MATS352 Stochastic analysis Excercise session 4 Tuesday, 22.4.2014

MaD 381 at 10.15

Notice the unusual time and place!

Notation: $\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0}$ is a stochastic basis satisfying the usual conditions, and $B = (B_t)_{t\geq 0}$ is a standard $(\mathcal{F}_t)_{t\geq 0}$ - Brownian motion.

- 1. (a) Show that $B \in \mathcal{M}_2^{c,0}$.
 - (b) Define $S_t := e^{B_t \frac{t}{2}}$ ("geometric Brownian motion") and show that $S = (S_t)_{t \ge 0} \in \mathcal{M}_2^c$.
- 2. $X: \Omega \to \mathbb{R}$ a random variable with $\mathbb{E}X^2 < \infty$. Show that $M = (M_t)_{t \ge 0}$ defined by $M_t := \mathbb{E}(X|\mathcal{F}_t)$ is a square-integrable martingale (i.e $M \in \mathcal{M}_2$).
- 3. Let a > 0 and define $X_t := \sqrt{aB_{\frac{t}{a}}}$. Show that $X = (X_t)_{t \ge 0}$ is a Brownian motion. What about filtration?
- 4. Show that $\langle B \rangle_t = t$ (a.s.).
- 5. Show that B has infinite 1-variation on any interval [0, t] (a.s.).
- 6. Collect the steps to prove the existence of Brownian motion.
- 7*. Simulate and draw N paths of Brownian motion on [0, 1] (choose $N = 1, 5, 10, \ldots$). Draw the functions $t \mapsto \pm \sqrt{2t \log \log t}$ in the same picture.

Increase your time interval to [0, T], T = 10, 100, ... Can you observe the "law of the iterated logarithm"?

Hint: Choose $n \in \mathbb{N}$ for accuracy and simulate n independent $X_k \sim N(0, \frac{1}{n})$.