Fractional Hardy inequalities on domains and applications

Antti Vähäkangas

joint with D. Edmunds, R. Hurri–Syrjänen, L. Ihnatsyeva

University of Helsinki

Aalto – April 17, 2013
I. ‘Fat’ sets
Riesz capacities

If $1 < p < \infty$ and $0 < sp < n$, then the (s, p) outer capacity of a set E in \mathbb{R}^n is

$$R_{s,p}(E) = \inf \{ \| f \|_p^p : \mathcal{I}_s f \geq 1 \text{ on } E \}, \quad \mathcal{I}_s f = |x|^{s-n} * f.$$
Riesz capacities

If $1 < p < \infty$ and $0 < sp < n$, then the (s, p) outer capacity of a set E in \mathbb{R}^n is

$$R_{s,p}(E) = \inf \{ \|f\|_p^p : \mathcal{I}_s f \geq 1 \text{ on } E \}, \quad \mathcal{I}_s f = |x|^{s-n} * f.$$

Uniform fatness

A set E is (s, p) uniformly fat, if there is a positive λ such that

$$R_{s,p}(B(x, r) \cap E) \geq \lambda r^{n-sp}$$

for every $x \in E$ and $r > 0$.
Riesz capacities
If $1 < p < \infty$ and $0 < sp < n$, then the (s, p) outer capacity of a set E in \mathbb{R}^n is

$$R_{s,p}(E) = \inf \{ \|f\|_p^p : \mathcal{I}_s f \geq 1 \text{ on } E \} , \quad \mathcal{I}_s f = |x|^{s-n} * f.$$

Uniform fatness
A set E is (s, p) uniformly fat, if there is a positive λ such that

$$R_{s,p}(B(x, r) \cap E) \geq \lambda r^{n-sp}$$

for every $x \in E$ and $r > 0$.

Theorem (Self-improvement of uniform fatness; Lewis '88)
Suppose E is a closed (s, p) uniformly fat set, $1 < p < \infty$, $0 < sp < n$. Then, there is $\epsilon = \epsilon(n, s, p, \lambda)$ so that E is (β, q) uniformly fat if $sp - \epsilon < \beta q \leq sp$.

Definition of d-sets

A (closed) subset $S \subseteq \mathbb{R}^n$ is called a d-set, if

$$\mathcal{H}^d(B(x, r) \cap S) \asymp r^d$$

for every $x \in S$ and $0 < r < \text{diam}(E)$.

An example

The complement of the snowflake domain is an n-set, hence (s, p) uniformly fat $(1 < p < 1, 0 < sp < n)$.
Definition of d-sets

A (closed) subset $S \subset \mathbb{R}^n$ is called a d-set, if

$$\mathcal{H}^d(B(x, r) \cap S) \sim r^d$$

for every $x \in S$ and $0 < r < \text{diam}(E)$.

Proposition

Let $1 < p < \infty$ such that $0 < sp < n$. Fix

$$n - sp < d \leq n,$$

and suppose E is an unbounded and closed d-set. Then E is (s, p) uniformly fat.
Definition of d-sets

A (closed) subset $S \subset \mathbb{R}^n$ is called a d-set, if

$$\mathcal{H}^d(B(x,r) \cap S) \sim r^d$$

for every $x \in S$ and $0 < r < \text{diam}(E)$.

Proposition

Let $1 < p < \infty$ such that $0 < sp < n$. Fix

$$n - sp < d \leq n,$$

and suppose E is an unbounded and closed d-set. Then E is (s, p) uniformly fat.

An example

The complement of the snowflake domain is an n-set, hence (s, p) uniformly fat ($1 < p < \infty$, $0 < sp < n$).
'Fat' sets
II. Hardy inequalities and uniform fatness
The classical Hardy inequality

We say that an open set G in \mathbb{R}^n admits p-Hardy inequality, if

$$
\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^p} \, dx \lesssim \int_G |\nabla f(x)|^p \, dx, \quad f \in C_0^\infty(G).
$$

Theorem (Lewis '88)

Suppose that the complement $\mathbb{R}^n \cap G$ of an open set G is $(1, p)$-uniformly fat, then G admits the p-Hardy inequality.

Localisation property of the gradient

A function $f \in C_1^0(G)$ satisfies

$$
\int_{\mathbb{R}^n} |\nabla f(x)|^p \, dx = \int_G |\nabla f(x)|^p \, dx, \quad f \in C_0^\infty(G).
$$
The classical Hardy inequality

We say that an open set G in \mathbb{R}^n admits p-Hardy inequality, if

$$\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^p} \, dx \lesssim \int_G |
\nabla f(x)|^p \, dx, \quad f \in C^\infty_0(G).$$

Theorem (Lewis ’88)

Suppose that the complement $\mathbb{R}^n \setminus G$ of an open set G is $(1, p)$ uniformly fat, $1 < p \leq n$. Then G admits the p-Hardy inequality.
The classical Hardy inequality

We say that an open set G in \mathbb{R}^n admits p-Hardy inequality, if

$$\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^p} \, dx \lesssim \int_{\mathbb{R}^n} |\nabla f(x)|^p \, dx, \quad f \in C_0^\infty(G).$$

Theorem (Lewis '88)

Suppose that the complement $\mathbb{R}^n \setminus G$ of an open set G is $(1, p)$ uniformly fat, $1 < p \leq n$. Then G admits the p-Hardy inequality.

Localisation property of the gradient

A function $f \in C_0^\infty(G)$ satisfies

$$\int_{\mathbb{R}^n} |
abla f|^p = \int_G |
abla f|^p.$$
How to measure fractional smoothness for $s \in (0, 1)$?

A consequence of Plancherel’s identity: for every $f \in C_0^\infty(\mathbb{R}^n)$,

$$\left\| \Delta^{s/2} f \right\|^2_{L^2(\mathbb{R}^n)} := \left\| \xi \mapsto |\xi|^s \hat{f}(\xi) \right\|^2_{L^2(\mathbb{R}^n)} \asymp \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^2}{|x - y|^{n+2s}} \, dy \, dx.$$
How to measure fractional smoothness for $s \in (0, 1)$?

A consequence of Plancherel’s identity: for every $f \in C_0^\infty(\mathbb{R}^n)$,

$$\left\| \Delta^{s/2} f \right\|_{L^2(\mathbb{R}^n)}^2 := \left\| \xi \mapsto |\xi|^s \hat{f}(\xi) \right\|_{L^2(\mathbb{R}^n)}^2 \approx \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^2}{|x - y|^{n+2s}} \, dy \, dx.$$

The Calderón operator $\Delta^{1/2}$

For every $f \in C_0^\infty(\mathbb{R}^n)$,

$$\left\| \Delta^{1/2} f \right\|_{L^2(\mathbb{R}^n)}^2 := \left\| \xi \mapsto |\xi| \hat{f}(\xi) \right\|_{L^2(\mathbb{R}^n)}^2 \approx \left\| \nabla f \right\|_{L^2(\mathbb{R}^n)}^2.$$
How to measure fractional smoothness for \(s \in (0, 1) \)?

A consequence of Plancherel’s identity: for every \(f \in C_{0}^{\infty}(\mathbb{R}^{n}) \),

\[
\left\| \Delta^{s/2} f \right\|_{L^{2}(\mathbb{R}^{n})}^{2} := \left\| \xi \mapsto |\xi|^{s} \hat{f}(\xi) \right\|_{L^{2}(\mathbb{R}^{n})}^{2} \sim \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|f(x) - f(y)|^{2}}{|x - y|^{n + 2s}} \, dy \, dx.
\]

The Calderón operator \(\Delta^{1/2} \)

For every \(f \in C_{0}^{\infty}(\mathbb{R}^{n}) \),

\[
\left\| \Delta^{1/2} f \right\|_{L^{2}(\mathbb{R}^{n})}^{2} := \left\| \xi \mapsto |\xi| \hat{f}(\xi) \right\|_{L^{2}(\mathbb{R}^{n})}^{2} \sim \left\| \nabla f \right\|_{L^{2}(\mathbb{R}^{n})}^{2}.
\]

Non-locality

The fractional powers \(\Delta^{s/2} \) are non-local pseudodifferential operators.
Theorem (a ‘local Hardy inequality’; Dyda, 2004)

Let G be a bounded Lipschitz domain, $s \in (0, 1)$, and $1 < p < \infty$. Inequality $sp > 1$ (i.e. $n - sp < n - 1$) holds if, and only if,

$$\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^{sp}} \, dx \lesssim \int_G \int_G \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dy \, dx$$

for every $f \in C_0^\infty(G)$.
Theorem (a ‘local Hardy inequality’; Dyda, 2004)

Let \(G \) be a bounded Lipschitz domain, \(s \in (0, 1) \), and \(1 < p < \infty \). Inequality \(sp > 1 \) (i.e. \(n - sp < n - 1 \)) holds if, and only if,

\[
\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^{sp}} \, dx \lesssim \int_G \int_G \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dy \, dx
\]

for every \(f \in C_0^\infty (G) \).

Theorem (a ‘non-local Hardy inequality’; Edmunds, Hurri–Syrjänen, V., 2012)

Let \(s \in (0, 1) \) and \(1 < p < n/s \).
Let \(G \) be an open set, whose complement is \((s, p)\) uniformly fat. Then,

\[
\int_G \frac{|f(x)|^p}{\text{dist}(x, \partial G)^{sp}} \, dx \lesssim \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dy \, dx
\]

for every \(f \in C_0^\infty (G) \).
A localisation property

Suppose G is an open set in \mathbb{R}^n, whose complement is (s, p) uniformly fat ($0 < s < 1$, $1 < p < n/s$). Then, the localisation property

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dy \, dx \lesssim \int_G \int_G \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dy \, dx$$

holds for all $f \in C_0^\infty(G)$ if, and only if, G admits the local Hardy inequality.
A localisation property

Suppose G is an open set in \mathbb{R}^n, whose complement is (s,p) uniformly fat ($0 < s < 1$, $1 < p < n/s$). Then, the localisation property

\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x-y|^{n+sp}} \, dy \, dx \leq \int_G \int_G \frac{|f(x) - f(y)|^p}{|x-y|^{n+sp}} \, dy \, dx
\]

holds for all $f \in C_0^\infty(G)$ if, and only if, G admits the local Hardy inequality.

An example

Suppose G is a bounded Lipschitz domain in \mathbb{R}^n. Then, the localisation property fails if $0 < sp \leq 1$. The reason is that the boundary is too thin, but in the general case there can be other obstructions.
III. Hardy inequalities on Triebel–Lizorkin spaces
A Triebel–Lizorkin space

Let $s \in (0, 1)$ and $1 < p < \infty$. A function f belongs to a Triebel–Lizorkin space $F_{pp}^s(\mathbb{R}^n)$, if

$$
\|f\|_{F_{pp}^s(\mathbb{R}^n)} := \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty.
$$
A Triebel–Lizorkin space

Let $s \in (0, 1)$ and $1 < p < \infty$. A function f belongs to a Triebel–Lizorkin space $F_{pp}^s(\mathbb{R}^n)$, if

$$
\|f\|_{F_{pp}^s(\mathbb{R}^n)} := \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty.
$$

Often one denotes $W^{s,p}(\mathbb{R}^n) = F_{pp}^s(\mathbb{R}^n)$.

A Triebel–Lizorkin space

Let \(s \in (0, 1) \) and \(1 < p < \infty \).

A function \(f \) belongs to a Triebel–Lizorkin space \(F_{sp}^{pp}(\mathbb{R}^n) \), if

\[
\|f\|_{F_{sp}^{pp}(\mathbb{R}^n)} := \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty .
\]

- Often one denotes \(W^{s,p}(\mathbb{R}^n) = F_{sp}^{pp}(\mathbb{R}^n) \).
- This space is also known as the fractional Sobolev space of order \(s \).
A Triebel–Lizorkin space

Let \(s \in (0, 1) \) and \(1 < p < \infty \).

A function \(f \) belongs to a Triebel–Lizorkin space \(F_{pp}^s(\mathbb{R}^n) \), if

\[
\|f\|_{F_{pp}^s(\mathbb{R}^n)} := \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty.
\]

- Often one denotes \(W^{s,p}(\mathbb{R}^n) = F_{pp}^s(\mathbb{R}^n) \).
- This space is also known as the fractional Sobolev space of order \(s \).

Triebel–Lizorkin spaces \(F_{pq}^s(\mathbb{R}^n) \)

One can also define Triebel–Lizorkin spaces \(F_{pq}^s(\mathbb{R}^n) \) for the full range of parameters \(0 < p, q \leq \infty \) (\(q = \infty \) if \(p = \infty \)) and \(s \in \mathbb{R} \).
A Triebel–Lizorkin space

Let $s \in (0, 1)$ and $1 < p < \infty$. A function f belongs to a Triebel–Lizorkin space $F_{pp}^s(\mathbb{R}^n)$, if

$$
\|f\|_{F_{pp}^s(\mathbb{R}^n)} := \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^{n+sp}} \, dx \, dy \right)^{1/p} < \infty.
$$

- Often one denotes $W^{s,p}(\mathbb{R}^n) = F_{pp}^s(\mathbb{R}^n)$.
- This space is also known as the fractional Sobolev space of order s.

Triebel–Lizorkin spaces $F_{pq}^s(\mathbb{R}^n)$

One can also define Triebel–Lizorkin spaces $F_{pq}^s(\mathbb{R}^n)$ for the full range of parameters $0 < p, q \leq \infty$ ($q = \infty$ if $p = \infty$) and $s \in \mathbb{R}$.
- If $p \in (1, \infty) \setminus \{2\}$ and $k \in \mathbb{N}$, then $W^{k,p}(\mathbb{R}^n) = F_{p2}^k(\mathbb{R}^n) \neq F_{pp}^k(\mathbb{R}^n)$.
Theorem (a ‘trace Hardy inequality’; Lizaveta Ihnatsyeva, A.V.; 2012)

Let S be a d-set in \mathbb{R}^n, $n - 1 < d < n$, $1 < p < \infty$, and $1 \leq q \leq \infty$. Then, if

$$n - sp < d,$$

we have

$$\int_{\mathbb{R}^n} \frac{|f(x)|^p}{\text{dist}(x, S)^{sp}} \, dx \lesssim \|f\|^p_{F_{pq}^s(\mathbb{R}^n)}$$

for every $f \in F_{pq}^s(\mathbb{R}^n)$ such that $f|_S = 0$.
Theorem (a ‘trace Hardy inequality’; Lizaveta Ihnatsyeva, A.V.; 2012)

Let S be a d-set in \mathbb{R}^n, $n - 1 < d < n$, $1 < p < \infty$, and $1 \leq q \leq \infty$. Then, if

$$n - sp < d,$$

we have

$$\int_{\mathbb{R}^n} \frac{|f(x)|^p}{\text{dist}(x, S)^{sp}} \, dx \lesssim \|f\|^p_{F_{pq}^s(\mathbb{R}^n)}$$

for every $f \in F_{pq}^s(\mathbb{R}^n)$ such that $f|_S = 0$.

- Applications to pointwise multipliers $f \mapsto f \chi_G$;
Theorem (a ‘trace Hardy inequality’; Lizaveta Ihnatsyeva, A.V.; 2012)

Let S be a d-set in \mathbb{R}^n, $n - 1 < d < n$, $1 < p < \infty$, and $1 \leq q \leq \infty$. Then, if

$$n - sp < d,$$

we have

$$\int_{\mathbb{R}^n} \frac{|f(x)|^p}{\text{dist}(x, S)^{sp}} dx \lesssim \|f\|_{F_{pq}^s(\mathbb{R}^n)}^p$$

for every $f \in F_{pq}^s(\mathbb{R}^n)$ such that $f|_S = 0$.

- Applications to pointwise multipliers $f \mapsto f \chi_G$;
- Applications to extension problems from the boundary trace.
IV. Pointwise multipliers
Theorem (Ihnatsyeva, V.; 2012)

Let G be a domain whose boundary is a d-set, $n - 1 < d < n$, and assume that $1 < p < \infty$ and $1 \leq q < \infty$. If

$$n - sp < d,$$

then

$$f \mapsto \chi_G f$$

is a bounded linear operator in the subspace $\{ f \in F_{pq}^s(\mathbb{R}^n) : f|_{\partial G} = 0 \}$.

Theorem (Ihnatsyeva, V.; 2012)

Let G be a domain whose boundary is a d-set, $n - 1 < d < n$, and assume that $1 < p < \infty$ and $1 \leq q < \infty$. If

$$n - sp < d,$$

then

$$f \mapsto \chi_G f$$

is a bounded linear operator in the subspace $\{f \in F_{pq}^s(\mathbb{R}^n) : f|_{\partial G} = 0\}$.

The proof is a consequence of Hardy inequality and this Lemma;

Let G be a domain whose boundary is porous in \mathbb{R}^n. Then, if $1 < p < \infty$, $1 \leq q < \infty$, and $s > 0$, we have

$$\|f \chi_G\|_{F_{pq}^s(\mathbb{R}^n)} \lesssim \|f\|_{F_{pq}^s(\mathbb{R}^n)} + \left(\int_G \frac{|f(y)|^p}{\text{dist}(y, \partial G)^{sp}} \, dy\right)^{1/p}$$

for every $f \in F_{pq}^s(\mathbb{R}^n)$.

V. Calderón-type extension
Traces and extension; a general framework

Suppose that there is a bounded and surjective trace operator

\[f \mapsto f|_S : A'(\mathbb{R}^n) \to A(S). \]

Here \(A'(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \) and \(A(S) \subset L^p(S) \) are Banach function spaces, and \(S \subset \mathbb{R}^n \) is a \(d \)-set with \(0 < d < n \).

Then, we say that a bounded linear operator

\[\text{Ext}_S : A(S) \to A'(\mathbb{R}^n) \]

is an \textit{extension operator}, if \((\text{Ext}_S f)|_S = f (\mathcal{H}^d \text{ a.e.}) \) for every \(f \in A(S) \).
Traces and extension; a general framework

Suppose that there is a bounded and surjective trace operator

\[f \mapsto f|_S: A'(\mathbb{R}^n) \to A(S). \]

Here \(A'(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \) and \(A(S) \subset L^p(S) \) are Banach function spaces, and \(S \subset \mathbb{R}^n \) is a \(d \)-set with \(0 < d \leq n \).

Then, we say that a bounded linear operator

\[\text{Ext}_S: A(S) \to A'(\mathbb{R}^n) \]

is an extension operator, if \((\text{Ext}_S f)|_S = f (\mathcal{H}^d \text{ a.e.}) \) for every \(f \in A(S) \).

An example

The trace operator is bounded and surjective

\[F_{pq}^s(\mathbb{R}^n) \to B_{pp}^{s-(n-d)/p}(S) \]

if \(S \) is a \(d \)-set with \(0 < d < n \) and \(n - sp < d \) \((1 < p < \infty, 1 \leq q \leq \infty)\).
Theorem (Calderón, 1961)

Let G be a Lipschitz domain in \mathbb{R}^n and $k \in \{1, 2, \ldots \}$. Then, the trace operator $W^{k,p}(\mathbb{R}^n) \to W^{k,p}(G)$ is bounded and surjective, and there is an extension operator

$$\text{Ext}_G : W^{k,p}(G) \to W^{k,p}(\mathbb{R}^n)$$

such that $\text{Ext}_G f(x) = 0$ for a.e. $x \in \mathbb{R}^n \setminus G$ if $f \in W^{k,p}_0(G)$.

Theorem (Shvartsman, 2006; Ihnatsyeva, V., 2012)

Suppose G is a domain in \mathbb{R}^n, whose closure is an n-set, and whose boundary is a d-set, with $n + 1 < d < n$. Let $1 < p < \infty$, $1 \leq q < \infty$, and $n \text{sp} < d$. Then, the trace operator $F_{pq}^s(\mathbb{R}^n) \to F_{pq}^s(G)$ is bounded and surjective, and there is an extension operator

$$\text{Ext}_G : F_{pq}^s(G) \to F_{pq}^s(\mathbb{R}^n)$$

such that $\text{Ext}_G f(x) = 0$ for a.e. $x \in \mathbb{R}^n \setminus G$ assuming that $f|_{\partial G} = 0$.

Calderón-type extension

Theorem (Calderón, 1961)

Let G be a Lipschitz domain in \mathbb{R}^n and $k \in \{1, 2, \ldots \}$. Then, the trace operator $W^{k,p}(\mathbb{R}^n) \to W^{k,p}(G)$ is bounded and surjective, and there is an extension operator

$$\text{Ext}_G : W^{k,p}(G) \to W^{k,p}(\mathbb{R}^n)$$

such that $\text{Ext}_G f(x) = 0$ for a.e. $x \in \mathbb{R}^n \setminus G$ if $f \in W^{k,p}_0(G)$.

Theorem (Shvartsman, 2006; Ihnatsyeva, V., 2012)

Suppose G is a domain in \mathbb{R}^n, whose closure is an n-set, and whose boundary is a d-set, with $n - 1 < d < n$. Let $1 < p < \infty$, $1 \leq q < \infty$, and $n - sp < d$.

Then, the trace operator $F^{s}_{pq}(\mathbb{R}^n) \to F^{s}_{pq}(G)$ is bounded and surjective, and there is an extension operator

$$\text{Ext}_G : F^{s}_{pq}(G) \to F^{s}_{pq}(\mathbb{R}^n)$$

such that $\text{Ext}_G f(x) = 0$ for a.e. $x \in \mathbb{R}^n \setminus G$ assuming that $f|_{\partial G} = 0$.
Step I

We identify a given $f \in F_{pq}^s(G)$ with its Shvartsman extension $\in F_{pq}^s(\mathbb{R}^n)$. Define $g := f|_{\partial G}$; by a trace theorem, Ihnatsyeva, V. 2011,

$$\|g\|_{B_{pp}^{s-(n-d)/p}(\partial G)} \lesssim \|f\|_{F_{pq}^s(G)}.$$
Step I
We identify a given $f \in F_{pq}^s(G)$ with its Shvartsman extension $\in F_{pq}^s(\mathbb{R}^n)$. Define $g := f|_{\partial G}$; by a trace theorem, Ihnatsyeva, V. 2011,

$$\|g\|_{B_{pp}^{s-(n-d)/p}(\partial G)} \lesssim \|f\|_{F_{pq}^s(G)}.$$

Step II
Define $h := \text{Ext}_{\partial G}(g)$; here

$$\text{Ext}_{\partial G} : B_{pp}^{s-(n-d)/p}(\partial G) \to F_{pq}^s(\mathbb{R}^n)$$

is an extension operator, Ihnatsyeva, V. 2011.
Calderón-type extension

Step I

We identify a given $f \in F_{pq}^s(G)$ with its Shvartsman extension $\in F_{pq}^s(\mathbb{R}^n)$.

Define $g := f|_{\partial G}$; by a trace theorem, Ihnatsyeva, V. 2011,

$$\|g\|_{B_{pp}^{s-(n-d)/p}(\partial G)} \lesssim \|f\|_{F_{pq}^s(G)}.$$

Step II

Define $h := \text{Ext}_{\partial G}(g)$; here

$$\text{Ext}_{\partial G} : B_{pp}^{s-(n-d)/p}(\partial G) \rightarrow F_{pq}^s(\mathbb{R}^n)$$

is an extension operator, Ihnatsyeva, V. 2011.

Step III

Define $\text{Ext}_G(f) := (f - h) \chi_G + h$. This has the ‘zero extension property’ for functions with zero trace on ∂G. Moreover,

$$\|h\|_{F_{pq}^s(\mathbb{R}^n)} = \|\text{Ext}_{\partial G}g\|_{F_{pq}^s(\mathbb{R}^n)} \lesssim \|g\|_{B_{pp}^{s-(n-d)/p}(\partial G)} \lesssim \|f\|_{F_{pq}^s(G)}.$$

Since $(f - h)|_{\partial G} = 0$,

$$||(f - h)\chi_G\|_{F_{pq}^s(\mathbb{R}^n)} \lesssim \|f - h\|_{F_{pq}^s(\mathbb{R}^n)} \lesssim \|f\|_{F_{pq}^s(G)}.$$