Stochastic Processes 2

Exercises 6
Monday, 3rd May, 2010
MaD 245, 10-12
(Choose 5 questions)

1. Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable with $\mathbb{E}|X|<\infty$. Check the fact that we have used many times during the course:

$$
\lim _{c \rightarrow \infty} \int_{\{|X| \geq c\}}|X| d \mathbb{P}=0
$$

Does it bring to your mind some new concept introduced at this course?
2. Let $\Omega:=[0,1)$ and let $\left(h_{n}\right)_{n=0}^{\infty}$, be the sequence of Haar-functions defined by $h_{0} \equiv 1$ and

$$
h_{2^{n-1}+k}(t):=\left\{\begin{array}{rll}
-1 & : & t \in\left[\frac{2 k}{2^{n}}, \frac{2 k+1}{2^{n}}\right) \\
1 & : & t \in\left[\frac{2 k+1}{2^{n}}, \frac{2 k+2}{2^{n}}\right) \\
0 & : & \text { else }
\end{array}\right.
$$

for $k=0, \ldots, 2^{n-1}-1$ if $n \geq 1$. Define $\mathcal{F}_{n}:=\sigma\left(h_{0}, \ldots, h_{n}\right)$ for $n=0,1, \ldots$
(a) Draw pictures of some of the first functions.
(b) Describe \mathcal{F}_{n} as easy as possible.
(c) Is $\left(M_{n}\right)_{n=0}^{\infty}$ with $M_{n}:=h_{0}+\cdots+h_{n}$ a martingale?
3. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ iid Bernoulli random variables, i.e. $\mathbb{P}\left(\varepsilon_{i}=1\right)=$ $\mathbb{P}\left(\varepsilon_{i}=-1\right)=\frac{1}{2}$. Let $S_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n}$. Prove that

$$
\mathbb{E}\left(\varepsilon_{1} \mid \sigma\left(S_{n}\right)\right)=\frac{S_{n}}{n} \quad \text { a.s. }
$$

4. Assume that $\varepsilon_{1}, \ldots, \varepsilon_{n}: \Omega \rightarrow \mathbb{R}$ are independent random variables such that $\mathbb{P}\left(\varepsilon_{i}=1\right)=p$ and $\mathbb{P}\left(\varepsilon_{i}=-1\right)=q$ for some $p, q \in(0,1)$ with $p+q=1$. Define the stochastic process $X_{k}:=e^{a\left(\varepsilon_{1}+\ldots+\varepsilon_{k}\right)+b k}$ for $k=$ $1, \ldots, n$ and $X_{0}:=1$ with $a>0$ and $b \in \mathbb{R}$ and the filtration $\left(\mathcal{F}_{k}\right)_{k=0}^{n}$ with $\mathcal{F}_{0}:=\{\emptyset, \Omega\}$ and $\mathcal{F}_{k}:=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right)$.
(a) Assume that $-a+b<0<a+b$. Find $p, q \in(0,1)$ such that the process $\left(X_{k}\right)_{k=0}^{n}$ is a martingale.
(b) Assume that $-a+b>0$. Why there cannot exist random variables $\varepsilon_{1}, \ldots, \varepsilon_{n}: \Omega \rightarrow\{-1,1\}$ such that $\left(X_{k}\right)_{k=0}^{n}$ is a martingale?
5. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be independent random variables with $\mathbb{P}\left(\varepsilon_{i}=1\right)=$ $\mathbb{P}\left(\varepsilon_{i}=-1\right)=\frac{1}{2}$. Define $\mathcal{F}_{0}:=\{\emptyset, \Omega\}, \mathcal{F}_{n}:=\sigma\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ if $n \geq 1$.
(a) Let $M_{0}(\omega):=1$ and

$$
M_{n}(\omega):=e^{3\left(\varepsilon_{1}(\omega)+\cdots+\varepsilon_{n}(\omega)\right)-b n}
$$

if $n \geq 1$. For which $b \in \mathbb{R}$ the process $M=\left(M_{n}\right)_{n=0}^{\infty}$ is a martingale?
(b) Let $N_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n}$ if $n \geq 1$ and $N_{0}:=0$. Is $N=\left(N_{n}\right)_{n=0}^{\infty}$ uniformly integrable?
6. Let \mathbb{P}_{k} and μ_{k} be measures on $\Omega_{k}:=\{-1,1\}$ with $\mathcal{F}_{k}:=2^{\Omega_{k}}$ such that $\mathbb{P}_{k}(\{-1\})=\mathbb{P}_{k}(\{1\})=1 / 2$, and $\mu_{k}(\{-1\})=p_{k}$ and $\mu_{k}(\{1\})=q_{k}$ with $p_{k}+q_{k}=1$, where

$$
p_{k}:=\frac{1}{2}+\sqrt{\frac{1}{k}-\frac{1}{k^{2}}} \quad \text { for } \quad k \geq 4
$$

and $p_{k}, q_{k} \in(0,1)$ for $k=1,2,3,4$. Decide whether $\times_{n=1}^{\infty} \mu_{k}$ is absolutely continuous with respect to $\times_{k=1}^{\infty} \mathbb{P}_{k}$.
Hint: Check that $\left(\left(1-\frac{1}{k}\right)^{2}-\frac{1}{2}\right)^{2}=p_{k} q_{k}$ for $k \geq 4$ and use a discrete version of Proposition 3.9.7.
7. Let $\Pi=\left\{(x, y): x^{2}+y^{2}=1\right\}$ be the unit circle in \mathbb{R}^{2} and $A_{n}: \Pi \rightarrow \Pi$ a rotation by $\frac{2 \pi}{2^{n}}$ degree, $n=0,1,2, \ldots$ Let \mathcal{F}_{n} be the set of all Borel sets $B \subseteq \Pi$ such that $A_{n}(B)=B$.
(a) Show that $\mathcal{F}_{1} \supseteq \mathcal{F}_{2} \supseteq \mathcal{F}_{3} \supseteq \cdots$.
(b) Given $f \in L_{1}(\Pi, \lambda)$, compute $\mathbb{E}\left(f \mid \mathcal{F}_{n}\right)$, where λ is the normalized Lebesgue measure on Π.
8. What have we learnt about the (symmetric) random walk $S=\left(S_{n}\right)_{n=0}^{\infty}$,

$$
S_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n}
$$

where $\varepsilon_{1}, \varepsilon_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ are independent Bernoulli random variables, i.e. $\mathbb{P}\left(\varepsilon_{i}=1\right)=\mathbb{P}\left(\varepsilon_{i}=-1\right)=\frac{1}{2}$?
(No proofs; recall questions and possible answers. This question we will consider more at the last lecture.)

