Stochastic Processes 2 Exercises 5 Monday, 26th April, 2010 MaD 245, 10-12

Theorem 0.1 Let $M = (M_n)_{n=0}^{\infty}$ be a martingale with respect to the filtration $(\mathcal{F}_n)_{n=0}^{\infty}$, where $\mathcal{F}_n := \sigma(M_0, ..., M_n)$. Assume a stopping time $\tau \geq 1$ with $\mathbb{E}\tau < \infty$ and that

$$\chi_{\{\tau > n\}} \mathbb{E}(|M_{n+1} - M_n||\mathcal{F}_n) \le c \ a.s.$$

for some c > 0 and all $n = 0, 1, 2, \dots$ Then

 $\mathbb{E}|M_{\tau}| < \infty$ and $\mathbb{E}M_{\tau} = \mathbb{E}M_0.$

1. WALD's Identity: Assume iid random variables $\xi_1, \xi_2, ... : \Omega \to \mathbb{R}$ with $\mathbb{E}|\xi_1| < \infty, \mathcal{F}_0 := \{\emptyset, \Omega\}, \mathcal{F}_n := \sigma(\xi_1, ..., \xi_n)$ for $n \ge 1$, and let $\tau \ge 1$ be a stopping time with $\mathbb{E}\tau < \infty$. Prove that

$$\mathbb{E}(\xi_1 + \dots + \xi_\tau) = \mathbb{E}\xi_1 \mathbb{E}\tau. \tag{1}$$

Hint: Use $M_n := \xi_1 + \cdots + \xi_n - n \mathbb{E} \xi_1$ and Theorem 0.1.

- 2. Prove the WALD identity (1) if τ and $\xi_1, \xi_2, ...$ are independent. **Hint**: See the proof of Proposition 3.2.8.
- 3. Let $M_n := \varepsilon_1 + \cdots + \varepsilon_n$ and $M_0 := 0$, where $\varepsilon_1, \varepsilon_2, \ldots : \Omega \to \mathbb{R}$ are iid with $\mathbb{P}(\varepsilon_k = \pm 1) = 1/2$. Let

$$\tau(\omega) := \inf\{n \ge 0 : M_n(\omega) = -10\}.$$

Prove that $\mathbb{E}\tau = \infty$.

Hint: Assume that $\mathbb{E}\tau < \infty$ and use WALD's identity.

For questions 4-7:

Assume a stochastic basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_k)_{k=0}^n)$ with $\Omega = \{\omega_1, ..., \omega_N\}, \mathbb{P}(\{\omega_i\}) > 0$, and a process $(Z_k)_{k=0}^n$ such that Z_k is \mathcal{F}_k -measurable. Define

$$U_n := Z_n$$

and, backwards,

$$U_k := \max\left\{Z_k, \mathbb{E}(U_{k+1}|\mathcal{F}_k)\right\}$$

for k = 0, ..., n - 1.

- 4. Show that $(U_k)_{k=0}^n$ is a super-martingale.
- 5. Show that $(U_k)_{k=0}^n$ is the smallest super-martingale which dominates $(Z_k)_{k=0}^n$: if $(V_k)_{k=0}^n$ is a super-martingale with $Z_k \leq V_k$, then $U_k \leq V_k$ a.s.
- 6. Show that $\tau(\omega) := \inf \{k = 0, ..., n : Z_k(\omega) = U_k(\omega)\}$ (with $\inf \emptyset := n$) is a stopping time.

The process $(U_k)_{k=0}^n$ is called SNELL-envelop of $(Z_k)_{k=0}^n$.