Martingale theory

Wednesday, 19th October, 2011 8.30 - 10.00 MaD 380

For questions 1. and 2.: Let $\Omega = [0, 1)$, $\mathbb{P} = \lambda$ (the Lebesgue measure) and $\mathcal{F}_0 = \{\Omega, \emptyset\}$. Define $\mathcal{F}_n = \sigma([0, 2^{-n}), [2^n, 2^{-n+1}), \dots, [2^{-1}, 1))$ for all $n \ge 1$, and $M_0 = 1$, $M_n = 2^n \chi_{[0, 2^{-n}]}$.

- 1. Draw M_n for n = 0, 1, 2, 3. Prove that the process $M = (M_n)_{n=0}^{\infty}$ is a martingale. Is it uniformly integrable? Is it closable? [Hint: see p. 68 in S. Geiss: Stochastic processes in discrete time]
- 2. Prove that

$$\lim_{N} \int_{0}^{1} \sup_{n=1,...,N} M_{n}(t) dt = \infty \quad \text{but} \quad \int_{0}^{1} M_{N}(t) dt = 1.$$

What is the connection to DOOB's maximal inequalities?

3. Let $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1), \mathcal{B}([0, 1)), \lambda)$ and

$$f_n(t) := \chi_{[0,1/n)}(t) n^{\frac{1}{p}}$$

For what $0 is the family <math>(f_n)_{n=1}^{\infty}$ uniformly integrable?

For questions 4.-5.: Let $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1), \mathcal{B}([0, 1)), \lambda)$ and

$$M_n(t) := h_0(t) + \dots + h_n(t),$$

where $h_n(t) := 2^n \chi_{[0,1/2^{n+1})} - 2^n \chi_{[1/2^{n+1},1/2^n)}$. Let $\mathcal{F}_n := \sigma(h_0, ..., h_n)$.

- 4. Show that $M = (M_n)_{n \ge 0}$ is a martingale.
- 5. Is there a constant c > 0 such that for all N = 1, 2, ... one has

$$\int_{0}^{1} \sup_{n=1,\dots,N} |M_{n}(t)| dt \le c \int_{0}^{1} |M_{N}(t)| dt?$$

6. Is there a random variable $M_{\infty}: [0,1) \to \mathbb{R} \in L_1$ such that

$$M_n = \mathbb{E}(M_\infty | \mathcal{F}_n) \quad a.s.?$$