MATS352 Stochastic analysis Excercise session 6 Monday, 5.5.2014 MaD 380 at 10.15

Notation: $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ is a stochastic basis satisfying the usual conditions, and $B = (B_t)_{t\geq 0}$ is a standard $(\mathcal{F}_t)_{t\geq 0}$ - Brownian motion.

Complete the proof of Proposition 5.9: Assume $L \in \mathcal{L}_2$.

1. Uniqueness (of the limit; independence from the approximating sequence): If there are two sequences $K^{(n)}$ and $L^{(n)}$ with

$$d(K^{(n)}, L) \to 0$$
 and $d(L^{(n)}, L) \to 0$

as $n \to \infty$, and for each $t \ge 0$,

$$I_t(K^{(n)}) \xrightarrow{}_{L_2} X_t, \ I_t(L^{(n)}) \xrightarrow{}_{L_2} Y_t;$$

then $\mathbb{P}(X_t = Y_t) = 1$ for all $t \ge 0$.

Hint: Compute $||X_t - Y_t||_{L_2}$.

2. Linearity: for $a, b \in \mathbb{R}$ and $K, L \in \mathcal{L}_2$,

$$\mathbb{P}\left(J_t(aK+bL) = aJ_t(K) + bJ_t(L) \text{ for all } t \ge 0\right) = 1.$$

3. Itô isometry: for $L \in \mathcal{L}_2$,

$$||J_t(L)||_{L_2} = ||\left(\int_0^t L_u^2 du\right)^{\frac{1}{2}}||_{L_2} \text{ for all } t \ge 0.$$

4. Continuity (of the mapping $J: \mathcal{L}_2 \to \mathcal{M}_2^{c,0}$): if $L^{(n)}, L \in \mathcal{L}_2$ with $d(L^{(n)}, L) \to 0$, then

$$\mathbb{E} \sup_{t \in [0,T]} [J_t(L) - J_t(L^{(n)})]^2 \to 0 \text{ for all } T \ge 0.$$

5. Uniqueness (of the mapping $J: \mathcal{L}_2 \to \mathcal{M}_2^{c,0}$): if $J': \mathcal{L}_2 \to \mathcal{M}_2^{c,0}$ is another mapping extending $I: \mathcal{L}_0 \to \mathcal{M}_2^{c,0}$ to \mathcal{L}_2 and satisfying the above conditions (1.-4.), then

$$\mathbb{P}\left(J_t(L) = J'_t(L) \text{ for all } t \ge 0\right) = 1 \text{ for all } L \in \mathcal{L}_2.$$

[From last week:]

- 6. Let $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be Gaussian random variables. Assume that $X_n \xrightarrow{} X$ as $n \to \infty$ for some random variable $X : \Omega \to \mathbb{R}$. Show that X is Gaussian.
- 7. Let $f: [0, \infty[\to \mathbb{R}$ be a continuous function. For $t \ge 0$, define

$$X_t := \int_0^t f(u) dB_u$$

Show that $X = (X_t)_{t \ge 0}$ is a Gaussian process with mean zero and covariance

$$\mathbb{E}(X_s X_t) := \int_0^{\min(s,t)} [f(u)]^2 du$$

8. Check that the geometric Brownian motion S defined by

$$S_t := e^{B_t - \frac{t}{2}} \text{ for all } t \ge 0$$

satisfies the following *stochastic differential equation*:

$$dS_t = S_t dB_t,$$

that is,

$$S_t - S_0 = \int_0^t S_u dB_u$$

for all $t \geq 0$.

Hint: Itô's formula

- 9*. Prove **Lemma 6.6**: Let $Y_n, Z_n, Z \colon \Omega \to \mathbb{R}$ be random variables such that $Y_n \xrightarrow[a.s.]{} 0$ and $Z_n \xrightarrow[\mathbb{P}]{} Z$ as $n \to \infty$. Show that $Y_n Z_n \xrightarrow[\mathbb{P}]{} 0$.
- 10^{*}. Collect the steps to define the Itô integral.