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Find an example of a sequence of random variables con-
verging almost surely but not in ;.

Take for example f,, : [0,1] = R, f.(x) = X l[(x) (with P = \).
Then lim,, o f, = 0 for all x €]0,1] but |[f, —0[|,, = |[full,, =
Jor ndX(z) =1 (# 0).

Comment: we do not have an integrable majorant g € L; : g > |f,,|
so that the dominated convergence theorem is not available.
Find an example of a sequence of random variables con-
verging in L; but not almost surely.

Take for example Haar functions as in Exercise 2.1. then for all
x € [0,1] and all m € N there exists an index N, ,, € N such that
N, .. (x)] =1, i€ hy A 0as. asm — 0.

Comment: we do find a subsequence conbverging to 0 a.s.
Prove that if X;, - X a.s. and |X,| <Y for some Y € L,
then X € L; and X,, —» X in L;.

Since | X, (w)| < Y(w), we have | X(w)| = |[lim X, (w)| < Y(w)
for all w € Q so that X € L;. By dominated convergence,
lim [|.X,, — X||,, = imE|X,, — X| = Elim | X,, — X| = 0, because
| X, — X| < | X, +]X| <2Y.

Let X : Q2 — R with E|X| < co. Show that f{|X‘>C} | X |dP — 0
as ¢ — oo. -

By dominated convergence, since xjxj>q3|X]| < | X/,
lim e [ oo [X1IP = T iy (11500 | X P =

fQ limc_,oo X{\X|2c}‘X|dP =0.

Prove the fact 2given as hint in Exercise 3.2 b):

L +e@)<ev.
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Let £1,¢9,... : 2 — R be iid Bernoulli random variables, i.e.

P(e; =1) =P(s; = —1) = 5. Let S, :=¢; +--- +¢&,. Prove
that
E(e1|o(Sn)) = — a.s.



Su = B(S,J0(S) = E(e1 + -+ 2la(S0) = Esilo(S0) +
<o+ E(en|0(Sn)) = nE(e1]0(S,)) a.s, since

E (¢jlo(S,)) = E (e1]0(5,)) as. forall j =1,.

o(S,) =c{weQ:S, =k} :k=-n,..., ) because Sn €
{-n,...,n}. Thus f{s _py €50 =

f{sn:k,ejzl} 5jdp+f{5n:k,ej:—1} g;dlP = f{sn:k,ejzl} 1dp+f{5n:k,ej:—1} —1dP =
P(S, =k, =1)—P(S, =ke;=—1)=1 ()" (o)=L ()" (7)) =

k—1 2 \2 k+1
P(S, =k,e1=1)—P(S, =k,e1 = —1) = e1dP.

= f{Sn:k}

(b) Is the process S = (5,)22, above uniformly integrable?
Take F, := o(e1,...,&,). Then S = (5,),~, is a martingale.
IS0 = Su-illy, = lleall,, = 1 for all n = 1,2,... so that (S,)>,
is not a Cauchy sequence in L;. By Theorem 8.1 it is not uniformly
integrable.

4. Let (0, F,IP,(F,)52,) be a stochastic basis, Fo, := o(U,—, Fn),
and Z € [;. What can we say about the almost sure and
Ly-convergence of

(a) E(Z|Fn) —n E(Z]|Fx),
By Proposition 2.6, M = (M,) >, with M, = E(Z|F,) is a
martingale. Moreover, M., := E (Z|Fy) is its closure meant in
Theorem 8.1.(3). Theorem 8.1.(2) ensures the L; convergence,

and Theorem 8.1.(b) the almost sure convergence of E(Z|F,,) —,
E(Z|Fx)-

(b) E(Z|F,) —n Z7
Nothing. Take for example Q = [0,1], F = B([0,1]),P = X and
F. = o([0,27"[,[27™, 27" [,...)[271,1]). If Z(w) = w, then
Z € L(£2,F,P) but E(Z|F,) / Z in any sence.

5. Let f :[0,1] — R be a Lipschitz function, i.e. |[f(z) — f(y)| <

Lz —y|. Let
2”1/

E—1
fn(t) = Z on [anl 21%)(t)
k=1
Q:=10,1), F, o(&,), and
(a) Prove that (F,)°, is a filtration and that B([0,1)) = (UZOZO Fn).
Since [k2n1, 2"; [ = [g};?, g};} [U L;’;Jr}, ST [form =2k € {1, ,2m
we have F,, = (fn)_U([Qn,Qn[k_12 2") C ([2n>2n[k_

1,2,...,2") = Fpq. Trivially o2, Fn) C B(]0,1)). For the
other direction, we need to show that (for example) any open in-
terval Ja,ble o(|U,—, Fn) for all 0 < a < b < 1. (This is sufficient



since the Borel o-algebra is generated by the open intervals.) Let
0 < a < b < 1. Find sequences (a;)32; and (b;)72; such that

aj = 2 % for some kj,n; € N and (a;)%2, is non-increasing with
: %

lim; ,oa; = a, and b; = 27] for some k7, n; € N and (b;)%2,
is non-decreasing with lim; ...b; = b. Then [a;,b;[€ F,, for

m = max(n;,n) and a, b[= U;io[aj,bj[e a(Ur—y Fn)-
Prove that (M,)>°, is a martingale with |M,(¢)] < L. We
assume P = A.

Since f is Lipschitz, |M,(t)| = ’f(én(t)ﬂ;,?*f(&”(t)) -

2" [ f(&n(t) +27) — f(&u(t))| < 2"L27™ = L and thus E|M,| < co
for all n. Clearly, M, is F, measurable Let A € F,. Then
A= Uk 1 Ix, where I, = 0 or I}, = [ S 5 [ for each k. Then

/2% My (£)dt = ey f(&npa(t) +2- (D) — f(fnJrl(t))d
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so that E (M, 1|F,) = M, a.s.
Prove that there is an integrable function g : [0,1) — R
such that M, = E(¢|F,) a.s

By Theorem 8.1, it is sufficient to prove that M is uniformly
integrable. From part (b) above we know that |M,| < L for
all n.  Therefore, f{|Mn|>c}‘Mn’dP < LP(|M,| > ¢) = 0 for

all ¢ > L. Thus sup, f{‘anc} |M,|dP = 0 for all ¢ > L and
lim sup,, f{\Mn\Ze:} |M,,|dP = 0.

Prove that f(£) = f(0) + fOQ” t)dt for k=0,...,.2" — 1.
Since f(57) = f(0)+f (gﬁ) F(0) = FO)+325 [f(GR) — f(5)]
and f(57)=f (5) = 2" [20 F(&(0)+27") = f(&(t)dt = [2 Mu(t)dt,



we obtain f(£) = f(0) + fOQ" W(t)dt. As [0, an € F, and M, =
E (g|F,) a.s, we are done fOQ” L(t)dt = [27 g(t)dt.

(e) Prove that f(z )+ [y g(t)dt for x € [0,1], i.e. g is the
generalized derlvatlve of f.
Since g is integrable, the function x +— fo t)dt exists (i.e. fo (t)dt
R for all = 6 [0,1]). Define G : [0,1] — R by setting G(z) =

) + [y g(t)dt. By construction, G is continuous. By (d), we

know that G( )=f(s)foralls =2, neN, k=1,...,2" Since
the set {Qﬁn :n € Nk =1,...,2"} is dense in [0,1], we obtain
G(t) = f(t) for all ¢ € [0,1].

6. Assume a stochastic basis (Q2, F,IP, (Fr)}_,) with Q = {w,...,wn},
IP({w;}) > 0, and a process (Z;)}_, such that Z is F;-measurable.
Define

U, =2,

and, backwards,
Uy := max { Zy, E(Up41| Fr) }
for k=0,...n—1.

e Show that (Uy)}_, is a supermartingale.
Adaptivity: Uy := max{Zy, E(Uys1|Fr)} € F, since both Z; and
E(Uyy1|Fy) are. Integrability: E|Uy| = Zf\; Uk(wi)P(w;) < o0.
Supermartingale property: E (Ug|Fr—1) < max{Zy_1, E (Ug|Fr_1)} =
U,_1.

e Show that (Uy)}_, is the smallest supermartingale which
dominates (Z;);_,: if (Vi)i_, is a supermartingale with
Zk S Vk, then Uk S Vk a.S.

Let (Vk)i_, be a supermartingale with Z, < Vi. Then V,,_; >
E (Vo|Foo1) > E(Z,|Fn1) = E(Uy|Froq) > Up_q. Proof is com-
plete by induction down from n: Vi1 > E (Vi|Fr_1) > E (Ug| Fr_1)
and Vi_1 > Zj_1 together imply that Vi, > max{Z,_1,E (Ug|Fr_1)} =
U,_1.

e Show that 7(w) := inf{k=0,...,n: Zy(w) = Uk(w)} (inf :=
n) is a stopping time.
Both Z and U are adapted; see Examole 3.4 for details.

The process (Ug)p_, is called SNELL-envelop of (Z;)}_,



