Stochastic Processes 2 Exercises 1

Monday, 22nd March, 2010 MaD 245, 10-12

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $X, Y : \Omega \to \{0, 1\}$ independent random variables. How many elements does the sub- σ -algebra

$$\mathcal{G} := \sigma(X, Y)$$

contain?

For questions 2 and 3:

Let $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration and $\sigma, \tau : \Omega \to \{0, 1, 2, ...\} \cup \{\infty\}$ stopping times.

- 2. Show that $\sigma + \tau$ is a stopping time.
- 3. Show that $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

For questions 4 and 5:

Let $\epsilon_i: \Omega \to \mathbb{R}$, i = 1, 2, ... independent random variables such that $\mathbb{P}(\epsilon_i = -1) = \mathbb{P}(\epsilon_i = 1) = \frac{1}{2}$ for all i = 1, 2, ... Define $M_0 := 0$ and $M_n := \epsilon_1 + ... + \epsilon_n$, $n \geq 1$. Let \mathcal{F}_0 be the trivial σ -algebra and $\mathcal{F}_n := \sigma(\epsilon_1, ..., \epsilon_n)$. Are the following functions stopping times (inf $\emptyset := \infty$)?

- 4. (a) $\sigma(\omega) := \inf \{ n \ge 0 : M_n = 0 \}$
 - (b) $\sigma(\omega) := \inf \{ n \ge 0 : M_n \in]10, 12[\}$
 - (c) $\sigma(\omega) := \inf \{ n \ge 0 : M_n \in]10, 12[\} 1$
 - (d) $\sigma(\omega) := \inf \{ n \ge 0 : M_n \in]10, 12[\} + 1$
- 5. (a) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n+1} \in]10, 12[\}$
 - (b) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n+1} \in]10, 11[\}$
 - (c) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n-1} = 10 \}$
 - (d) $\sigma(\omega) := \inf \{ n \ge 0 : M_{n-1} = 10 \} 1$
- 6. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n=0}^{\infty})$ be a stochastic basis and $M = (M_n)_{n=0}^{\infty}$ be a martingale such that $M_0 = 0$ a.s. and $\mathbb{E}M_n^2 < \infty$ for all $n = 0, 1, 2, \dots$ Define $\langle M \rangle_0 := 0$,

$$\langle M \rangle_n := \sum_{k=1}^n \mathbb{E}((M_k - M_{k-1})^2 | \mathcal{F}_{k-1}) \in [0, \infty).$$

The process $\langle M \rangle := (\langle M \rangle_n)_{n=0}^{\infty}$ is called *(predictable) bracket process*. Show that

- (a) $(M_n^2 \langle M \rangle_n)_{n=0}^{\infty}$ is a martingale,
- (b) $\mathbb{E}M_n^2 = \mathbb{E}\langle M \rangle_n$ for all n = 0, 1, ...