MATS352 Stochastic analysis Excercise session 5 Monday, 28.4.2014 MaD 380 at 10.15

Notation: $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ is a stochastic basis satisfying the usual conditions, and $B = (B_t)_{t\geq 0}$ is a standard $(\mathcal{F}_t)_{t\geq 0}$ - Brownian motion.

- 1. Show that for simple processes, stochastic integral with respect to B is linear (Proposition 5.5).
- 2. For $t \ge 0$, let $X_t := \int_0^t B_s^2 ds$.
 - (a) Show that X_t is a random variable.
 - (b) Compute $\mathbb{E}|X_t|$.
 - (c) Compute $\mathbb{E}X_t^2$.
- 3. Let $B^{(1)}$ and $B^{(2)}$ be independent Brownian motions, and define the 2-dimensional process X with $X_t = (B_t^{(1)}, B_t^{(2)})$ for all $t \ge 0$. Show that $\langle y, X \rangle = (\langle y, X_t \rangle)_{t \ge 0}$ is a standard 1-dimensional Brownian motion for any $y \in \mathbb{R}^2$ with ||y|| = 1.
- 4. Let $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ be Gaussian random variables. Assume that $X_n \xrightarrow{}_{L_2} X$ as $n \to \infty$ for some random variable $X : \Omega \to \mathbb{R}$. Show that X is Gaussian.
- 5. Let $f: [0, \infty[\to \mathbb{R}$ be a continuous function. For $t \ge 0$, define

$$X_t := \int_0^t f(u) dB_u.$$

Show that $X = (X_t)_{t \ge 0}$ is a Gaussian process with mean zero and covariance

$$\mathbb{E}(X_s X_t) := \int_0^{\min(s,t)} [f(u)]^2 du$$

6. For $n \in \mathbb{N}$, let $t_k = t_{k,n} = \frac{k}{n}$, $k = 0, 1, \dots, n$. Show that for p > 0,

$$n^{\frac{p}{2}-1} \sum_{k=1}^{n} |B_{t_k} - B_{t_{k-1}}|^p \xrightarrow{\mathbb{P}} c_p$$

as $n \to \infty$ for some constant c_p depending only on p.

Hint: Recall the weak law of large numbers.

 7^* . Show that

$$n^{\frac{p-1}{2}} \left(\sum_{k=1}^{n} |B_{t_k} - B_{t_{k-1}}|^p - n^{1-\frac{p}{2}} c_p \right) \xrightarrow{d} Z$$

for some Gaussian random variable Z.