MATS352 Stochastic analysis
 Excercise session 3

Monday, 7.4.2014
MaD 380 at 10.15

1. Let X and Y be two Gaussian processes. Show that they have the same finite-dimensional distributions if and only if they have the same mean and covariance functions.
2. Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Gaussian process with

$$
\mathbb{E} W_{t}=0 \text { and } \mathbb{E} W_{s} W_{t}=\min (s, t) .
$$

Show that $W_{b}-W_{a} \underset{d}{=} W_{b-a}$ for all $0 \leq a \leq b$. What is this distribution?
3. Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Gaussian process with

$$
\mathbb{E} W_{t}=0 \text { and } \mathbb{E} W_{s} W_{t}=\min (s, t)
$$

Define $Y_{0}:=0$ and $Y_{t}=t W_{\frac{1}{t}}$ for $t>0$. Show that $Y=\left(Y_{t}\right)_{t \geq 0}$ is a Gaussian process and compute $\mathbb{E} Y_{s} Y_{t}$. What do you notice?
4. (Brownian bridge) Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Gaussian process with

$$
\mathbb{E} W_{t}=0 \text { and } \mathbb{E} W_{s} W_{t}=\min (s, t) .
$$

For $t \in[0,1]$, define $X_{t}:=W_{t}-t W_{1}$. Show that $X=\left(X_{t}\right)_{t \in[0,1]}$ is a Gaussian process with $\mathbb{E} X_{t}=0$ and $\mathbb{E} X_{t} X_{s}=\Gamma(t, s)$, where

$$
\Gamma(t, s)=\left\{\begin{array}{l}
s(1-t) \text { if } 0 \leq s \leq t \leq 1, \\
t(1-s) \text { if } 0 \leq t \leq s \leq 1 .
\end{array}\right.
$$

Is there a modification of X that has continuous paths?
5. Check that the family of measures $\left(\mu_{\left(t_{1}, \ldots, t_{n}\right)}\right)_{\left(t_{1}, \ldots, t_{n}\right) \in \Delta}$ defined in the proof of Proposition 3.7 is consistent.
6. Let $X=\left(X_{1}, X_{2}\right): \Omega \rightarrow \mathbb{R}^{2}$ be a Gaussian random vector with mean vector $m=\left(m_{1}, m_{2}\right)$ and covariance matrix $\Sigma=\left(\sigma_{i j}\right)_{i, j=1}^{2}$ for some m_{1}, m_{2} and $\sigma_{i j} \in \mathbb{R}$, i.e.

$$
\mathbb{E} X_{1}=m_{1}, \mathbb{E} X_{2}=m_{2} \text { and } \mathbb{E}\left[\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right]=\sigma_{i j} .
$$

Assume that we have a matrix $A=\left(a_{i j}\right)_{i, j=1}^{2}$ satisfying
(a) $a_{i j}=a_{j i}$ for all $i, j=1,2$, and
(b) $A A=\Sigma$.

Show that

$$
\mathbb{P}(X \in B)=\frac{1}{2 \pi} \int_{A^{-1}(B)} e^{-\frac{\left|x-A^{-1} m\right|^{2}}{2}} d x
$$

for $B \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ if A^{-1} exists. What does it mean that A^{-1} does not exist? What kind of formula do we get then?

