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1. (a) Find an example of a sequence of random variables con-
verging almost surely but not in L1 .

Take for example fn : [0, 1] → R, fn(x) = nχ[0, 1

n [(x) (with P = λ).

Then limn→∞ fn = 0 for all x ∈]0, 1] but ||fn − 0||
L1

= ||fn||L1
=

∫ 1

n

0
ndλ(x) = 1 (6→ 0).

Comment: we do not have an integrable majorant g ∈ L1 : g ≥ |fn |
so that the dominated convergence theorem is not available.

(b) Find an example of a sequence of random variables con-
verging in L1 but not almost surely.

Take for example Haar functions as in Exercise 2.1. then for all
x ∈ [0, 1] and all m ∈ N there exists an index Nx,m ∈ N such that
|hNx,m

(x)| = 1, i.e. hm 6→ 0 a.s. as m → 0.

Comment: we do find a subsequence conbverging to 0 a.s.

(c) Prove that if Xn → X a.s. and |Xn| ≤ Y for some Y ∈ L1 ,
then X ∈ L1 and Xn → X in L1 .

Since |Xn(ω)| ≤ Y (ω), we have |X(ω)| = | limXn(ω)| ≤ Y (ω)
for all ω ∈ Ω so that X ∈ L1 . By dominated convergence,
lim ||Xn − X||

L1
= lim E|Xn − X| = E lim |Xn − X| = 0, because

|Xn − X| ≤ |Xn| + |X| ≤ 2Y .

2. (a) Let X : Ω → R with E|X| < ∞. Show that
∫

{|X|≥c}
|X|dP → 0

as c → ∞.

By dominated convergence, since χ{|X|≥c}|X| ≤ |X|,
limc→∞

∫

|X|≥c
|X|dP = limc→∞

∫

Ω
χ{|X|≥c}|X|dP =

∫

Ω
limc→∞ χ{|X|≥c}|X|dP = 0.

(b) Prove the fact given as hint in Exercise 3.2 b):
1
2
(eα + e−α) ≤ e

α2

2 .

1
2
(eα + e−α) = 1

2

∑∞
k=0

αk+(−α)k

k!
= 1

2

∑∞
k=0

2α2k

(2k)!
=

∑∞
k=0

α2k

(2k)!
≤

∑∞
k=0

α2k

2kk!
=

∑∞
k=0

“

α2

2

”k

(k!
= e

α2
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3. (a) Let ε1, ε2, ... : Ω → R be iid Bernoulli random variables, i.e.
IP(εi = 1) = IP(εi = −1) = 1

2
. Let Sn := ε1 + · · · + εn. Prove

that

E(ε1|σ(Sn)) =
Sn

n
a.s.



Sn = E (Sn|σ(Sn)) = E (ε1 + · · ·+ εn|σ(Sn)) = E (ε1|σ(Sn)) +
· · · + E (εn|σ(Sn)) = nE (ε1|σ(Sn)) a.s, since
E (εj|σ(Sn)) = E (ε1|σ(Sn)) a.s. for all j = 1, . . . , n:
σ(Sn) = σ({ω ∈ Ω : Sn = k} : k = −n, . . . , n) because Sn ∈
{−n, . . . , n}. Thus

∫

{Sn=k}
εjdP =

∫

{Sn=k,εj=1}
εjdP+

∫

{Sn=k,εj=−1}
εjdP =

∫

{Sn=k,εj=1}
1dP+

∫

{Sn=k,εj=−1}
−1dP =

P (Sn = k, εj = 1)−P (Sn = k, εj = −1) = 1
2

(

1
2

)n−1 (

n−1
k−1

)

−1
2

(

1
2

)n−1 (

n−1
k+1

)

=

P (Sn = k, ε1 = 1) − P (Sn = k, ε1 = −1) = . . . =
∫

{Sn=k}
ε1dP.

(b) Is the process S = (Sn)∞n=0 above uniformly integrable?

Take Fn := σ(ε1, . . . , εn). Then S = (Sn)∞n=0 is a martingale.
||Sn − Sn−1||L1

= ||εn||L1
= 1 for all n = 1, 2, . . . so that (Sn)∞n=0

is not a Cauchy sequence in L1 . By Theorem 8.1 it is not uniformly
integrable.

4. Let (Ω,F , IP, (Fn)
∞
n=0) be a stochastic basis, F∞ := σ(

⋃∞
n=0 Fn),

and Z ∈ L1. What can we say about the almost sure and
L1-convergence of

(a) E(Z|Fn) →n E(Z|F∞),

By Proposition 2.6, M = (Mn)∞n=0 with Mn = E (Z|Fn) is a
martingale. Moreover, M∞ := E (Z|F∞) is its closure meant in
Theorem 8.1.(3). Theorem 8.1.(2) ensures the L1 convergence,
and Theorem 8.1.(b) the almost sure convergence of E(Z|Fn) →n

E(Z|F∞).

(b) E(Z|Fn) →n Z?

Nothing. Take for example Ω = [0, 1], F = B([0, 1]), P = λ and
Fn = σ([0, 2−n[ , [2−n, 2−n+1[ , . . . , [2−1, 1]). If Z(ω) = ω, then
Z ∈ L1 (Ω ,F , P) but E(Z|Fn) 6→ Z in any sence.

5. Let f : [0, 1] → R be a Lipschitz function, i.e. |f(x) − f(y)| ≤
L|x − y|. Let

ξn(t) :=

2n
∑

k=1

k − 1

2n
χ[ k−1

2n , k
2n )(t),

Ω := [0, 1), Fn := σ(ξn), and

Mn(t) :=
f(ξn(t) + 2−n) − f(ξn(t))

2−n
.

(a) Prove that (Fn)∞n=0 is a filtration and that B([0, 1)) = σ(
⋃∞

n=0 Fn).

Since
[

k−1
2n , k

2n

[

=
[

m−2
2n+1 ,

m−1
2n+1

[

∪
[

m−1
2n+1 ,

m
2n+1

[

for m = 2k ∈ {1, 2, . . . , 2n+1},
we have Fn = σ(ξn) = σ(

[

k−1
2n , k

2n

[

, k = 1, 2, . . . , 2n) ⊂ σ(
[

k−1
2n , k

2n

[

, k =
1, 2, . . . , 2n+1) = Fn+1. Trivially σ(

⋃∞
n=0 Fn) ⊂ B([0, 1)). For the

other direction, we need to show that (for example) any open in-
terval ]a, b[∈ σ(

⋃∞
n=0 Fn) for all 0 ≤ a < b ≤ 1. (This is sufficient



since the Borel σ-algebra is generated by the open intervals.) Let
0 ≤ a < b ≤ 1. Find sequences (aj)

∞
j=1 and (bj)

∞
j=1 such that

aj =
kj

2nj for some kj, nj ∈ N and (aj)
∞
j=1 is non-increasing with

limj→∞ aj = a, and bj =
k′

j

2
n′

j
for some k′

j , n
′
j ∈ N and (bj)

∞
j=1

is non-decreasing with limj→∞ bj = b. Then [aj , bj[∈ Fm for
m = max(nj , n

′
j) and ]a, b[=

⋃∞
j=0[aj , bj [∈ σ(

⋃∞
n=0 Fn).

(b) Prove that (Mn)∞n=0 is a martingale with |Mn(t)| ≤ L. We

assume P = λ.

Since f is Lipschitz, |Mn(t)| =
∣

∣

∣

f(ξn(t)+2−n)−f(ξn(t))
2−n

∣

∣

∣
=

2n |f(ξn(t) + 2−n) − f(ξn(t))| ≤ 2nL2−n = L and thus E|Mn| < ∞
for all n. Clearly, Mn is Fn measurable. Let A ∈ Fn. Then
A =

⋃2n

k=1 Ik, where Ik = ∅ or Ik =
[

k−1
2n , k

2n

[

for each k. Then

∫ k
2n

k−1

2n

Mn+1(t)dt =

∫ k
2n

k−1

2n

f(ξn+1(t) + 2−(n+1)) − f(ξn+1(t))

2−(n+1)
dt

= 2n+1

[

∫ 2k−1

2n+1

2k−2

2n+1

f(ξn+1(t) + 2−(n+1)) − f(ξn+1(t))dt

+

∫ 2k

2n+1

2k−1

2n+1

f(ξn+1(t) + 2−(n+1)) − f(ξn+1(t))dt

]

= 2n+1

[

1

2n+1

(

f(
2k − 1

2n+1
) − f(

2k − 2

2n+1
) +

2k

2n+1
) −

2k − 1

2n+1
)

)]

= f(
2k

2n+1
) − f(

2k − 2

2n+1
)

= 2n

[

2−n

(

f(
k

2n
) − f(

k − 1

2n
)

)]

=

∫ k
2n

k−1

2n

f(ξn(t) + 2−n) − f(ξn(t))

2−n
dt =

∫ k
2n

k−1

2n

Mn(t)dt

so that E (Mn+1|Fn) = Mn a.s.

(c) Prove that there is an integrable function g : [0, 1) → R

such that Mn = E(g|Fn) a.s.

By Theorem 8.1, it is sufficient to prove that M is uniformly
integrable. From part (b) above we know that |Mn| ≤ L for
all n. Therefore,

∫

{|Mn|≥c}
|Mn|dP ≤ LP(|Mn| ≥ c) = 0 for

all c > L. Thus supn

∫

{|Mn|≥c}
|Mn|dP = 0 for all c > L and

lim supn

∫

{|Mn|≥c}
|Mn|dP = 0.

(d) Prove that f( k
2n ) = f(0) +

∫ k
2n

0
g(t)dt for k = 0, ..., .2n − 1.

Since f( k
2n ) = f(0)+f( k

2n )−f(0) = f(0)+
∑k

j=1

[

f( j

2n ) − f( j−1
2n )

]

and f( j

2n )−f( j−1
2n ) = 2n

∫

j

2n

j−1

2n

f(ξn(t)+2−n)−f(ξn(t))dt =
∫

j

2n

j−1

2n

Mn(t)dt,



we obtain f( k
2n ) = f(0) +

∫ k
2n

0
Mn(t)dt. As [0, k

2n [∈ Fn and Mn =

E (g|Fn) a.s, we are done:
∫ k

2n

0
Mn(t)dt =

∫ k
2n

0
g(t)dt.

(e) Prove that f(x) = f(0) +
∫ x

0
g(t)dt for x ∈ [0, 1], i.e. g is the

generalized derivative of f .

Since g is integrable, the function x 7→
∫ x

0
g(t)dt exists (i.e.

∫ x

0
g(t)dt ∈

R for all x ∈ [0, 1]). Define G : [0, 1] → R by setting G(x) =
f(0) +

∫ x

0
g(t)dt. By construction, G is continuous. By (d), we

know that G(s) = f(s) for all s = k
2n , n ∈ N, k = 1, . . . , 2n. Since

the set { k
2n : n ∈ N, k = 1, . . . , 2n} is dense in [0, 1], we obtain

G(t) = f(t) for all t ∈ [0, 1].

6. Assume a stochastic basis (Ω,F , IP, (Fk)
n
k=0) with Ω = {ω1, ..., ωN},

IP({ωi}) > 0, and a process (Zk)
n
k=0 such that Zk is Fk-measurable.

Define
Un := Zn

and, backwards,

Uk := max {Zk, E(Uk+1|Fk)}

for k = 0, ..., n − 1.

• Show that (Uk)
n
k=0 is a supermartingale.

Adaptivity: Uk := max {Zk, E(Uk+1|Fk)} ∈ Fn since both Zk and
E(Uk+1|Fk) are. Integrability: E|Uk| =

∑N

i=1 Uk(ωi)P(ωi) < ∞.
Supermartingale property: E (Uk|Fk−1) ≤ max{Zk−1, E (Uk|Fk−1)} =
Uk−1.

• Show that (Uk)
n
k=0 is the smallest supermartingale which

dominates (Zk)
n
k=0: if (Vk)

n
k=0 is a supermartingale with

Zk ≤ Vk, then Uk ≤ Vk a.s.

Let (Vk)
n
k=0 be a supermartingale with Zk ≤ Vk. Then Vn−1 ≥

E (Vn|Fn−1) ≥ E (Zn|Fn−1) = E (Un|Fn−1) ≥ Un−1. Proof is com-
plete by induction down from n: Vk−1 ≥ E (Vk|Fk−1) ≥ E (Uk|Fk−1)
and Vk−1 ≥ Zk−1 together imply that Vk−1 ≥ max{Zk−1, E (Uk|Fk−1)} =
Uk−1.

• Show that τ(ω) := inf {k = 0, ..., n : Zk(ω) = Uk(ω)} (inf ∅ :=
n) is a stopping time.

Both Z and U are adapted; see Examole 3.4 for details.

The process (Uk)
n
k=0 is called Snell-envelop of (Zk)

n
k=0.


