Martingale theory

Wednesday, 5th October, 2011 8.30 - 10.00 MaD 380

- (1) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Assume that $X : \Omega \to \mathbb{R}$ is a random variable and $f : \mathbb{R} \to \mathbb{R}$ a (Borel-measurable) function. Show that f(X) is a random variable.
 - (b) Let $X, Y : \Omega \to \{0, 1\}$ be independent random variables. How many elements does the sub- σ -algebra $\mathcal{G} := \sigma(X, Y)$ contain?
- (2) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\varepsilon_1, \varepsilon_2, \ldots : \Omega \to \mathbb{R}$ independent random variables such that $\mathbb{P}(\varepsilon_n = 1) = \mathbb{P}(\varepsilon_n = -1) = 1/2$. Let $v_0 \in \mathbb{R}$ and $v_n : \mathbb{R}^n \to \mathbb{R}$ be functions, $n = 1, 2, \ldots$ Define $M_0 := 0$, $M_1(\omega) := \varepsilon_1(\omega)v_0$,

$$M_n(\omega) := \varepsilon_1(\omega)v_0 + \sum_{k=2}^n \varepsilon_k(\omega)v_{k-1}\Big(\varepsilon_1(\omega), \dots, \varepsilon_{k-1}(\omega)\Big) \text{ for } n = 2, 3, \dots$$

and $\mathcal{F}_n := \sigma(\varepsilon_0, ..., \varepsilon_n)$ for n = 0, 1, 2, ...

- (a) Is $(M_n)_{n=0}^{\infty}$ a martingale?
- (b) Let $Z_0 := 1$ and

$$Z_n(\omega) := e^{M_n(\omega) - \frac{1}{2}\sum_{k=1}^n |v_{k-1}(\varepsilon_1(\omega), \dots, \varepsilon_{k-1}(\omega))|^2}.$$

Show that $(Z_n)_{n=0}^{\infty}$ is a supermartingale.

Hint: in (b), notice that $e^x + e^{-x} \le 2e^{\frac{1}{2}x^2}$

- (3) Let $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration and $\sigma, \tau : \Omega \to \{0, 1, 2, \ldots\} \cup \{\infty\}$ stopping times.
 - (a) Show that $\sigma + \tau$ is a stopping time.
 - (b) Show that $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

For questions 4 and 5:

Let $\varepsilon_n : \Omega \to \mathbb{R}$, n = 1, 2, ... independent random variables such that $\mathbb{P}(\varepsilon_n = -1) = \mathbb{P}(\varepsilon_n = 1) = \frac{1}{2}$ for all i = 1, 2, ... Define $M_0 := 0$ and $M_n := \varepsilon_1 + ... + \varepsilon_n$, $n \ge 1$. Let \mathcal{F}_0 be the trivial σ -algebra and $\mathcal{F}_n := \sigma(\varepsilon_1, ..., \varepsilon_n)$. Are the following functions stopping times (inf $\emptyset := \infty$)?

(4) (a)
$$\sigma(\omega) := \inf \{ n \ge 0 : M_n = 0 \}$$

(b) $\sigma(\omega) := \inf \{ n \ge 0 : M_n \in]10, 12[\}$

(c)
$$\sigma(\omega) := \inf \{n \ge 0 : M_n \in [10, 12[\} - 1]$$

(d) $\sigma(\omega) := \inf \{n \ge 0 : M_n \in [10, 12[\} + 1]$
(5) (a) $\sigma(\omega) := \inf \{n \ge 0 : M_{n+1} \in [10, 12[\}]$
(b) $\sigma(\omega) := \inf \{n \ge 0 : M_{n+1} \in [10, 11[\}]$
(c) $\sigma(\omega) := \inf \{n \ge 0 : M_{n-1} = 10\}$
(d) $\sigma(\omega) := \inf \{n \ge 0 : M_{n-1} = 10\} - 1$

(6) Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n=0}^{\infty})$ be a stochastic basis and $M = (M_n)_{n=0}^{\infty}$ be a martingale such that $M_0 = 0$ a.s. and $\mathbb{E}M_n^2 < \infty$ for all n = 0, 1, 2, ... Define $\langle M \rangle_0 := 0$,

$$\langle M \rangle_n := \sum_{k=1}^n \mathbb{E}((M_k - M_{k-1})^2 | \mathcal{F}_{k-1}) \in [0, \infty).$$

The process $\langle M \rangle := (\langle M \rangle_n)_{n=0}^{\infty}$ is called *(predictable) bracket process*. Show that

- (a) $(M_n^2 \langle M \rangle_n)_{n=0}^{\infty}$ is a martingale,
- (b) $\mathbb{E}M_n^2 = \mathbb{E}\langle M \rangle_n$ for all n = 0, 1, ...