Stochastic Processes 2 Exercises 4

 $\begin{array}{c} \text{Monday, 19th April, 2010} \\ \text{MaD 245, 10-12} \end{array}$

For questions 1 and 2:

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n=0}^{\infty})$ be a stochastic basis, $\mathcal{F}_{\infty} := \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$, and $Z \in L_1$. What can we say about the almost sure and L_1 -convergence of

- 1. $\mathbb{E}(Z|\mathcal{F}_n) \to_n \mathbb{E}(Z|\mathcal{F}_\infty),$
- 2. $\mathbb{E}(Z|\mathcal{F}_n) \to_n Z$?

(Proofs/counterexamples)

For questions 3-7:

Let $\hat{f}:[0,1]\to\mathbb{R}$ be a Lipschitz function, i.e. $|f(x)-f(y)|\leq L|x-y|$. Let

$$\xi_n(t) := \sum_{k=1}^{2^n} \frac{k-1}{2^n} \chi_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)}(t),$$

 $\Omega := [0,1), \, \mathcal{F}_n := \sigma(\xi_n), \text{ and }$

$$M_n(t) := \frac{f(\xi_n(t) + 2^{-n}) - f(\xi_n(t))}{2^{-n}}.$$

- 3. Prove that $(\mathcal{F}_n)_{n=0}^{\infty}$ is a filtration and that $\mathcal{B}([0,1)) = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$.
- 4. Prove that $(M_n)_{n=0}^{\infty}$ is a martingale with $|M_n(t)| \leq L$.
- 5. Prove that there is an integrable function $g:[0,1)\to\mathbb{R}$ such that $M_n=\mathbb{E}(g|\mathcal{F}_n)$ a.s.
- 6. Prove that $f(\frac{k}{2^n}) = f(0) + \int_0^{\frac{k}{2^n}} g(t)dt$ for $k = 0, ..., 2^n 1$.
- 7. Prove that $f(x) = f(0) + \int_0^x g(t)dt$ for $x \in [0,1]$, i.e. g is the generalized derivative of f.