vAu+ (u+v) -Vu+Vp
1 1
dv = (vAv + ng)dt +(u+v)-Vvdt + Vg + ~gdw,

» With the notations
H={ue (L3(0))?, divu=0, u-n=0on dO},
P the Leray projector on H, the Stokes operator
A =vPA on D(A) = (H*(O)N H}(O)? N H

and b(u,v) = P(u-Vv).
» Rewrite the equation as:

Oty = Au+ b(u + v, u),
1 1

dv = (Av+ =Cv)dt + b(u + v, v)dt + —pdW,
£ £



The perturbed test function method

Let us illustrate this method on a model inspired by works by A.
Majda, P. Kramer, |I. Timorfeyev, E. Van den Eijden, F. Flandoli
proposed to study a multiscale fluid equation:

atu = AU + b(U + v, U),
1 1

dv = (Av + =Cv)dt + b(u + v, v)dt + ~pdW,
E E

> The term %Cv mimics the separation of scales.

» Formally, when ¢ — 0, we get v = (—C)*ld)dW and the
Navier-Stokes equation with transport noise:

du = Au+ b(u, u) + b°((—C) " LpdW, u).

This misses a term.



The perturbed test function method
Consider first the simpler case:

Oru = Au+ b(u+ v, u),
1 1

dv = = Cvdt + =¢dW,
£ 5

< 1 [P c
> u(t) = e v0+5/ e S(-9) pa/(s).
0
| 2

c 1 [f cees
B = leSvlhi+ 25 [ 1e5 iR, s

c 1 t/E c
= el [ el s



The perturbed test function method
Consider first the simpler case:

Oru = Au+ b(u+ v, u),
1 1

dv = = Cvdt + =¢dW,
£ 5

< 1 [P c
> u(t) = e v0+5/ eS(9) g (s).
0
| 2

c 1 [Y crs
BVOR) = ISl + 5 [ 16500l ds
St o2 1 9/5 Ct .12
= |e= vo\H—i-E/O |le ¢”52(H)ds.

1/2 1/2

» v isof order e /% ~» w =¢*/“v and

Otu = Au+ b(u, u) + ﬁb(w u),

1
pdW,

1
dw = ngdt—F i



Generators

» v is of order e 1/2 ~s w = /2y and
1
Oru = Au+ b(u, u) + ﬁb(wa u),
1 1
dw = ngdt—F 1/2q§dW

» Then U.(x,y,t) =E(p(u(x,y,t),w(x,y,t))) satisfies

with the generator:

Leplx,y) = (Ax-+ bx,x), D, 1)) + 17 (B x), Duplx,)

1 1
+g <Cy’ Dy@(Xa)/» + 278 Tr(¢2D§y¢(X7y))



Perturbed test function method

Oru = Au + b(u, u) + 1—/2b(w u),

1
d *CWdt+ W@de,

Lo, w) = (Au+ b(u,u), Dusp(, w) + > (b(ow, ), Dy, w)

1
= Lo, w)

with Lop(u,w) = (Cw, D, w) + 5 TH(6? D3y p(u, w).

» We want to find the limit equation for u and take a test
function ¢(u). The goal is to get rid of the singular terms and
of the dependence in w.

> Use correctors: o.(u, w) = p(u) + /201 (u, w) + e@o(u, w)



Perturbed test function method
1
ﬁsw(uv W) = <AU + b(ua U), Du@(uv W)) + m <b(W7 U), DUSO(Ua W)>
1
+gﬁww(u, w)

with Ly p(u, w) = (Cw, Dy p(u, w)) + %Tr(gszfvwcp(u, w)).

> Use correctors: o (u, w) = p(u) + /201 (u, w) + epa(u, w)
>

Lopeluw) = {Au+ b(u, 0), Dup(u)) + =5 (b(w, ), Dyp(w)

+el/2 (Au+ b(u,u), Dypi(u,w)) + (b(w, u), Dypi(u, w))
1

+m£w‘ﬂ1(“a w)

+& (Au+ b(u, u), Dypa(u, w)) + /2 (b(w, u), Dypa(u, w))

+Lwp2(u, w)



Perturbed test function method

Oru = Au+ b(u, u) + Wb(w u),

1
pdW,

1
dW:gCWdtJr i

Leo(u,w) = (Au+ b(u, u), Dyp(u, w)) + 511/2 (b(w, u), Dyp(u, w))
—i—éﬁwcp(u, w)

with £, p(, w) = (G, Do, w) + 5 TH(6? Dy, ).

> o (u,w) = p(u) + V201 (u, w) + epa(u, w)
~ (b(w, u), Dyp(u)) + Lye1(u,w) = 0.
» This is a Poisson equation. We know that

ImL,, ={¢ : H—=R, [,1(v)r(dv) =0}, where v is the
invariant measure of dv = Cv dt + ¢pdW.



Perturbed test function method

Oru = Au+ b(u, u) + Wb(w u),

1 1
dw = ngdtJr 1/2q25dW

Leo(u,w) = (Au+ b(u, u), Dyp(u, w)) + 511/2 (b(w, u), Dyp(u, w))
—i—éﬁwcp(u, w)

with £, p(, w) = (G, Do, w) + 5 TH(6? Dy, ).

> o (u,w) = p(u) + V201 (u, w) + epa(u, w)
~ (b(w, u), Dyp(u)) + Lye1(u,w) = 0.
» This is a Poisson equation. We know that

ImL,, ={¢ : H—=R, [,1(v)r(dv) =0}, where v is the
invariant measure of dv = Cv dt + ¢pdW.

~ 1(u, w) = (b((—C)"'w, u), Dygp(u)).



Perturbed test function method

Lep(u,w) = (Au+ b(u, u), Dyp(u, w)) + !

m <b(W7 U), Du‘ﬁ(uv W)>

1
+EEWS0(U7 W)

with Lap(u,w) = (Ow, Dy, w) + 5 TH(6 D3 p(us, w).
> Use correctors: ¢ (u, w) = p(u) + /201 (u, w) + epa(u, w)
~ p1(u,w) = (b((=C) " w, u), Dup(u)).
>

Lope(u,w) = (Au+ b(u, u), Dyp(u))
+el/2 (Au + b(u, u) Dyo1(u,w)) + (b(w, u), Dyp1(u, w))
+& (Au+ b(u, u), Dypa(u, w)) + /2 (b(w, u), Dyga(u, w))
+Lyp2(u, w).

s {b(w, 1), Dyspr (11, w))+ Lo, w) = /H (b(w, u), Dypr(u, w)) v(dw)



Perturbed test function method

c1/2

1 1

> o (u,w) =o(u) + 61/2901(u, w) + epa(u, w)

{ Do = Au+ b(u, u) + —os b(w, 1),

Lepe(u,w) = (Au+ b(u,u), Dyp(u, w))
+ [ (Duple). B(=C) My bly. ) du(y)

i /H (Dzye(u) - by, u), b((—=C)"ty, u)) du(y)
+0('?)

= Lop(u) + O(£'/?).

~ du = Au+ b(u, u) + b°((—C)~pdW, u).



The full problem

> Split v =r+ e/ 2w:

Oeu = Au+ b(u+ e ?w +r,u),
dw = e HeAw + Cw)dt + e 2pdW,
Oer = e HeAr + Cr)dt + b(u+ e ?w +r.e V2w + 1),

» An averaging phenomenon appears for r, we expect that it
converges to

F= (C)_l/Hb(W, w)dv(w).

» This is the lto-Stokes drift.
» The perturbed test function method is easy to adapt.



Assumptions
> Tr(—C) 1¢? < oo.
» There exists [ > > 1/4 such that for s € R, 5 > 0:

2 2,02 2
Xlgerin S N(=CY2xl1fs S xlssr-

> v =N(0, %(—C)_lgbz). It is supported by H* for some sp
depending on d, I":

[ Iwlisar(d) < .

» C and ¢ commute.



Theorem [D.,Pappalettera]
Let ug, vo € H be given. For € > 0 there exists a weak solution to:

Oru = Au + b(u+ v, u),
dv = e Y(eAv + Cv)dt + b(u + v, v)dt + e LpdW .

with initial data ug, vp which is uniformly bounded in

(LOO(Q, C([o, T], H)NL3([o, T], Hl))> X (L2(Q, C([o, T], H)NL3([o, T], Hl))>

The laws of (u.).~¢ are tight in L%(0, T, H) N C([0, T], H=?) for
£ > 0 and every limit point is a weak solution of

du = Au+ b(u + F,u) + b°((—C) " LopdW, u).

For d = 2, the solutions are probabilistically strong and
convergence holds in probability.

Moreover on the torus, if uy € (H*(T?))?, we can take C = |,
Remark: The same result can be proved using rough path theory.
(D., Hofmanova).



Stochastic variational principle

» Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

Ep ) = [ (GoVP+ 000+ V- (o)) pp— 1)

W e dW
» SALT (Holm): write that v splits into u + “7~.
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Stochastic variational principle

» Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

Ep ) = [ (GoVP+ 000+ V- (o)) pp— 1)

» SALT (Holm): write that v splits into v + ‘L—Vy.
1 1
> Replace §p|v\2 by Ep\u\2.

» Consider a Stratonovich product in the term V - (pv)
» We obtain

du = uVudt + Vpdt + dW o Vu + VdW 5 u.

Where (Vv 3 w), = > ,(0x, ve)wp.



Stochastic variational principle

» Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

) = [ t (;mv? NG+ V- (o)) — (pp 1>) dt

» We want to work with a correlated noise and smooth the white

noise. Define £°(t, x) Z/ ((t —s)/e)i(x, t)dpi(s),

W|thth Zf,xt[)’, . Write v = u 4 &°.

1
» If one chooses Ep\u\z in the energy, a regularized SALT Euler
stochastic equation is obtained.



Stochastic variational principle

» Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

v ne) = | (;W D+ V- (V) — (prp 1>> dt

» We want to work with a correlattfd noise and smooth the white
€

noise. Define £°(t, x) = Z/ 4h((t —s)/e)&i(x, t)dpi(s),
t—e
Wlthth Zf,xtﬁ, . Write v = u + &°.
» With the true energy, we obtained the Euler equation for v:

Ot(u+ &)+ (u+¢€) - V(u+¢)=-Vp.

The limit ¢ — 0 is problematic ...



Stochastic variational principle

> Another to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

E(v,p, A\, p) = /Ot (;plv2 + (X 0ep+V - (pv)) — (p,p— 1>) dt

Vo a6t x) Z/ (t — 5)/e)ei(x. t)dBi(s).

O+ 0+ (u+E€°)-Vu+4u-VE 4+ E£°-VE = —Vp.

Getting rid of the colored terms we obtain the LU stochastic
equations (without the Ito-Stokes drift):

du+ u-Vudt+ dWoVu = —-Vqdt.



Stochastic variational principle

» We now want to use a variational principle to get information
on the noise, more precisely on the &;'s:

= Z’fi(xv t)Bi(t)

» Since they influence only the law, it is natural to work with
averaged quantities. Take the functional:

S(u, p, (é;),-, A, p)
=5 ([ (Golu €7+ B0+ V- olu+ €9 (pp 1)) k)

with £°(t, x) Z/ (£ — s)/e)éi(x. )dBi(s).



Stochastic variational principle

» We now want to use a variational principle to get information
on the noise, more precisely on the &;'s:

x) = Z’E"(X’ t)Bi(t)

» Since they influence only the law, it is natural to work with
averaged quantities. Take the functional:

S(u, p, (é;),-, A, p)
=5 ([ (Golu €7+ B0+ V- olu+ €9 (pp 1)) k)

with £°(t, x) Z/ (£ — s)/e)éi(x. )dBi(s).

» Because of the correlation of the noise and of the other
variables, this functional is complicated and it is difficult to
write equations for critical points.



Stochastic variational principle
» Take the functional:

S(u, p, (ft)i, A, p)
B ([ (Glu+ &P+ 00+ V- (plu+€9) = (oo = 1)) o)

t+e
with (¢, %) Z/t h((t — 5)/€)é(x, )dBi(s).

> We want to write an equivalent expression with uncorrelated
quantities.
> We have seen that it is natural to replace the energy term by

1 ~
Slu—us + &P
2
where £¢ and v — us are uncorrelated. We choose:

(t.) §j/‘ (£ = 5)/e)i(x, 1)dBi(5).



Stochastic variational principle
» Take the functional:

S(u, p, (é;)i, A, p)
=5 ([ (Golu+ P+ 00w+ T (ou+ €N - oo 1)) k)

t+e
with £°(£.x) = 3 /t (= )/, D)dBi(s).

> \We want to write an equivalent expression with uncorrelated
quantities. Assume

dg,_u,dt+2/ (t — s)Ni(t)d L.

notice that up to negllglble terms:
Ip+V-(p (u +£ )
~Op+ V- Z V- (Aip) v (&Y - (&)

te _ ,
*ZV' (6i(1)) / hi(t - 5)d.



Stochastic variational principle
» Take the functional:

S(u, p, (é;)i, A, p)
=B ([ (Golu+ P+ 00w+ T (w4 €M) - (oo 1)) k)

t+
with £¢(t,x) = 32; [, h((t = s)/€)&i(x, t)dpBi(s).
> Assume that all quantltles decompose into decorrelated large
and small scales. For instance:

tte .
p=p+ Zp;/ he(t — s)dp;,
- t

similar for A, p.



Stochastic variational principle
» Take the functional:

S(u, p, (é;)i, A, p)
=B ([ (Golu+ P+ 00w+ T (w4 €M) - (oo 1)) k)

with £5(t,x) = 3°; [[7Eh((t — s)/e)&i(x, t)dBi(s).
> Assume that all quantities decompose into decorrelated large
and small scales. For instance:

tte .
p=p+ Zp;/ he(t — s)dps,
- t

similar for A, p.
» Everything can be nicely expressed and after (lengthy)
computations we obtain (with us = 0 for simplicity):

0+ (u-V)§i+ (& - V)u=—Vp;, V& =0.



Stochastic variational principle
» To sum up we obtain the following large scale Euler equation,
with an explicit expression of the small-scale component
evolution (AD-Mémin):
Oru+ ((u+£)-V)u=—Vp,
V.-u=0,

t+e
Z/ (t — )&(x, t)dBL, with

Oe&i+ (u-V)&i+ (& - VIu= —Vp,
V-&=0.



Stochastic variational principle

» To sum up we obtain the following large scale Euler equation,
with an explicit expression of the small-scale component
evolution (AD-Mémin):

Oru+ ((u+£)-V)u=—Vp,
V-u=0,

t+e
Z/ (t — )&(x, t)dBL, with

Oe&i + (u- V)& + (& - V)u==Vp;,
V& =0.
Letting ¢ — 0 we then obtain the stochastic LU system:

deu + (udt + Y & odp’) - Vu=—Vpdt,

V-u=V-& =0,
OeSi + (u- V)& + (& - V)u = —Va;.
(PhD Moskowitz).



The Ornstein-Uhlenbeck case

P> Let us consider the particular smoothing of the noise:
€ €, €,i e 1(1_“—5) i
=S e =Y g0z = Zf,-(t)/ L350
i i i t

then

. . . 1. 1
deé™’ = —(u- V€ + €7 Vu+ V) dt — € dt + —Gdf,

and
dpee = —(u CVE 4 EC-Vu + vpf) dt

1 1 ;
—256 + . Z §idp;.

» This is reminiscent of ideas proposed heuristically by Majda,
Timofeyev and Van den Eijden and before by Hasselmann.



Thanks for your attention



