Martingale theory

Wednesday, 26th October, 2011 8.30 - 10.00 MaD 380

- 1. (a) Find an example of a sequence of random variables converging almost surely but not in L_1 .
 - (b) Find an example of a sequence of random variables converging in L₁ but not almost surely.
 - (c) Prove that if $X_n \to X$ a.s. and $|X_n| \leq Y$ for some $Y \in L_1$, then $X \in L_1$ and $X_n \to X$ in L_1 .
- 2. (a) Let $X : \Omega \to \mathbb{R}$ with $\mathbb{E}|X| < \infty$. Show that $\int_{\{|X| \ge c\}} |X| d\mathbb{P} \to 0$ as $c \to \infty$.
 - (b) Prove the fact given as hint in Exercise 3.2 b): $\frac{1}{2}(e^{\alpha} + e^{-\alpha}) \le e^{\frac{\alpha^2}{2}}$.
- 3. (a) Let $\varepsilon_1, \varepsilon_2, \ldots : \Omega \to \mathbb{R}$ be iid Bernoulli random variables, i.e. $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = \frac{1}{2}$. Let $S_n := \varepsilon_1 + \cdots + \varepsilon_n$. Prove that

$$\mathbb{E}(\varepsilon_1|\sigma(S_n)) = \frac{S_n}{n} \quad a.s.$$

(b) Is the process $S = (S_n)_{n=0}^{\infty}$ above uniformly integrable?

- 4. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n=0}^{\infty})$ be a stochastic basis, $\mathcal{F}_{\infty} := \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$, and $Z \in L_1$. What can we say about the almost sure and L_1 -convergence of
 - (a) $\mathbb{E}(Z|\mathcal{F}_n) \to_n \mathbb{E}(Z|\mathcal{F}_\infty),$
 - (b) $\mathbb{E}(Z|\mathcal{F}_n) \to_n Z?$

(Proofs/counterexamples)

5. Let $f: [0,1] \to \mathbb{R}$ be a Lipschitz function, i.e. $|f(x) - f(y)| \le L|x-y|$. Let

$$\xi_n(t) := \sum_{k=1}^{2^n} \frac{k-1}{2^n} \chi_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]}(t),$$

 $\Omega := [0, 1), \mathcal{F}_n := \sigma(\xi_n), \text{ and }$

$$M_n(t) := \frac{f(\xi_n(t) + 2^{-n}) - f(\xi_n(t))}{2^{-n}}.$$

- (a) Prove that $(\mathcal{F}_n)_{n=0}^{\infty}$ is a filtration and that $\mathcal{B}([0,1)) = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n)$.
- (b) Prove that $(M_n)_{n=0}^{\infty}$ is a martingale with $|M_n(t)| \leq L$.
- (c) Prove that there is an integrable function $g: [0,1) \to \mathbb{R}$ such that $M_n = \mathbb{E}(g|\mathcal{F}_n)$ a.s.

- (d) Prove that $f(\frac{k}{2^n}) = f(0) + \int_0^{\frac{k}{2^n}} g(t)dt$ for $k = 0, ..., 2^n 1$.
- (e) Prove that $f(x) = f(0) + \int_0^x g(t)dt$ for $x \in [0, 1]$, i.e. g is the generalized derivative of f.
- 6. Assume a stochastic basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_k)_{k=0}^n)$ with $\Omega = \{\omega_1, ..., \omega_N\}$, $\mathbb{P}(\{\omega_i\}) > 0$, and a process $(Z_k)_{k=0}^n$ such that Z_k is \mathcal{F}_k -measurable. Define

$$U_n := Z_n$$

and, backwards,

$$U_k := \max\left\{Z_k, \mathbb{E}(U_{k+1}|\mathcal{F}_k)\right\}$$

for k = 0, ..., n - 1.

- Show that $(U_k)_{k=0}^n$ is a super-martingale.
- Show that $(U_k)_{k=0}^n$ is the smallest super-martingale which dominates $(Z_k)_{k=0}^n$: if $(V_k)_{k=0}^n$ is a super-martingale with $Z_k \leq V_k$, then $U_k \leq V_k$ a.s.
- Show that $\tau(\omega) := \inf \{k = 0, ..., n : Z_k(\omega) = U_k(\omega)\}$ (inf $\emptyset := n$) is a stopping time.

The process $(U_k)_{k=0}^n$ is called SNELL-envelop of $(Z_k)_{k=0}^n$.

7. (Extra) What have we learnt about the (symmetric) random walk $S = (S_n)_{n=0}^{\infty}$,

$$S_n := \varepsilon_1 + \dots + \varepsilon_n,$$

where $\varepsilon_1, \varepsilon_2, \ldots : \Omega \to \mathbb{R}$ are independent Bernoulli random variables, i.e. $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = \frac{1}{2}?$

(No proofs; recall questions and possible answers.)