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The Navier-Stokes equations on a domain O ∈ Rd , d = 2, 3:{
∂tv = ν∆v + (v · ∇)v +∇p,
div v = 0,

with suitable boundary conditions and initial condition.

▶ The starting point of some models trying to represent the
small scales is to split the velocity into a large scale
component u and the small scales modelled by a white noise
in time: v = u + ξ̇.

▶ A white noise in time is delta correlated in time:

E(ξ̇(t, x)ξ̇(s, y)) = c(x , y)δt−s.

▶ This is an idealization of a process which has a small
correlation length. It can be approximated by 1

ϵm( t
ϵ2
, x).

▶ This assumes a strong (infinite) separation of scales.
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▶ Idealised configuration of the North Atlantic ocean thanks to
the primitive equations.

▶ The figure on the left (resp. center) is done with a fine (resp.
coarse) grid and a deterministic equation.

▶ The figure on the right introduces stochasticity in the coarse
simulation through the LU form of the primitive equations.
(Li-Mémin)



Classical derivation of Navier-Stokes equations

∂tXt = v(t,Xt) (1)

A conserved quantities q satisifies:∫
Vt

q(t, y)dy =

∫
V0

q(0, y)dy ,

where Vt is the image of V0 by the flow of (2).
Using classical arguments, we find that a conserved quantities q
satisifies:

Dtq = ∂tq(t, x) + div (v(t, x)q(t, x)) = 0.

Take q = ρ:

∂tρ(t, x) + div (v(t, x)ρ(t, x)) = 0

and for an incompressible fluid:

div v(t, x) = 0

.
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Classical derivation of Navier-Stokes equations

∂tXt = v(t,Xt) (2)

A conserved quantities q satisifies:∫
Vt

q(t, y)dy =

∫
V0

q(0, y)dy ,

where Vt is the image of V0 by the flow of (2).
Using classical arguments, we find that a conserved quantities q
satisifies:

Dtq = ∂tq(t, x) + div (v(t, x)q(t, x)) = 0.

From Newton’s law, we obtain the equation for the momentum
q = ρv (take ρ = 1):

∂tv + v · ∇v = ν∆v +∇p.



LU model

▶ For the derivation of LU model (Mikulevicius-Rozovsky,
Mémin), we choose v = u + ξ̇ with:

ξ̇(t, x)dt =

∫
O
σ(x , y)dW (t, y) = dW̃ (t, x)

a correlated noise in space, dW
dt is a space time white noise.

▶ Write
dXt = u(t,Xt)dt + dW̃ (t,Xt)

and compute a stochastic transport using Ito calculus and
Ito-Wentzel formula.

▶ We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise (Mémin):

du+(u−uS) ·∇u dt+dW̃ ◦∇u = ν∆u dt+ν∆dW̃ +∇ p dt,
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▶ We obtain a stochastic transport theorem and the stochastic
LU Navier-Stokes equation with transport noise:

du+(u−uS) ·∇u dt+dW̃ ◦∇u = ν∆u dt+ν∆dW̃ +∇ p dt,
▶ ◦ is the Stratonovich product:

dW̃ o∇u = dW̃ · ∇u + 1
2div(a · ∇u),

with aij(x) =

∫
O
σik(x , y)σkj(y , x)dy .

▶ The Stratonovich form of the stochastic lagrangian equation
for the particles is

dXt = u(t,Xt)dt + dW̃ (t,Xt)

= u(t,Xt)dt − uSdt + doW̃ (t,Xt),

with uS = 1
2diva.

▶ Thanks to the Stratonovich product, the energy equality holds
(formally):

1

2
d∥u∥2L2 + ν∥∇u∥2L2dt = ν(u,∆dW̃ )L2 +

1

2
Cσdt.
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Correlated noise

▶ Replace the time white noise by a correlated noise, i.e. do not
assume complete separation of scales, and replace dW̃ (t,Xt)
by 1

ϵm( t
ϵ2
,Xt):

∂tXt = ũϵ(t,Xt) +
1

ϵ
m(

t

ϵ2
,Xt),

m is a centered, stationary and ergodic process.

▶ Then standard calculus can be used to derived a stochastic
transport theorem with corraled noise. A conserved quantities
q satisifies:

Dϵ
tq = ∂tq(t, x) + div ((ũϵ(t, x) +

1

ϵ
m(

t

ϵ2
, x))q(t, x)) = 0.

▶ We have to be careful, the limit ϵ→ 0 will be a Stratonovich
equation.
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▶ In

∂tXt = ũϵ(t,Xt) +
1

ϵ
m(

t

ϵ2
,Xt),

▶ The noise is stationary (in time) and has a zero average:∫
E
m(t, x)dµ(m) = 0.

But, this does not imply, that m( t
ϵ2
,Xt) has zero averaged or

that it is decorrelated to ũϵ(t,Xt). Contrary to a Ito noise.

▶ Assume for simplicity that m has correlation length 1:

1

ϵ
E
(
m(

t

ϵ2
,Xt)

)
=

1

ϵ
E
(
m(

t

ϵ2
,Xt)−m(

t

ϵ2
,Xt−ϵ2)

)
=

1

ϵ
E
(∫ t

t−ϵ2
∇m(

t

ϵ2
,Xs) ·

(
ũϵ(s,Xs) +

1

ϵ
m(

s

ϵ2
,Xs)

)
ds

)
∼ 1

ϵ2
E
(∫ t

t−ϵ2
∇m(

t

ϵ2
,Xt) ·m(

s

ϵ2
,Xt)ds

)
∼ E

(
∇m(

t

ϵ2
,Xt) · L(m)(

t

ϵ2
)(Xt)

)
,

where L(m)(t) =
∫ 0
−∞ E(m(t + s))ds.
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▶ In

∂tXt = ũϵ(t,Xt) +
1

ϵ
m(

t

ϵ2
,Xt),

The noise has not a zero average (which should be the case
for a Ito noise). Assume for simplicity that m has correlation
length 1:

1

ϵ
E
(
m(

t

ϵ2
,Xt)

)
∼ E

(
∇m(

t

ϵ2
,Xt) · L(m)(

t

ϵ2
)(Xt)

)
,

where L(m)(t) =
∫ 0
−∞ E(m(t + s))ds. This is the inverse of

the generator of m applied to the function I (m) = m.

▶ Finally, using stationarity of m and the fast decorrelation:

1

ϵ
E
(
m(

t

ϵ2
,Xt)

)
∼ E

(∫
E
∇n(Xt) · L(n)(Xt)dν(n)

)
.

▶ This is precisely the Ito-Stokes drift uS of the expected limit
equation.

▶ The large scale velocity is in fact uϵ = ũϵ + uS .
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Stochastic transport theorem with decorraled noise

∂tXt = ũϵ(t,Xt) +
1

ϵ
m(

t

ϵ2
,Xt).

Using classical arguments, we find that a conserved quantities q
satisifies:

Dϵ
tq = ∂tq + (ũϵ(t, x) +

1

ϵ
m(

t

ϵ2
, x)) · ∇q = 0.

From Newton’s law, we obtain the equation for the momentum of
the large scales (take ρ = 1):

∂tu
ϵ + (uϵ − uϵS +

1

ϵ
m(

t

ϵ2
, x)) · ∇uϵ

= ν∆[uϵ − uϵS +
1

ϵ
m(

t

ϵ2
, x)] +∇pϵ.

At the limit ϵ→ 0, we obtain (AD-Hug-Mémin):

du+(u−uS) ·∇v dt+dW̃ o∇u = ν∆(u−uS)dt+ν∆dW̃ +∇ p dt,

with a noise W̃ whose correlation operator σ is explicit in terms of
m.
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Idea of the limit.
Rewrite the equation as:
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L(n)(x)∇(n(x) · ∇uϵ + ν∆n)dν(n)

+

∫
E
L(n)(x)∇(n(x) · ∇uϵ + ν∆n)dν(n)
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Remarks

▶ The proof uses the perturbed test function method based on
Markov generators, correctors, martingale problems ....

▶ The limit in

∂tu
ϵ + (uϵ − uϵS +

1

ϵ
m(

t

ϵ2
, x)) · ∇uϵ

= ν∆[uϵ − uϵS +
1

ϵ
m(

t

ϵ2
, x)] +∇pϵ.

can also be done using rough path theory (Hofmanova-Leahy-
Nilsen) but we need to assume more on the small scales: they
should converge to a white noise in the sense of rougth paths.

▶ The method is very robust and can be applied to many fluid
models.



The perturbed test function method
Let us illustrate this method on a model inspired by works by A.
Majda, P. Kramer, I. Timorfeyev, E. Van den Eijden, F. Flandoli
proposed to study a multiscale fluid equation:{

∂tu = ν∆u + (u + v) · ∇u +∇p

dv = (ν∆v +
1

ε
Cv)dt + (u + v) · ∇vdt +∇q +

1

ε
ϕdW ,

▶ With the notations

H = {u ∈ (L2(O))d , divu = 0, u · n = 0 on ∂O},

P the Leray projector on H, the Stokes operator

A = νP∆ on D(A) = (H2(O) ∩ H1
0 (O))d ∩ H

and b(u, v) = P(u · ∇v).
▶ Rewrite the equation as:{

∂tu = Au + b(u + v , u),

dv = (Av +
1

ε
Cv)dt + b(u + v , v)dt +

1

ε
ϕdW ,



The perturbed test function method

Let us illustrate this method on a model inspired by works by A.
Majda, P. Kramer, I. Timorfeyev, E. Van den Eijden, F. Flandoli
proposed to study a multiscale fluid equation:{

∂tu = Au + b(u + v , u),

dv = (Av +
1

ε
Cv)dt + b(u + v , v)dt +

1

ε
ϕdW ,

▶ The term 1
εCv mimics the separation of scales.

▶ Formally, when ε→ 0, we get v = (−C )−1ϕdW and the
Navier-Stokes equation with transport noise:

du = Au + b(u, u) + bo((−C )−1ϕdW , u).

This misses a term.



The perturbed test function method
Consider first the simpler case:{

∂tu = Au + b(u + v , u),

dv =
1

ε
Cvdt +

1

ε
ϕdW ,

▶ v(t) = e
C
ε
tv0 +

1

ε

∫ t

0
e

C
ε
(t−s)ϕdW (s).

▶

E(|v(t)|2H) = |e
C
ε
tv0|2H +

1

ε2

∫ t

0
∥e

C
ε
(t−s)ϕ∥2L2(H)ds

= |e
C
ε
tv0|2H +

1

ε

∫ t/ε

0
∥eCtϕ∥2L2(H)ds.

▶ v is of order ε−1/2 ⇝ w = ε1/2v and
∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
ϕdW ,
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Generators
▶ v is of order ε−1/2 ⇝ w = ε1/2v and

∂tu = Au + b(u, u) +
1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
ϕdW ,

▶ Then Uε(x , y , t) = E(φ(u(x , y , t),w(x , y , t))) satisfies

dUε

dt
= LεUε, Uε(0) = φ.

with the generator:

Lεφ(x , y) = ⟨Ax + b(x , x),Dxφ(x , y)⟩+
1

ε1/2
⟨b(y , x),Dxφ(x , y)⟩

+
1

ε
⟨Cy ,Dyφ(x , y)⟩+

1

2ε
Tr(ϕ2D2

yyφ(x , y)).



Perturbed test function method


∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
ϕdW ,

Lεφ(u,w) = ⟨Au + b(u, u),Duφ(u,w)⟩+ 1

ε1/2
⟨b(w , u),Duφ(u,w)⟩

+
1

ε
Lwφ(u,w)

with Lwφ(u,w) = ⟨Cw ,Dwφ(u,w)⟩+ 1

2
Tr(ϕ2D2

wwφ(u,w)).

▶ We want to find the limit equation for u and take a test
function φ(u). The goal is to get rid of the singular terms and
of the dependence in w .

▶ Use correctors: φε(u,w) = φ(u) + ε1/2φ1(u,w) + εφ2(u,w)
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Perturbed test function method


∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),
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1

ε
Cw dt +

1

ε1/2
ϕdW ,

Lεφ(u,w) = ⟨Au + b(u, u),Duφ(u,w)⟩+ 1

ε1/2
⟨b(w , u),Duφ(u,w)⟩

+
1

ε
Lwφ(u,w)

with Lwφ(u,w) = ⟨Cw ,Dwφ(u,w)⟩+ 1

2
Tr(ϕ2D2

wwφ(u,w)).

▶ φε(u,w) = φ(u) + ε1/2φ1(u,w) + εφ2(u,w)
⇝ (b(w , u),Duφ(u)) + Lwφ1(u,w) = 0.

▶ This is a Poisson equation. We know that
ImLw = {ψ : H → R,

∫
H ψ(v)ν(dv) = 0}, where ν is the

invariant measure of dv = Cv dt + ϕdW .

⇝ φ1(u,w) = (b((−C )−1w , u),Duφ(u)).
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▶ This is a Poisson equation. We know that
ImLw = {ψ : H → R,
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H ψ(v)ν(dv) = 0}, where ν is the

invariant measure of dv = Cv dt + ϕdW .
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Perturbed test function method

Lεφ(u,w) = ⟨Au + b(u, u),Duφ(u,w)⟩+ 1

ε1/2
⟨b(w , u),Duφ(u,w)⟩

+
1

ε
Lwφ(u,w)

with Lwφ(u,w) = ⟨Cw ,Dwφ(u,w)⟩+ 1

2
Tr(ϕ2D2

wwφ(u,w)).

▶ Use correctors: φε(u,w) = φ(u) + ε1/2φ1(u,w) + εφ2(u,w)

⇝ φ1(u,w) = (b((−C )−1w , u),Duφ(u)).
▶

Lεφε(u,w) = ⟨Au + b(u, u),Duφ(u)⟩
+ε1/2 ⟨Au + b(u, u),Duφ1(u,w)⟩+ ⟨b(w , u),Duφ1(u,w)⟩
+ε ⟨Au + b(u, u),Duφ2(u,w)⟩+ ε1/2 ⟨b(w , u),Duφ2(u,w)⟩
+Lwφ2(u,w).

⇝ ⟨b(w , u),Duφ1(u,w)⟩+Lwφ2(u,w) =

∫
H
⟨b(w , u),Duφ1(u,w)⟩ ν(dw)

.



Perturbed test function method


∂tu = Au + b(u, u) +

1

ε1/2
b(w , u),

dw =
1

ε
Cwdt +

1

ε1/2
ϕdW ,

▶ φε(u,w) = φ(u) + ε1/2φ1(u,w) + εφ2(u,w)

Lεφε(u,w) = ⟨Au + b(u, u),Duφε(u,w)⟩

+

∫
H

〈
Duφ(u), b((−C )−1y , b(y , u))

〉
dν(y)

+

∫
H

〈
D2
uuφ(u) · b(y , u), b((−C )−1y , u)

〉
dν(y)

+O(ε1/2)

= L0φ(u) + O(ε1/2).

⇝ du = Au + b(u, u) + bo((−C )−1ϕdW , u).



The full problem

▶ Split v = r + ε1/2w :
∂tu = Au + b(u + ε−1/2w + r , u),

dw = ε−1(εAw + Cw)dt + ε−1/2ϕdW ,

∂tr = ε−1(εAr + Cr)dt + b(u + ε−1/2w + r , ε−1/2w + r).

▶ An averaging phenomenon appears for r , we expect that it
converges to

r̄ = (−C )−1

∫
H
b(w ,w)dν(w).

▶ This is the Ito-Stokes drift.

▶ The perturbed test function method is easy to adapt.



Assumptions

▶ Tr(−C )−1ϕ2 <∞.

▶ There exists Γ ≥ γ > 1/4 such that for s ∈ R, β > 0:

|x∥2Hs+βγ ≲ ∥(−C )β/2x∥2Hs ≲ ∥x∥2Hs+βΓ .

▶ ν = N (0, 12(−C )−1ϕ2). It is supported by Hs0 for some s0
depending on d , Γ: ∫

H
∥w∥2Hs0ν(dw) <∞.

▶ C and ϕ commute.



Theorem [D.,Pappalettera]
Let u0, v0 ∈ H be given. For ε > 0 there exists a weak solution to:{

∂tu = Au + b(u + v , u),

dv = ε−1(εAv + Cv)dt + b(u + v , v)dt + ε−1ϕdW .

with initial data u0, v0 which is uniformly bounded in(
L∞(Ω,C ([0,T ],H)∩L2([0,T ],H1))

)
×
(
L2(Ω,C ([0,T ],H)∩L2([0,T ],H1))

)

The laws of (uε)ε>0 are tight in L2(0,T ,H) ∩ C ([0,T ],H−β) for
β > 0 and every limit point is a weak solution of

du = Au + b(u + r̄ , u) + bo((−C )−1ϕdW , u).

For d = 2, the solutions are probabilistically strong and
convergence holds in probability.
Moreover on the torus, if u0 ∈ (H1(T2))2, we can take C = I ,
Remark: The same result can be proved using rough path theory.
(D., Hofmanova).



Stochastic variational principle

▶ Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

E(v , ρ, λ, p) =
∫ t

0

(
1

2
ρ|v |2 + ⟨λ, ∂tρ+∇ · (ρv)⟩ − ⟨p, ρ− 1⟩

)
dt

▶ SALT (Holm): write that v splits into u + dW̃
dt .

▶ Replace
1

2
ρ|v |2 by

1

2
ρ|u|2.

▶ Consider a Stratonovich product in the term ∇ · (ρv)
▶ We obtain

du = u∇udt +∇pdt + dW̃ ◦ ∇u +∇dW̃ ◦̄ u.

Where (∇v ◦̄ w)k =
∑

ℓ(∂xkvℓ)wℓ.
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Stochastic variational principle

▶ Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

E(v , ρ, λ, p) =
∫ t

0

(
1

2
ρ|v |2 + ⟨λ, ∂tρ+∇ · (ρv)⟩ − ⟨p, ρ− 1⟩

)
dt

▶ We want to work with a correlated noise and smooth the white

noise. Define ξϵ(t, x) =
∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s),

with W̃ (t, x) =
∑
i

ξi (x , t)βi (t). Write v = u + ξϵ.

▶ If one chooses
1

2
ρ|u|2 in the energy, a regularized SALT Euler

stochastic equation is obtained.



Stochastic variational principle

▶ Another way to obtain Euler equations is to use a variational
principle and write that the velocity and density should be a
critical point of:

E(v , ρ, λ, p) =
∫ t

0

(
1

2
ρ|v |2 + ⟨λ, ∂tρ+∇ · (ρv)⟩ − ⟨p, ρ− 1⟩

)
dt

▶ We want to work with a correlated noise and smooth the white

noise. Define ξϵ(t, x) =
∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s),

with W̃ (t, x) =
∑
i

ξi (x , t)βi (t). Write v = u + ξϵ.

▶ With the true energy, we obtained the Euler equation for v :

∂t(u + ξϵ) + (u + ξϵ) · ∇(u + ξϵ) = −∇p.

The limit ϵ→ 0 is problematic ...



Stochastic variational principle
▶ Another to obtain Euler equations is to use a variational

principle and write that the velocity and density should be a
critical point of:

E(v , ρ, λ, p) =
∫ t

0

(
1

2
ρ|v |2 + ⟨λ, ∂tρ+∇ · (ρv)⟩ − ⟨p, ρ− 1⟩

)
dt

v = u + ξϵ, ξϵ(t, x) =
∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s).

▶

∂tu + ∂tξ
ϵ + (u + ξϵ) · ∇u + u · ∇ξϵ + ξϵ · ∇ξϵ = −∇p.

Getting rid of the colored terms we obtain the LU stochastic
equations (without the Ito-Stokes drift):

du + u · ∇u dt + dWo∇u = −∇q dt.



Stochastic variational principle

▶ We now want to use a variational principle to get information
on the noise, more precisely on the ξi ’s:

W̃ (t, x) =
∑
i

ξi (x , t)βi (t)
.

▶ Since they influence only the law, it is natural to work with
averaged quantities. Take the functional:

S(u, ρ, (ξ)i , λ, p)

= E
(∫ t

0

(
1

2
ρ|u + ξϵ|2 + ⟨λ, ∂tρ+∇ · (ρ(u + ξϵ))⟩ − ⟨p, ρ− 1⟩

)
dt

)

with ξϵ(t, x) =
∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s).

▶ Because of the correlation of the noise and of the other
variables, this functional is complicated and it is difficult to
write equations for critical points.
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▶ Because of the correlation of the noise and of the other
variables, this functional is complicated and it is difficult to
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Stochastic variational principle
▶ Take the functional:

S(u, ρ, (ξ)i , λ, p)

= E
(∫ t

0

(
1

2
ρ|u + ξϵ|2 + ⟨λ, ∂tρ+∇ · (ρ(u + ξϵ))⟩ − ⟨p, ρ− 1⟩

)
dt

)

with ξϵ(t, x) =
∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s).

▶ We want to write an equivalent expression with uncorrelated
quantities.

▶ We have seen that it is natural to replace the energy term by

1

2
|u − uS + ξ̃ϵ|2

where ξ̃ϵ and u − uS are uncorrelated. We choose:

ξ̃ϵ(t, x) =
∑
i

∫ t+ϵ

t
h̃((t − s)/ϵ)ξi (x , t)dβi (s).



Stochastic variational principle
▶ Take the functional:

S(u, ρ, (ξ)i , λ, p)

= E
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(
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ρ|u + ξϵ|2 + ⟨λ, ∂tρ+∇ · (ρ(u + ξϵ))⟩ − ⟨p, ρ− 1⟩

)
dt

)
with ξϵ(t, x) =

∑
i

∫ t+ϵ

t−ϵ
h((t − s)/ϵ)ξi (x , t)dβi (s).

▶ We want to write an equivalent expression with uncorrelated
quantities. Assume

dξi = µidt +
∑
j

∫ t+ϵ

t
h̃ϵ(t − s)Λi

j(t)dβ
j
s .

notice that up to negligible terms:

∂ρ+∇ · (ρ(u + ξϵ)

∼ ∂tρ+∇ · (ρu) + 1

2

∑
i

∇ · (Λi
iρ)−

1

2
∇ ·
(
ξi∇ · (ξiρ)

)
+
∑
i

∇ ·
(
ρξi (t)

) ∫ t+ϵ

t
h̃ϵ(t − s)dβis .



Stochastic variational principle
▶ Take the functional:

S(u, ρ, (ξ)i , λ, p)

= E
(∫ t

0
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1
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dt
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with ξϵ(t, x) =

∑
i

∫ t+ϵ
t−ϵ h((t − s)/ϵ)ξi (x , t)dβi (s).

▶ Assume that all quantities decompose into decorrelated large
and small scales. For instance:

ρ = ρ̄+
∑
i

ρi

∫ t+ϵ

t
h̃ϵ(t − s)dβis ,

similar for λ, p.

▶ Everything can be nicely expressed and after (lengthy)
computations we obtain (with uS = 0 for simplicity):

∂tξi + (u · ∇)ξi + (ξi · ∇)u = −∇pi , ∇ · ξi = 0.
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Stochastic variational principle
▶ To sum up we obtain the following large scale Euler equation,

with an explicit expression of the small-scale component
evolution (AD-Mémin):

∂tu +
(
(u + ξϵ) · ∇

)
u = −∇p,

∇ · u = 0,

ξϵ =
∑
i

∫ t+ϵ

t−ϵ
hϵ(t − s)ξi (x , t)dβ

i
s , with

∂tξi + (u · ∇)ξi + (ξi · ∇)u = −∇pi ,

∇ · ξi = 0.

Letting ϵ→ 0 we then obtain the stochastic LU system:

dtu +
(
udt +

∑
i

ξi ◦ dβi
)
· ∇u = −∇pdt,

∇ · u = ∇ · ξi = 0,

∂tξi + (u · ∇)ξi + (ξi · ∇)u = −∇qi .

(PhD Moskowitz).



Stochastic variational principle
▶ To sum up we obtain the following large scale Euler equation,

with an explicit expression of the small-scale component
evolution (AD-Mémin):

∂tu +
(
(u + ξϵ) · ∇

)
u = −∇p,

∇ · u = 0,

ξϵ =
∑
i

∫ t+ϵ

t−ϵ
hϵ(t − s)ξi (x , t)dβ

i
s , with

∂tξi + (u · ∇)ξi + (ξi · ∇)u = −∇pi ,

∇ · ξi = 0.

Letting ϵ→ 0 we then obtain the stochastic LU system:

dtu +
(
udt +

∑
i

ξi ◦ dβi
)
· ∇u = −∇pdt,

∇ · u = ∇ · ξi = 0,

∂tξi + (u · ∇)ξi + (ξi · ∇)u = −∇qi .

(PhD Moskowitz).



The Ornstein-Uhlenbeck case

▶ Let us consider the particular smoothing of the noise:

ξϵ =
∑
i

ξϵ,i =
∑
i

ξi (t)Z
ϵ,i
t =

∑
i

ξi (t)

∫ t+ϵ

t
e

1
ϵ
(t−s)dβis .

then

dtξ
ϵ,i = −

(
u · ∇ξϵ,i + ξϵ,i · ∇u +∇q̃i

)
dt − 1

ϵ
ξϵ,idt +

1

ϵ
ξidβi ,

and
dtξ

ϵ = −
(
u · ∇ξϵ + ξϵ · ∇u +∇pϵ

)
dt

−1

ϵ
ξϵ +

1

ϵ

∑
i

ξidβ
i
t .

▶ This is reminiscent of ideas proposed heuristically by Majda,
Timofeyev and Van den Eijden and before by Hasselmann.



Thanks for your attention


