Stochastic Processes 2

Exercises 2
Tuesday, 6th April, 2010
MaD 355, 10-12
For questions 1-4:
Let $M_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n}$ and $M_{0}:=0$, where $\varepsilon_{1}, \varepsilon_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ are iid with $\mathbb{P}\left(\varepsilon_{k}= \pm 1\right)=1 / 2$. Let

$$
\tau(\omega):=\inf \left\{n \geq 0: M_{n}(\omega)=-10\right\}
$$

1. Prove that $\mathbb{P}(\tau<\infty)=1$.

Hint: A proposition from Section 2.3 ...
2. Is there a constant $c>0$ such that $\tau(\omega) \leq c$ a.s.?

Hint: Assume Yes, compute M_{τ}, and apply the optional stopping THEOREM.
3. Is $\left\{\omega \in \Omega: \inf _{n} M_{n}(\omega) \leq-10\right\} \in \mathcal{F}_{\tau}$?
4. Is $\left\{\omega \in \Omega: \sup _{n} M_{n}(\omega) \geq 2\right\} \in \mathcal{F}_{\tau}$?

For questions 5-7:
Assume i.i.d. random variables $\varepsilon_{1}, \varepsilon_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ such that $\mathbb{P}\left(\varepsilon_{k}=1\right)=$ $\mathbb{P}\left(\varepsilon_{k}=-1\right)=1 / 2$ and define $M_{0}:=a$ and $M_{n}:=a+\sum_{k=1}^{n} \varepsilon_{k}$. Assume that $-\infty<b<a<c<\infty$, where a, b, c are integers. Let

$$
\tau(\omega):=\inf \left\{n \geq 0: M_{n} \in\{b, c\}\right\}
$$

with $\inf \emptyset:=\infty$.
5. Using statements from the course prove that $\mathbb{P}(\tau<\infty)=1$.
6. Using statements from the course prove that

$$
\mathbb{E} M_{\tau \wedge N}=a
$$

where $N \geq 1$ is a fixed integer.
7. Deduce that $\mathbb{E} M_{\tau}=a$ and compute the probability that the process M hits first b.

