
Concept Analysis in
Programming Language Research

Done Well It Is All Right

Antti-Juhani Kaijanaho

University of Jyvaskyla

Faculty of Information Technology

University of Jyvaskyla, Finland

antti-juhani.kaijanaho@jyu.fi

Abstract
Programming language research is becoming method con-

scious. Rigorous mathematical or empirical evaluation is

often demanded, which is a good thing. However, I argue

in this essay that concept analysis is a legitimate research

approach in programming languages, with important lim-

itations. It can be used to sharpen vague concepts, and to

expose distinctions that have previously been overlooked,

but it does not demonstrate the superiority of one language

design over another. Arguments and counter-arguments are

essential to successful concept analysis, and such thoughtful

conversations should be published more.

CCS Concepts • Software and its engineering → Gen-
eral programming languages; • General and reference→
General literature;

Keywords programming language research, non-empirical

research, research methodology, concept analysis, philoso-

phy, argumentation

ACM Reference Format:
Antti-Juhani Kaijanaho. 2017. Concept Analysis in Programming Lan-

guage Research. In Proceedings of 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!’17). ACM, New York, NY, USA,

14 pages.

https://doi.org/10.1145/3133850.3133868

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00

https://doi.org/10.1145/3133850.3133868

1 Introduction
Traditionally, programming language research has not been

very self-conscious about research methodology. This is

slowly changing, in that the premier venues like OOPSLA are

requiring rigorous validation, and some authors (including

me) are pushing for the wider acceptance of human-factors

research [e. g., 35, 71, 91, 97]. It seems to me that this method-

ological awakening is a bit too focused on the traditional

Humean duality—

“When we run over libraries, persuaded of these

principles, what havoc must we make? If we

take in our hand any volume [. . .] let us ask,

Does it contain any abstract reasoning concern-
ing quantity or number? No. Does it contain any
experimental reasoning concerning matter of fact
and existence? No. Commit it then to the flames:

for it can contain nothing but sophistry and illu-

sion.”

— David Hume [39], last paragraph, emphasis in

the original

—that is, only mathematical and empirical reasoning
1
are

permitted in the halls of science. Except for such dogmatism,

I too join in the push for human-factors empirical research.

My goal in this essay is to highlight another worthy re-

search approach, one that has been used in this field since

before there were actual computers and is still commonly

used. I speak of concept analysis, or the philosophical analy-

sis of concepts.
2
Very rarely do people call attention to the

fact that they are taking that approach, and sometimes this

lack of explicit discussion of the methodology confuses the

authors or the readers into thinking that they are doing some-

thing else. When authors are confused, they make claims

1
When Hume was writing, the modern concept of a controlled experiment

and themodern disputes among empirical researchers had not been invented

yet, so Hume’s “experimental reasoning” should not be read to exclude

qualitative research.
2
Note that I am not talking about the phases of software development that

are sometimes called “analysis” or “conceptual design”, discussed by, e. g.,

Jackson [42]. Nor am I talking about the lattice-theoretical “formal concept

analysis” originally proposed by Wille [102]. It is unfortunate that the same

words have similar but crucially different meanings in the same field. It is

all the more confusing that the meanings are not totally unrelated.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 1

https://doi.org/10.1145/3133850.3133868
https://doi.org/10.1145/3133850.3133868

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

that are not warranted by their argument. When readers are

confused, they think the paper reports bad research when it

merely needs to be presented better.

Here is what I mean by concept analysis:

• Concept analysis means taking a vague concept and
proposing a sharper replacement. Sometimes the result

of the analysis is instead that the original concept is in-

coherent and must be abandoned. The classic example

of the former is the analysis of mechanical calculation

by Turing [99]. A well-known example of the latter

is the analysis of inheritance in statically typed lan-

guages by Cook et al. [15], where they showed that

the then-predominant idea of conflating inheritance

with subtyping is incoherent.

• Concept analysis also means taking other people’s anal-
yses and subjecting them to exacting scrutiny. When an

analysis does not hold up under scrutiny, it would ben-

efit the field if the scrutineer would present a thought-

ful counter-argument, and perhaps even their own

analysis of the same concept. This ought to repeated

until a rough fixed point (though not necessarily an

agreement) is reached. Sadly, this sort of productive

scholarly discussion appears to be all but absent in the

literature of our field.

When distinguishing these meanings is needed, I will call

them analysis as doctrine and analysis as dialogue.
In this essay, I will first argue that conceptual questions

have been asked and answered in this field for decades, and

thatmathematical and empirical methods do not suffice. I will

introduce the basic philosophical ideas regarding concepts

in Section 2. I will show that questions regarding concepts

have been asked in all seriousness from the beginning of

our field to the present day; the argument in Subsection 3.1

accomplishes this by pointing out examples from the litera-

ture from the 1930s to the present day. I will then argue, in

Sections 3.2 and 3.3, that those questions cannot be answered

using mathematical or empirical methods.

I will then establish the suitability of philosophical analy-

sis as both doctrine and dialogue for answering conceptual

questions. In Section 4, I will argue that philosophical con-

cept analysis backed by an argument can answer conceptual

questions, but that it requires a practice of critical dialogue,

not just the publication of separate analyses. I will then, in

Section 5, endorse previously published proposals (with my

amendments) for the assessment of philosophical essays in

the programming language field. Finally, in Section 6, I will

discuss what contribution concept analysis can and cannot

make.

This essay is best viewed as belonging inmethodology—the
interdisciplinary field that studies the way research ought

to be conducted, both in general and as applied to particular

studies (see, e. g., Cecez-Kecmanovic [11], Hammersley [34]).

The field of application I am discussing is programming lan-

guage research, though my ideas may also be relevant to

other subfields of computer science and software engineer-

ing. Because of the subject matter, I draw heavily in this essay

on both the philosophy and the social science literature.

Methodological works in programming language research

are, to the best of my knowledge, fairly rare. Recently sev-

eral authors have published methodological critiques of this

field (see, e. g., Hanenberg [35], Markstrum [64], Stefik and

Hanenberg [91, 92], Stefik et al. [93]) but of actual positive

methodological essays I am aware of only two. Hanenberg

[36] recently published an introduction to controlled ex-

perimentation in programming language research. In my

dissertation [46], I articulated a research approach of philo-

sophical concept analysis which I then used to explicate the

concept of evidence-based programming language design;

but while my discussion of the approach was detailed, it

was reportedly rather difficult to follow and also lacked a

detailed argument in its favor. This essay follows up on the

basic idea of the dissertation, that of philosophical analysis

as a research approach, and argues for its adoption (as one

approach among many) in programming language research.

My principal contribution beyond that dissertation is the

placement of the approach in the wider context of research

methodology, and the argument I present in its support.

In the field of software engineering, methodological dis-

cussions have a longer pedigree. There are detailed method-

ological expositions of at least case studies [88], controlled

experiments [104], systematic reviews [54], action research

[79], and grounded theory [38, 94]. The information systems

and human-computer interaction research fields have their

ownmethodological traditions (see, e. g., Järvinen [44], Lazar

et al. [56]). Most relevant to this essay, however, is a recent

philosophical concept analysis in software engineering by

Dittrich [19]; it is not a methodological work but it argues,

similarly to this essay, that philosophical argument can be

an appropriate research approach. I base my discussion of

quality criteria on Dittrich’s; but this essay goes much fur-

ther than Dittrich’s paper in articulating and defending the

research approach in detail.

2 Concepts
The literature on concepts is enormous, written over several

millennia, and I cannot do justice to it here; my discussion is

by necessity rather simplistic. For an overview of the relevant

philosophical literature, see the article on concepts in the

Stanford Encyclopedia of Philosophy [62] or in the Internet

Encyclopedia of Philosophy [20]. The latter is written for the

nonspecialist audience and elides much of the complexity.

2.1 The Concept of Concepts
As a first approximation, we can regard concepts as classi-

fication devices. For example, we have the concept of book
2 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

that classifies all material objects as being books or not being

books. Similarly, in the programming languages field, we

have the concept of object-oriented programming language,
which classifies programming languages as object-oriented

or not. This extends even to singleton concepts: Phosphorus
classifies material things as being the morning star or not

(and it turns out only Venus qualifies).

Concepts are important because we think and communi-

cate using them, and we ascribe values to them. For example,

as I am writing this on July 5, 2017, the Rust language web

site at https://www.rust-lang.org/ declares that

“Rust is a systems programming language that

runs blazingly fast, prevents segfaults, and guar-

antees thread safety.”

This describes Rust in terms of technical concepts like “sys-

tems programming language”, “segfault-preventing”, “thread

safety”; the apparent intent of the writer is that Rust is clas-

sified positively by these concepts, and I venture to say that

the writer intends the reader to consider this a good thing.

Whether these are true statements about Rust depends not

only on Rust but also on what the concepts “systems pro-

gramming language” and “thread safety” actually are. The

conceptual question here is far from trivial.

It would, however, be wrong to hold that concepts are just

sets or classes, in the set-theoretic sense. The classic example,

due to Frege [27], concerns the singleton set that contains

Venus but corresponds to more than one concept: Phosphorus
is Venus as seen in the morning sky, and Hesperus is Venus
as seen in the evening sky, but it would be wrong to say that

these are the same concept (which they would be if the set

was all that mattered). It is customary to call the set or class

associated with a concept its extension; whatever it is that
distinguishes two co-extensional concepts is then called a

concept’s intension (see, e. g., Chalmers [12] and Rapaport

[85]). Similarly, it is wrong to say that the unicorn and the

tooth fairy are the same concept even though they have the

same (empty) extension; again, it is the intension that differs.

Since concepts are used for communication and thinking,

there is a third aspect to them: designators. Each concept

must be named by some linguistic expression, sometimes

more than one, and its name is significant in that it can

suggest the intension of the concept.

2.2 Universals versus Social Constructions
The nature of concepts is itself an unsettled matter. It seems

natural to me to suppose that there is a real (although in-

tangible) object that the numeral 2 denotes. It is, of course,

possible to deny this and hold, for example, that there are

no numbers (as distinct from symbols used in calculation

and other linguistic elements) and we only make the idea up

to explain in our heads how certain formal systems behave.

Similarly, one can hold that there is a real (but intangible) ob-

ject that the word “type” denotes when we are talking about

programming language theory, or one can hold that “type” is

merely a word that we use to explain the behavior of certain

formal systems. Call the first position realist and the “real”

concepts universals; the second position can be called formal-
ist. For a formalist, conceptual questions are nonsensical—

they merely “arise from our failure to understand the logic

of our language” (Wittgenstein [103], Proposition 4.003)

Further, one can deny that, for example, euros on a bank

account exist and hold that they are a fiction we make up to

explain (or maintain) our society. This is quite plausible inmy

view, as money in these days is fiat money—that is, it is not
backed by anything independently valuable like gold, like it

used to be. Yet, it is very hard to deny that money in the bank

is generally treated as real and as good as (or nowadays, with

governments frowning on untraceable transactions, better

than) cash. In practical terms, then, money in the bank is
real; if one needs to pacify an inner objection, one can add

that this reality is a mere metaphor or a model. Because this

reality is qualitatively different from our ordinary physical

reality, we might talk of social reality.
Now, a social reality (including money in the bank) is

quite literally created by people interacting. When I buy

groceries and pay using my debit card, the cashier acting

for the store owner accepts it (and consequently my money

in the bank) as equal or more in value than the groceries

I buy. But my money in the bank is valuable only because

the cashier, and everybody else, treats it as valuable. If we

collectively decided to ignore bank money, it would become

worthless. This is what is meant when people talk of the

(social) reality being socially constructed (see generally, e. g.,

Berger and Luckmann [4], Hacking [32], Searle [90]).

It is perfectly possible for a concept to have some fea-

tures grounded in the material reality and acquire a social

construction on top. A well known example comes from so-

ciology: there are undeniable biological differences between

human beings that are generally used to classify people as

man or woman, but there are many features of these con-

cepts that are not necessary consequences of those biological

differences; thus, while the concepts of man and woman un-

doubtedly have some grounding in material reality, most of

what they are is socially constructed (see, e. g., Berkowitz

et al. [5], Lorber [61], West and Zimmerman [101]).

In the social sciences, a claim of social construction is

usually multifaceted (with the fourth and fifth facets being

optional) [32]: first, the target concept is generally seen as

natural and unchangeable; second, the target concept in fact

is not natural but constructed by humans; third, the target
concept could have been constructed differently, or it could

have never existed; fourth, the target concept is morally

wrong in its current shape; and fifth, the target concept

should bemodified or abolished. For example, the concepts of

man and woman have been attacked in just this manner [69].

The programming language context brings a twist to these

philosophical and social theoretical concerns. Traditional

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 3

https://www.rust-lang.org/

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

philosophy aims to describe the objective reality beyond

that which physics and the other natural sciences are able to

tell us (hence, metaphysics, which is a branch of philosophy

focusing on the nature of the reality); similarly, the social sci-

ences aim to describe (and often transform) the social reality.

However, programming language research largely is not in-

terested in what is out there—it is about what is not there yet,

but could be. While there are some constraints imposed by

reality on the design of programming languages—the theory

of computation and other finite mathematics being the most

important, and the psychology of programmers also having

some influence—most of programming language design is

what it says on the tin: design. Programming languages are

constructed by humans, and most of the abstract concepts

related to them are quite obvious social constructions.

3 Conceptual Questions
In this section, I will introduce a class of research questions

and argue that these questions cannot be answered using

conventional research techniques—they are neither mathe-

matical nor empirical in nature.

3.1 Examples
I will start by recounting three important concepts in com-

puting science that have been (or currently are) subject to

controversy. The first takes us to a time before there were pro-

gramming languages or even computers. In the early 20th

Century, mathematicians were struggling with profound

questions. One important issue was to figure out what it

means for something to be a formal system; as Gödel [30]

noted in a 1964 postscriptum to his 1934 lecture notes, this

required clarifying the concept of a mechanical procedure

(or the equivalent concept of effective calculability or com-

putability). After all, the “essence” of a formal system “is that

reasoning is completely replaced by mechanical operations”

[30, p. 370]. Multiple answers were offered in the mid-1930s:

• Church [13] proposed both the lambda calculus (due

jointly to himself and his student Kleene) and the no-

tion of general recursion (which he attributed jointly

to Herbrand and Gödel) as equivalent definitions of

effective calculability;

• Turing [99] proposed, independently of Church, his

computing machines, now called Turing machines, as

a definition of computability.

• Post [84] specified, independently of Turing, amodel of

computation very similar to Turing’s, and conjectured

it to be formally equivalent to general recursion.

Both Church and Turing explicitly claimed to have found

a precise concept to replace the intuitive but vague con-

cepts used in the previous literature. They thus answered

the conceptual question, what does it mean to calculate me-

chanically? Both answers are now generally accepted as

adequate.

My second example is a bundle of concepts that is still ex-

tremely important, namely object-orientation. The phrase

object-oriented programming was coined by Alan Kay in

around 1967 as the name of a fairly specific concept of

programming—live cells communicating by messages, with

no explicit data present—inspired by and largely based on

existing ideas, including those of the Simula 67 programming

language [50, 51]. Eventually object-oriented became a con-

cept classifying not only ways of programming but various

programming languages and even processor architectures
3
,

but it became increasingly opaque what it actually means.

Like an early writer predicted [86, p. 51], “Everyone will be

in favor of it. Every manufacturer will promote his products

as supporting it. Every manager will pay lip service to it.

Every programmer will practice it (differently). And no one

will know just what it is.” Some years later, another writer

discussed the nature of OO in an essay called “My Cat Is

Object-Oriented” [53].

About 25 years later, another writer lamented that “we

do not yet thoroughly understand the fundamental concepts

that define the OO approach” [2, p. 123]. Soon after, nearly a

decade ago, Cook [14] argued that the textbook definition

of objects is conceptually wrong. By then, as now, object-

oriented programming was a topic taught to university fresh-

men in all information technology disciplines, and its core

has thus essentially ossified; yet, the same conceptual issues

continue to haunt those very students [105] and even inspires

research [74, 75]. The conceptual questions like “What are

objects?” and “What is inheritance?” remain relevant.

My third example is still a major research question. Exactly

when did type become a concept (as opposed to just a word

used in its ordinary meaning) in the field of programming

languages, remains unclear despite several authors recently

having investigated the history [46, 52, 65, 66]. One possible

account starts with the (ramified) theory of types proposed

a century ago by Russell [89], which eventually begat the

simple theory of types which evolved into the typed lambda

calculus all programming language theorists know and love.

Another account starts from the word “type” used in the

Fortran manuals and the specification of Algol 60. Regard-

less of which historical account one accepts, it is clear that

the concept of type is alive and controversial: apart from

the context of a single specific language, where one can get

authoritative answers from a language standard or a refer-

ence implementation, there is no consensus answer to such

questions as “What is a type?” or even whether “dynamically

typed” is a meaningful or a nonsensical term.

3.2 They Are Not Mathematical
It seems obvious to consider two of my three examples as

mathematical questions. The answer to “what is a mechanical

3
Although the iAPX 432 was described as “object-based”, it was made clear

that this was meant to include the “object-oriented” property; see [41].

4 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

procedure” or “what is a type”, at least, seems mathematical:

Turing machines, the lambda calculus, the theory of gen-

eral recursion, the simple theory of types, and System F (to

mention some examples) all are indisputably mathematical

objects of great ingenuity and importance, and we certainly

expect research papers introducing type systems to discuss

them in a very mathematical way (stating their essence as

formal systems and proving the usual soundness theorems).

Yet I claim that the questions and the method for answering
them are not mathematical at all.

To the extent that mathematics has a method, it must be

the axiomatic method. It is a method of exposition: the com-

pleted mathematical theory is presented as starting from

certain fundamental assumptions and developing through

a series of definitions and proved lemmas, and culminating

in a central theorem, and perhaps, starting from new defini-

tions, repeating ad nauseam. It is not the way mathematics

is actually made (for discussion, see, e. g., [22, 55, 96]). For

the actual process of coming up with this axiomatically pre-

sented theory, there is no method that I am aware of. Yet, for

present purposes, a method of exposition is quite enough.

Suppose that I were to try to answer the question “what

is a type” using the axiomatic method. To start, I would have

to set up axioms. Classically, as Hutton and Gregory [40]

phrased it, “An Axiom, or Maxim, is a self-evident proposi-
tion; requiring no formal demonstration to prove its truth;

but received and assented to as soon as mentioned.” (p. 2,

emphasis in the original). Disregarding that this view of ax-

ioms is obsolete, where would I find self-evident propositions

regarding the “type” concept that would be assented to by

everyone? Surely if there are such things, they would have

been found already, and the matter would no longer be alive

The modern mathematician tends to view axioms simply—

in the words of Feferman [23]—as “definitions of kinds of

structures which have been recognized to recur in various

mathematical situations” (p. 403). But when trying to settle

the concept of “type” I am not dealing with the abstraction

of a recurring structure from particular instances into a gen-

eral theory; or at least, it is precisely the question of what

abstraction is best chosen that is at issue. Thus, I find no help

here either.

However, there is one additional viewpoint to mathemati-

cal axioms that needs to be considered. Feferman [23] called

a certain axioms “fundamental”: these are “axioms for such

fundamental concepts as number, set and function that un-

derlie all mathematical concepts” (p. 403, emphasis in the

original). Easwaran [21] argues, convincingly to me, that

such axioms are a way for mathematicians to insulate mathe-

matics from philosophy: mathematicians can decide individ-

ually on what philosophical basis they adopt them, but once

they have each done that, they can work together to explore

the mathematical reality they establish. Indeed, Easwaran

argues that presuppositions move from explicitly stated as-

sumptions to unstated axioms once they become generally

accepted. Now, even this way of looking at axioms denies

me: in order to set up axioms, I need to convince everyone

that they are the right ones.

The mathematical content of any theorems proved is nec-

essarily implicit already in the axiom system; the statement

and proof of a theorem explores the necessary consequences
of the choice of axioms, giving the researcher, at most, the

opportunity to discover that they made wrong turns some-

where earlier, and must revise (as Lakatos [55] discusses).

Whether the axioms truly describe the concept that the re-

searcher wishes them to describe is beyond the reach of

mathematics, and like Easwaran argues, is a matter for phi-

losophy to decide.

Thus it appears that these are not mathematical questions,

nor can they be answered using mathematical methods. In

the words of Turing [99, p. 249]:

“. . . to show that the “computable” numbers in-

clude all numbers which would naturally be re-

garded as computable. All arguments which can

be given are bound to be, fundamentally, appeals

to intuition, and for this reason rather unsatis-

factory mathematically.”

3.3 They Are Not Empirical
At the most abstract level, we may regard research as a

process generating answers to questions, or evaluating the

truth value of propositions. These two characterizations are

clearly linked, as a question together with an answer is a

proposition, and any proposition can be viewed as a question

together with the proposed answer “yes”.

Philosophers have distinguished between a priori and
a posteriori propositions at least since the 18th Century and

Kant [49], based on whether sense observations are required

to evaluate it: a priori propositions can be evaluated using

reason alone, from the armchair if you will, while a posteriori
propositions require some observation of the real world to

evaluate. For example, it is a priori true that 1 + 1 = 2, but it

is a posteriori false that the Earth is a flat disk.

In scientific
4
practice, it is more common to use the adjec-

tive empirical, which refers to obtaining knowledge by ob-

serving the reality using the senses, and derives from the an-

cient Greek adjective ἐµπειρία (empeiria), ‘experienced’ [76],

describing an ancient school of physicians who relied on

personal and collective experience instead of theoretical rea-

soning [26, 82]. We can speak of empirical questions and

empirical propositions, meaning a posteriori questions and
propositions; similarly, we speak of empirical research, mean-

ing the use of sense observation to generate scientific results

(or, as one anonymous reviewer put it, making the results “be

4
In this essay, I use “science” and its variants in a broad sense, including

physics, computing, humanities, and social science, roughly coextensively

with “scholarship” and “research”. The issue of demarcation—distinguishing

science from pseudoscience (cf. Popper [83] and Pigliucci and Boundry

[81])—is beyond the scope of this essay.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 5

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

based on data”). Conversely, there are questions and propo-

sitions that are not empirical, meaning that they are a priori.
There are two possible fundamental routes to my claim

that these conceptual questions are not empirical, depending

on one’s ontological commitments, and one practical route.

One could hold that there are universals such as redness

or the number 42 that are independent of time and place;

or that the programming concepts of computability, objects,
and types are universals, existing independently of time,

space, and us humans. Such universals—being independent

of spacetime—cannot be perceived by the senses, and thus

they cannot be empirical.

One could also take a constructionist view. The idea here

is that concepts are created by humans, as they use them

in discussions. Here the question of empiricality is trickier.

Certainly once a constructionist concept has been gener-

ally accepted, that is, once there is a social construction of

that concept [4, 32], it becomes an empirical question to

determine what that social construction is. However, that

empirical question is mostly of interest to educators and

outside researchers (such as those in the field of science and

technology studies).

For us who are participants in this field—the insiders—the

more important question, from a constructionist point of

view, is, how should we construct these concepts. At that

point, we are no longer asking questions about things that

exist in any reality, but making decisions about what to cre-

ate in the future. No sense experience can, in general, answer

questions about things that do not (yet) exist. Further, sense

experience can reveal only what is; to move from that is to
should requires a nonempirical principle; thus, while empiri-

cal considerations influence the answer to these questions,

they cannot alone decide them.

One does not, of course, have to commit to universals or

constructionism in toto; it is perfectly rational to regard some

concepts as universals and some other concepts as (social)

constructions. For example, personally I am inclined to view

computability as a universal concept while objects and types

are, in my view, best regarded as constructions (though not

necessarily, at this point, social constructions).

Another way to think about this issue is reflect on the

various kinds of empirical methodology. The gold standard

for empirical evidence, the randomized controlled experi-

ment, is not suited for answering conceptual questions; the

best it can do is to measure the indirect effects of adopting

various conceptual models. However, it is certainly possible,

at least in principle if not in practice, to ascertain the social

construction (if any) of a concept by the means of surveys

(either of the literature, as was done by, e. g., Armstrong

[2] and Jordan et al. [45], or of the relevant social groups,

though I am not aware of anyone having done that in our

field), but this does not answer the interesting question of

whether this construction is in some sense the correct or the

best one.

4 Methodology
In this section, I will explicate and defend the research ap-

proach of philosophical concept analysis for answering con-

ceptual questions. I must, however, first give some back-

ground.

Methodology requires, among other things, defining the

goals of (particular kinds of) research, and arguing that cer-

tain ways of conducting research fulfill those goals, perhaps

with caveats. As such, methodology is closely connected to

philosophy, particularly ontology (the theory of the nature

of the reality) and epistemology (the theory of knowledge).

We can categorize research by research approaches (see,
e.g., Vessey et al. [100]), roughly corresponding to what some

writers (e. g., Lincoln and Guba [59]) call research paradigms.
Research approaches differ from each other in their ontolog-
ical (what is the nature of reality), epistemological (what is
the nature of knowledge), methodological (how does one go

about generating knowledge), and axiological (what knowl-
edge is valuable) assumptions [59, p. 37]. More concretely,

research may be guided by a research method,5 which is “a

specific technique or design used to conduct a study” [100,

fn. 1 on p. 248]; each research approach tends to favor par-

ticular methods, though the relationship is not bijective.

Ontologically, one can make a distinction between differ-

ent realities. This word choice probably seems too grand and

even preposterous, but it is standard usage in this context

(see, e. g., Moon and Blackman [70]). There are three cate-

gories of reality I wish to point out: the physical reality, the

social realities, and what I would tentatively call the soft-

ware reality. The physical reality is a familiar concept: as I, a

physics layman, currently understand it, it contains matter

and energy and has four spacetime dimensions. A social re-
ality consists of institutions that some specific collection of

people interacting together agree to exist (see, e. g., Berger

and Luckmann [4], Searle [90]); since groups of people can

disagree, there may be multiple social realities. Finally, the

software reality consists of all the programs and data stored

in computer storage media, including all the currently run-

ning instances of programs. When research methodologists

talk of ontology, they mean a theory of reality in this sense.

At the highest level of abstraction, we can distinguish

between empirical and non-empirical research approaches,

based on whether they deal in a posteriori or a priori knowl-
edge, respectively. One common empirical approach that

Järvinen [44, p. 10] calls theory-testing, Vessey et al. [100,

p. 251] call evaluative–deductive, and many writers (e. g.,

Guba and Lincoln [31], Lincoln et al. [60], Nekrašas [73])

call positivist, transports the research approach dominant in

empirical physics to the study of social reality: it assumes

5
Research methods should be distinguished from the concept of the scientific
method, which “contains firm, unchanging, and absolutely binding principles

for conducting the business of science” [24, p. 7]. There are good reasons to

think that there is no such thing (cf. Feyerabend [24] and Kaijanaho [47]).

6 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

that there is an single, objective social reality, independent

of individuals, which can be reliably captured by using the

human senses as augmented by measurement devices. This

approach favors the controlled experiment and aims to gener-

ate universally applicable laws that can be used for prediction

and control.

Another approach, called constructivist by Lincoln and

Guba [59] (previously naturalistic, see [58]) and evaluative–
interpretive by Vessey et al. [100, p. 251], explicitly rejects

the model of physics for studying human society and posits

that there are multiple social realities, defined by particular

(groups of) people, and that each reality can only be captured

by interacting by the defining people (which quite possibly

changes that reality). This approach favors ethnography and

other forms of qualitative inquiry, and aims to generate faith-

ful descriptions of the realities under examination.

A third approach, called critical theory by Guba and Lin-

coln [31] and evaluative–critical by Vessey et al. [100, p. 251],
assumes that there is a common social reality which was con-

structed in the past and has, over time, ossified and become

apparently objective and real for most intents and purposes;

the goal of critical theory is to expose them as the change-

able constructs that they are, and to take action to transform

such reality into something the researcher regards more eth-

ical. Critical theory favors qualitative methods and aims to

generate changes in the social reality.

The computing disciplines have developed an additional

empirical research approach not derived from the social sci-

ence traditions. Here, the reality of interest is the software

reality, and knowledge is generated by the means of examin-

ing or running programs. The most prominent method here

is computational experiments—the study of algorithms by

exposing their implementations to a wide variety of automat-

ically generated stimuli and measuring the effort expended

by the implementation as a function of stimulus parame-

ters [6, 28, 29, 37, 48, 67, 72]; it is relevant to programming

language research mostly in the study of implementation

techniques.

There are alsomultiple non-empirical research approaches.

Discussing the information systems field, Hamilton and Ives

[33] distinguished conceptual research from other nonempir-

ical research (e. g., tutorials and reviews—though I would cat-

egorize well-done literature reviews as empirical), and Alavi

and Carlson [1] listed conceptual, illustrative, and applied

concepts as sub-classes of non-empirical research. Vessey

et al. [100, p. 251], in their unified taxonomy of computing re-

search, list two classes of non-empirical research approaches,

that of descriptive (including system descriptions and litera-

ture reviews) and formulative (including framework, guide-

line, model, taxonomy, and concept formulation) research ap-

proaches. Some other writers, for example Järvinen [43, 44]

and Hanenberg [35], only credit one non-empirical approach,

that of mathematical (including stochastic theoretical) re-

search.

Historically, there was a very influential non-empirical

research approach that is generally labeled as rationalism: it

was claimed either that it is possible to learn truths about

reality by intuition and deduction or that we humans possess

innate knowledge about the reality that we can uncover by

reasoning [63]. Let me be clear that I do not advocate this

sort of rationalism in this essay.

4.1 Philosophical Concept Analysis
All discussion of methodology must start from the basic

assumptions of what sort of reality and what aspects of it

(ontology) are of interest, and what sort is the knowledge

about them that is of interest (epistemology). Only from ex-

plicit consideration of these fundaments can we derive any

kind of principles of methodology for a particular discipline

and research approach.

For concept analysis in programming language research,

the objects of interest are concepts that classify things rel-

evant to programming. Of interest are the software reality

(regarding technological artefacts such as programming lan-

guages) and the social reality (regarding programmers and

their interaction); it is quite possible that some concepts span

both kinds of reality.

The epistemological issue was already broached earlier:

conceptual questions cannot be answered by either mathe-

matical or empirical methods. It is a trickier issue what can
be used, and it is not irrational to conclude that they cannot

be answered at all. It is my intention in this section, however,

to argue that they can be answered, though not with any

sort of certainty of correctness, using philosophical concept

analysis.

I will now state a high-level definition:
6

Definition: A philosophical concept analysis is a claim, sup-
ported by argument, that one concept should be replaced by
another concept.

There are two main variants:

• A classical analysis (see, e. g., McGinn [68]), holds that

these concepts are equivalent, but one of them (the

analysandum) is a vague preexisting concept and the

other (the analysans) is, it is claimed, more precise and

often novel.

• A Carnapian explication, suggested by Carnap [10],

holds that one of the concepts (the explicandum) should

be replaced by the other (the explicatum) because the

latter is a precise and in also other ways better alter-

native; but no equivalence is claimed.

In both variants, the analysans or explicatum will usually

be specified intensionally, by giving necessary and sufficient

conditions, and an analysans or explicatum is intended to be

6
For an overview of the extensive and multiple millennia spanning liter-

ature on this, see the article on analysis in the Stanford Encyclopedia of

Philosophy [3].

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 7

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

usable as a stipulated definition in future work (to allow, so

to speak, the mathematics—or empirical work—to begin).

What Turing did to computability is clearly an example of

conventional concept analysis: he took a vague concept (com-

putability) and provided a precisely defined equivalent (com-

putability by Turing machine), together with a compelling

argument supporting their equivalence (this is discussed in

more detail by, e. g., Davis [17, p. 14] and Kaijanaho [46,

p. 54–55]). Similarly, we can regard the various formal type

systems published in the literature as proposed (Carnapian)

explications of the concept of type (but often without an

accompanying argument supporting it); recently, Kell [52]

offered a clear analysis of the concept with an argument.

Conversely, Petricek [80] argues powerfully that there is no

(nor should there be a) single analysis (or, using his terms,

“definition”) of the concept.

In the context of object-orientation, a radical (Carnapian)

re-explication that rejected object classes and their inheri-

tance, replacing them with prototype objects and delegation,

was discussed by Borning [8] and Lieberman [57]. Both pa-

pers are clearly concept analyses and offer strong arguments

in support of the central claims.

There are two issues to dispose: First: Is a concept analysis,
understood this way, an answer to a conceptual question?

Second: How (or to what extent) can we demonstrate that a

concept analysis is correct?

The first issue is easy: a question of the form “what is

X” is certainly answered by the classical analysis “X is Y”—

whether it is an interesting answer is a separate issue that

does not belong under methodology. The case of a Carnapian

explication is trickier, but if it is established that the expli-

catum truly is a better alternative to the explicandum, the

explication does answer the question.

I now turn to the issue of establishing the correctness of an

analysis or explication. As I have already argued, an appeal

to mathematics or empirical data will not work. At the same

time, an ipse dixit is equally unpersuasive, at least to anyone

looking at the matter critically. What is needed is something

in between. The traditional tool in the philosophical practice

is argumentation.

4.2 Argumentation
In informal logic,

7
an argument consists of a proposition

(the conclusion of the argument) together with one or more

other propositions offered as reasons to accept the conclusion,
where those reasons support the conclusion (see, e. g., Blair

[7, p. 189] or Fisher [25]). A good argument, according to

Blair [7], is one whose reasons are individually acceptable to

7
Informal logic has its roots in the ancient times, but itsmodern development

started in the 1950s following the publication of the seminal works by

Perelman andOlbrechts-Tyteca [78] and Toulmin [98], and furthered, among

other things, by developments in teaching argumentation to university

students in the 1960s (see, e. g., Blair [7], p. 185–186). It is the philosophy

arm of the interdisciplinary field of argumentation theory.

its audience and together (taking into account the structure

of the argument) sufficient to support the conclusion.

These criteria are largely not assessable by using the tools

of formal logic—only in some cases will the argument have

a form that is deductively valid, and even then the ques-

tion of acceptability of the reasons remains. More often it is

possible to identify missing reasons that would transform a

deductively invalid argument into a valid one, but an argu-

ment critique that takes this step risks critiquing a strawman

instead of the argument intended.

A particular common move in modern analytical philos-

ophy is sometimes called a thought experiment, intuition
pump, or themethod of cases. Here, the philosopher sets up a

concrete but hypothetical (and sometimes obviously counter-

factual) scenario and tells its story with an intended obvious

moral. For example, Turing [99, p. 249–250] reasons that his

machine can do everything that a human computer can by

inviting the reader to imagine a human computer at work,

and then transforming that image in ways that—as the reader

can easily agree—do not affect the capability of the computer,

so long as human fallibility is discounted, and eventually

reaching the machine model we now call Turing machines.

Similarly, Strachey [95] and Reynolds [87] argue for the need

for parametric polymorphism by discussing the case of the

map (in the case of Strachey) or the sort (Reynolds) function;
Reynolds then continues to argue for a specific design of the

polymorphic lambda calculus, which can be regarded as an

explication of Strachey’s vague concept of a polymorphic

type system.

It is sometimes appropriate to use empirical or mathe-

matical results as reasons in a philosophical argument. It is,

however, important to remember that since the questions

are not empirical, the argument must have more than empir-

ical data backing it. For example, there is a major difference

between the empirical claim that the (in my case imaginary)

interviewees view objects as data records with associated

procedures and the philosophical claim that objects are data

records with associated procedures. There is no inference

rule justifying the move from an empirical “is” to a philo-

sophical “ought”.

4.3 Standard of Correctness
Consider the standard for when a conceptual analysis is cor-

rect. In the case of a universal concept which is independent

of spacetime and people (assuming such concepts even exist),

all we can hope to have is justified beliefs. An argument can

provide justification for a belief. This justification becomes

stronger if there are multiple arguments, and particularly if

counterarguments are successfully rebutted. The maximum

possible justification is achieved if there is a rational agree-

ment of all relevant people. Similarly, in the case of social

constructions, a concept analysis is correct if it is accepted

as a (new) social construction by the relevant social group;

this requires the agreement of all the relevant people. In

8 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

both cases, the standard of correctness is thus the same as

the standard for objectivity in science in general (see, e. g.,

Popper [83]): intersubjective agreement.

This sort of intersubjective agreement is not guaranteed

by argument, since one can always dispute the reasons given

(their modus ponens is your modus tollens, as a philosophers’
famous saying goes). It can also be achieved by irrational

means, e. g., through indoctrination, but such success cannot

be credited to the analysis. However, argument can (when

used well) create intersubjective agreement: Turing’s argu-

ment regarding computation is a very good example.

The intersubjective agreement angle suggests another

very important aspect to the methodology of concept analy-

sis: it needs a practice of critical dialogue. It is not possible

to delay the publication of an analysis until intersubjective

agreement is demonstrated, for testing for such agreement

requires the prior publication of the analysis. It is only after

publication that we can learn whether the analysis is cor-

rect or not, by the criterion of intersubjective agreement.

If (and when) there are problems identified in the analysis,

these need to be pointed out, so that the original position can

be either refined or abandoned.
8
The literature of concept

analysis thus becomes a conversation.

5 Assessment of a Concept Analysis Essay
As concept analysis is not mathematical or empirical in na-

ture, we should not demand rigorous mathematical proofs

or careful controlled experiments from essays presenting

these analyses. Similarly, the criteria developed for assessing

empirical work—whether quantitative (internal and external

validity, see Campbell [9]) or qualitative (credibility, trans-

ferability, dependability, and confirmability; see Lincoln and

Guba [58])—are concerned with the relationship of the em-

pirical data used to the conclusions, and thus are completely

inapplicable to concept analysis to the extent that it does not

employ original empirical research in developing reasons in

the argument.

But neither is engaging in concept analysis a license to

publish anything whatsoever. It is not so that “anything

goes” [24]; even Feyerabend himself did not deny the value

of discipline-level standards. There are standards in concept

analysis, vague and admittedly subjective though they are.

Dittrich [19, p. 221] proposed to evaluate philosophical

works in software engineering by “rigour of argumentation”

and “relevance of results”. In my dissertation [46, p. 57],

endorsing these broad criteria, I further proposed to eval-

uate rigor (following Paseau [77]) by whether reasons are

stated explicitly and by the extent to which the steps made

in arguments are small; but “rigour is satisfied if the dis-

senting reader is given a clear enough argument that they

8
This critical dialogue is analogous to the publication of replication attempts

of empirical research. For the same reasons, such critical discussion needs

to be encouraged in both empirical and nonempirical research.

can identify relevant points of disagreement and formulate

a reasoned counterargument” [46, p. 57].

I still agree with these proposals. Relevance is always im-

portant, in all fields and all methods. But once relevance is

achieved, there is still much room for both brilliance and

drivel. Since it is not reasonable to expect a concept anal-

ysis to be irrefutable, the optimal level of clarity and rigor

ought to be that which best allows the discussion to continue

thoughtfully. As excessive rigor is often counterproductive

toward that goal, this requires, as Paseau [77] argues, that

an argument is made as rigorous as necessary but no more. I

find it impossible to give general rules delineating that point,

save from the obvious: be rigorous enough to be understood,

and not so rigorous that you are not understood.

I will add one further criterion. Reports of concept analy-

sis should be good scholarship; that is, the argument should

at minimum acknowledge and at best engage seriously and

thoughtfully with previous analyses as well as relevant non-

concept analysis research. Where disagreement exists, the

analysis report should develop a thoughtful counterargu-

ment. The goal of a discussion is frustrated if nobody listens

to others.

In addition to the criteria for argumentation, the evalua-

tion of the analysis or explication being defended deserves

consideration as well. A useful starting point seems to me to

be the Carnap [10, p. 7] criteria for explication: the explica-

tum should be a suitable replacement for the explicandum,

and additionally exact, fruitful (in terms of provoking further

research), and simple. That the explicatum fulfills these cri-

teria should, of course, be defended by the argument offered,

but any reviewer should also make their own independent

assessment regardless of the merits of the argument.

These are all external criteria that are hard for the au-

thor to self-analyze before submission. However, one useful

exercise for the author (beyond the obvious technique of

soliciting private feedback from peers) is to take the role of

the devil’s advocate and try to attack their own argument

with the best counter-arguments they can come up with.

The essay will be stronger once those counter-arguments

are properly dealt with in the text itself.

One potential criterion I would completely reject. One

might think that not being convinced by the argument would

be sufficient grounds for rejecting an analysis. It is not. The

question is rather, does the analysis and its supporting argu-

ment advance the discussion even if it is wrong. This philo-

sophical attitude is well displayed in the following anony-

mous referee comment reported by the philosopher John

Danaher [16]:

“This is a good paper. In the opinion of this re-

viewer, it is wrong at nearly every important

point, but it is wrong in ways that are interest-

ing and important – a genuine contribution to

the philosophical discussion.”

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 9

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

Of course, the essay is a literary form, and writing a good

essay requires more than just presenting a rigorous and

relevant argument with good scholarship. However, such

artistic considerations are beyondmy competence to analyze,

and I will say no more of them.

Finally, I do not mean to suggest that concept analysis

must be accepted in all venues or that it must be funded

by grants. My position is merely that it cannot be rejected

simply because it is concept analysis, or because someone

might see concept analysis as lacking in rigor as a general

matter. Specific analyses can be vulnerable to methodological

criticism (including the lack of rigor), and all publication

venues and all grant agencies have standards that go beyond

methodology; for example, the surprise factor that makes

a claim interesting (cf. Davis [18]) is a common criterion

beyond methodological correctness.

6 Contributions and Non-contributions
I will be blunt here. There are many things that concept anal-

ysis does not contribute to. Hanenberg [35, 36] is quite right
that answering questions regarding usefulness to real hu-

mans in the real world requires empirical work. Attempting

to use philosophical arguments to advance human-factors

claims is foolish. Similarly, a philosophical concept analysis

provides no guarantees of internal consistency, and thus a

philosophical argument cannot be effective in support of any

type system soundness claim.

Similarly, it is a foolish thing for a philosophical argument

to assert itself as the final answer on its topic, or for any

reader to cite it as a source of definitive authority. There is

always room for disagreement in philosophy and concept

analysis.

What concept analysis does contribute is greater clarity

in concepts. Sometimes it will expose fatal flaws in concepts

previously thought to be sound, and sometimes it will demon-

strate that a particular concept is actually ambiguous and

needs to be split into multiple concepts.

Concept analysismatters even to empirical research.When

one is trying to conceive a controlled experiment to measure

the relative ranking of, say, object-oriented programming

language paradigm and functional programming language

paradigm, or static and dynamic typing, onemust decide how

to operationalize these concepts. A rather naïve approach,

but dominant in the literature, is to choose a representa-

tive language from each paradigm or typing discipline (or

to design representative languages for the purposes of the

experiment).

But what justifies generalizing from those languages to

the paradigms? One could simply decline to argue the point,

beyond possibly noting it as a limitation of the study (and this

is a perfectly rational response for a Popperian), but I find

this quite unsatisfying. The question becomes: what could

possibly be offered as a serious argument in support? I can

imagine two contenders: First, one could assert definitions for
the paradigms or typing disciplines that make the problem

go away; for example, defining OO as Smalltalk and FP as

Haskell. But that merely means that if I do not agree with

those definitions, the study becomes utterly irrelevant for

me; it is essentially the same move that mathematics makes

when it postulates axioms. Second, one can offer (or adopt

previously published) analyses of the terms.

This second option is why concept analysis is not just

relevant but necessary for controlled experiments. Concepts

and their analysis are directly relevant to and potentially

dispositive of construct validity and thus of external validity.

Above all, concept analysis is necessary. We cannot avoid

defining the concept of type in type systems work, but if we

simply state a definition by fiat, we are essentially working

hypothetically: if you, dear reader, accept my definition, then

you will benefit from my work; otherwise, never mind. To

move from hypotheticals into assertions of fact, we need to

support our definitions with an analytical argument; we may

be wrong, but at least we will not be hypothetical.

7 Conclusion
There is a place for concept analysis in the toolbox of pro-

gramming language researchers. Done correctly and for the

right reasons, it can contribute significantly to our field.

Denying concept analysis its place in the toolbox has two

possible outcomes. On the one hand, perhaps researchers

will heed that prohibition and avoid concept analysis in the

future. But then, our concepts will be developed by acci-

dent, memetic mutation, and authoritarian decrees. On the

other hand, perhaps researchers will use concept analysis

despite its shunning; but in those circumstances, it must be

done stealthily, disguised as other kinds of research. Such

dishonesty would not bode well for our research community.

I hold that concept analysis belongs here. Perhaps you

disagree. If you do, I hope to read your counterargument in

a published essay soon.

Acknowledgments
I first presented versions of these claims in my doctoral dis-

sertation [46], though the details and my arguments have

evolved since then. Accordingly, thanks are due to Tommi

Kärkkainen, Vesa Lappalainen, and Ville Tirronen (my doc-

toral advisors); Matthias Felleisen and Andreas Stefik (the

external reviewers), and Lutz Prechelt (my opponent in the

dissertation defense). My thinking on these issues has been

influenced by discussions, in particular, with Stefan Hanen-

berg, Ville Isomöttönen, and Maija Tuomaala, as well as the

participants of the Dagstuhl Seminar 15222. It should be

noted that these people do not in all cases share my views

on these issues. The anonymous reviewers gave very useful

feedback, which has helped me improve this essay quite a

10 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

bit. Portions of the thinking reported here was done while I

was visiting the University of Duisburg–Essen in early 2015.

References
[1] Maryam Alavi and Patricia Carlson. 1992. A Review of MIS Research

and Disciplinary Development. Journal of Management Information
Systems 8, 4 (1992), 45–62.

[2] Deborah J. Armstrong. 2006. The Quarks of Object-Oriented Devel-

opment. Commun. ACM 49, 2 (2006), 123–128. https://doi.org/10.
1145/1113034.1113040

[3] Michael Beaney. 2016. Analysis. In The Stanford Encyclopedia of
Philosophy (summer 2016 ed.), Edward N. Zalta (Ed.). Metaphysics Re-

search Lab, Stanford University, Stanford, CA. https://plato.stanford.
edu/archives/sum2016/entries/analysis/

[4] Peter J. Berger and Thomas Luckmann. 2011. The Social Construction
of Reality: A Treatise in the Sociology of Knowledge. Open Road, New

York.

[5] Dana Berkowitz, Namita N. Manohar, and Justine E. Tinkler. 2010.

Walk Like a Man, Talk Like a Woman: Teaching the Social Con-

struction of Gender. Teaching Sociology 38, 2 (2010), 132–143. https:
//doi.org/10.1177/0092055X10364015

[6] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris

Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and

Ben Wiedermann. 2008. Wake Up and Smell the Coffee: Evaluation

Methodology for the 21st Century. Commun. ACM 51, 8 (Aug. 2008),

83–89. https://doi.org/10.1145/1378704.1378723
[7] J. Anthony Blair. 2012. Groundwork in the Theory of Argumentation.

Number 21 in Argumentation Library. Springer, Dordrecht. https:
//doi.org/10.1007/978-94-007-2363-4

[8] A. H. Borning. 1986. Classes Versus Prototypes in Object-Oriented

Languages. In ACM ’86 Proceedings of 1986 ACM Fall joint computer
conference. IEEE Computer Society, Los Alamitos, CA, 36–40. http:
//dl.acm.org/citation.cfm?id=324493.324538

[9] Donald T. Campbell. 1957. Factors Relevant to the Validity of Experi-

ments in Social Settings. Psychological Bulletin 54, 4 (1957), 297–312.

https://doi.org/10.1037/h0040950
[10] Rudolf Carnap. 1962. Logical Foundations of Probability (2 ed.). Uni-

versity of Chicago Press, Chicago.

[11] Dubravka Cecez-Kecmanovic. 2011. On Methods, Methodologies and

How They Matter. ECIS 2011 Proceedings. (2011). http://aisel.aisnet.
org/ecis2011/233/

[12] David J. Chalmers. 2002. On Sense and Intension. Noûs—Philosophical
Perspectives 36, s16 (2002), 135–182. https://doi.org/10.1111/1468-0068.
36.s16.6

[13] Alonzo Church. 1936. An Unsolvable Problem of Elementary Number

Theory. American Journal of Mathematics 58, 2 (1936), 345–363. https:
//doi.org/10.2307/2371045

[14] William R. Cook. 2009. On Understanding Data Abstraction, Revisited.

In OOPSLA ’09 Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications.
ACM, New York, 557–572. https://doi.org/10.1145/1640089.1640133

[15] William R. Cook, Walter L. Hill, and Peter S. Canning. 1990. Inher-

itance Is Not Subtyping. In POPL ’90 Proceedings of the 17th ACM
SIGPLAN–SIGACT symposium on Principles of programming languages.
ACM, New York, 125–135. https://doi.org/10.1145/96709.96721

[16] John Danaher. 2015. How I Write for Peer Review. (Feb. 2015). Re-

trieved April 22, 2017 from http://philosophicaldisquisitions.blogspot.
fi/2015/02/how-i-write-for-peer-review.html

[17] Martin Davis. 1982. Why Gödel Didn’t Have Church’s Thesis. In-
formation and Control 54, 1–2 (1982), 3–24. https://doi.org/10.1016/

S0019-9958(82)91226-8
[18] Murray S. Davis. 1971. That’s Interesting! Towards a Phenomenol-

ogy of Sociology and a Sociology of Phenomenology. Philosophy
of the Social Sciences 1, 2 (1971), 309–344. https://doi.org/10.1177/
004839317100100211

[19] Yvonne Dittrich. 2016. What does it mean to use a method? Towards

a practice theory for software engineering. Information and Software
Technology 70 (2016), 220–231. https://doi.org/10.1016/j.infsof.2015.
07.001

[20] Dennis Earl. no date. Concepts. Internet Encyclopedia of Philoso-

phy. (no date). Retrieved 2017-07-05 from http://www.iep.utm.edu/
concepts/

[21] Kenny Easwaran. 2008. The Role of Axioms in Mathematics. Erkennt-
nis 68, 3 (2008), 381–391. https://doi.org/10.1007/s10670-008-9106-1

[22] Johannes Emerich. 2016. How Are Programs Found: Speculating

about Language Ergonomics with Curry–Howard. In Onward! 2016
Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM,

New York, 212–223. https://doi.org/10.1145/2986012.2986030
[23] Solomon Feferman. 2000. Why the Programs for New Axioms Must

Be Questioned. Bulletin of Symbolic Logic 6, 4 (2000), 401–413. https:
//doi.org/10.2307/420965

[24] Paul Feyerabend. 2010. Against Method (4 ed.). Verso, London.

[25] Alec Fisher. 1988. The Logic of Real Arguments. Cambridge University

Press, Cambridge.

[26] Michel Frede. 1987. Essays in Ancient Philosophy. University of

Minnesota Press, Minneapolis.

[27] Gottlob Frege. 1948. Sense and Reference. Philosophical Review 57, 3

(1948), 209–230. https://doi.org/10.2307/2181485 Translated from the

German “Über Sinn und Bedeutung” (1892) by Max Black.

[28] Ian P Gent, Stuart A. Grant, Ewen MacIntyre, Patrick Prosser, Paul

Shaw, Barbara M Smith, and Toby Walsh. 1997. How Not To Do
It. Research Report 97.27. University of Leeds, School of Computer

Studies. Retrieved 2017-06-28 from https://www.imbe.leeds.ac.uk/
computing/research/publications/reports/1997/1997_27.pdf

[29] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statisti-

cally Rigorous Java Performance Evaluation. In OOPSLA ’07 Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications. ACM, New York,

57–76. https://doi.org/10.1145/1297105.1297033
[30] Kurt Gödel. 1986. On undecidable propositions of formal mathe-

matical systems (1934). In Kurt Gödel – Collected Works – Volume
1 (Publications 1929–1936), Solomon Feferman, John W. Dawson, Jr.,

Stephen C. Kleene, Gregory H. Moore, Robert M. Soloway, and Jean

van Heijenoort (Eds.). Oxford University Press, New York, 346–371.

[31] Egon G. Guba and Yvonna S. Lincoln. 1994. Competing Paradigms in

Qualitative Research. In Handbook of Qualitative Research, Norman K.

Denzin and Yvonna S. Lincoln (Eds.). SAGE, Thousand Oaks.

[32] Ian Hacking. 1999. The Social Construction of What? Harvard Univer-

sity Press, Cambridge, MA.

[33] Scott Hamilton and Blake Ives. 1982. MIS Research Strategies. Infor-
mation & Management 5, 6 (1982), 339–347. https://doi.org/10.1016/
0378-7206(82)90033-7

[34] Martyn Hammersley. 2011. Methodology: Who Needs It? SAGE, Lon-

don. https://doi.org/10.4135/9781446287941
[35] Stefan Hanenberg. 2010. Faith, Hope, and Love: An essay on software

science’s neglect of human factors. In OOPSLA ’10 Proceedings of
the ACM international conference on Object oriented programming
systems languages and applications. ACM, New York, 933–946. https:
//doi.org/10.1145/1932682.1869536

[36] Stefan Hanenberg. 2017. Empirical, Human-Centered Evaluation of

Programming and Programming Language Constructs: Controlled

Experiments. In Tutorial Lectures of the Grand Timely Topics in Soft-
ware Engineering: International Summer School GTTSE 2015 (Lecture

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 11

https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1145/1113034.1113040
https://plato.stanford.edu/archives/sum2016/entries/analysis/
https://plato.stanford.edu/archives/sum2016/entries/analysis/
https://doi.org/10.1177/0092055X10364015
https://doi.org/10.1177/0092055X10364015
https://doi.org/10.1145/1378704.1378723
https://doi.org/10.1007/978-94-007-2363-4
https://doi.org/10.1007/978-94-007-2363-4
http://dl.acm.org/citation.cfm?id=324493.324538
http://dl.acm.org/citation.cfm?id=324493.324538
https://doi.org/10.1037/h0040950
http://aisel.aisnet.org/ecis2011/233/
http://aisel.aisnet.org/ecis2011/233/
https://doi.org/10.1111/1468-0068.36.s16.6
https://doi.org/10.1111/1468-0068.36.s16.6
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/96709.96721
http://philosophicaldisquisitions.blogspot.fi/2015/02/how-i-write-for-peer-review.html
http://philosophicaldisquisitions.blogspot.fi/2015/02/how-i-write-for-peer-review.html
https://doi.org/10.1016/S0019-9958(82)91226-8
https://doi.org/10.1016/S0019-9958(82)91226-8
https://doi.org/10.1177/004839317100100211
https://doi.org/10.1177/004839317100100211
https://doi.org/10.1016/j.infsof.2015.07.001
https://doi.org/10.1016/j.infsof.2015.07.001
http://www.iep.utm.edu/concepts/
http://www.iep.utm.edu/concepts/
https://doi.org/10.1007/s10670-008-9106-1
https://doi.org/10.1145/2986012.2986030
https://doi.org/10.2307/420965
https://doi.org/10.2307/420965
https://doi.org/10.2307/2181485
https://www.imbe.leeds.ac.uk/computing/research/publications/reports/1997/1997_27.pdf
https://www.imbe.leeds.ac.uk/computing/research/publications/reports/1997/1997_27.pdf
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.1016/0378-7206(82)90033-7
https://doi.org/10.1016/0378-7206(82)90033-7
https://doi.org/10.4135/9781446287941
https://doi.org/10.1145/1932682.1869536
https://doi.org/10.1145/1932682.1869536

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

Notes in Computer Science), Jácome Cunha, João P. Fernandes, Ralf

Lämmel, João Saraiva, and Vadim Zaytsev (Eds.). Springer, Cham,

45–72. https://doi.org/10.1007/978-3-319-60074-1_3
[37] Scott Hazelhurst. 2010. Truth in advertising: reporting performance

of computer programs, algorithms and the impact of architecture

and systems environment. South African Computer Journal 46 (2010),
24–37. https://doi.org/10.18489/sacj.v46i0.50

[38] Rashina Hoda, James Noble, and Stuart Marshall. 2011. Grounded

Theory for Geeks. In Proceedings of the 18th Conference on Pattern
Languages of Programs (PLoP), PLoP’11,. ACM, New York, Article 24,

17 pages. https://doi.org/10.1145/2578903.2579162
[39] David Hume. 2011. An Enquiry Concerning Human Understanding.

Project Gutenberg, Salt Lake City. http://www.gutenberg.org/ebooks/
9662

[40] Charles Hutton and Olinthus Gregory. 1836. A Course of Mathematics
(11 ed.). Vol. 1. Gilbert & Livington, London. https://play.google.com/
store/books/details?id=0a4TAAAAQAAJ

[41] Intel 1981. Introduction to the iAPX 432 Architecture. Intel.

http://bitsavers.trailing-edge.com/pdf/intel/iAPX_432/171821-001_
Introduction_to_the_iAPX_432_Architecture_Aug81.pdf

[42] Daniel Jackson. 2015. Towards a Theory of Conceptual Design for

Software. In Onward! 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). ACM, New York, 282–296. https://doi.org/10.1145/2814228.
2814248

[43] Pertti Järvinen. 2008. Mapping Research Questions to Research Meth-

ods. In Advances in Information Systems Research, Education and Prac-
tice (IFIP International Federation for Information Processing), David
Avison, George M. Kasper, Barbara Pernici, Isabel Ramos, and De-

wald Roode (Eds.). Springer, Boston, 29–41. https://doi.org/10.1007/
978-0-387-09682-7-9_3

[44] Pertti Järvinen. 2012. On ResearchMethods. Opinpajan kirja, Tampere.

[45] Howell Jordan, Goetz Botterweck, John Noll, Andrew Butterfield,

and Rem Collier. 2015. A feature model of actor, agent, functional,

object, and procedural programming languages. Science of Computer
Programming 98 (2015), 120–139. https://doi.org/10.1016/j.scico.2014.
02.009

[46] Antti-Juhani Kaijanaho. 2015. Evidence-Based Programming Language
Design—A Philosophical and Methodological Exploration. Number 222

in Jyväskylä studies in computing. University of Jyväskylä, Jyväskylä.

http://urn.fi/URN:ISBN:978-951-39-6388-0 PhD diss.

[47] Antti-Juhani Kaijanaho. 2015. Ramblings inspired by Feyerabend’s

Against Method, Part II: My preliminary take. (Oct. 2015). Retrieved

2017-06-28 from http://antti-juhani.kaijanaho.fi/newblog/archives/
1979

[48] Tomas Kalibera and Richard Jones. 2013. Rigorous Benchmarking in

Reasonable Time. In ISMM ’13 Proceedings of the 2013 international
symposium on memory management. ACM, New York, 63–74. https:
//doi.org/10.1145/2464157.2464160

[49] Immanuel Kant. 1996. Critique of Pure Reason. Hackett, Indianapolis.
Translated from the German “Kritik der reinen Vernunft” (published

in 1781 and 1787) by Werner S. Pluhar.

[50] Alan Kay and Stefan Ram. 2003. Dr. Alan Kay on the Meaning of

“Object-Oriented Programming”. (2003). Retrieved April 13, 2017

from http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
[51] Alan C. Kay. 1996. The Early History of Smalltalk. In History of Pro-

gramming Languages–II, Thomas J. Bergin, Jr. and Richard G. Gibson,

Jr. (Eds.). ACM Press, New York, 511–598. https://doi.org/10.1145/
234286.1057828

[52] Stephen Kell. 2014. In Search of Types. In Onward! 2014 Proceedings of
the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. ACM, New York, 227–241.

https://doi.org/10.1145/2661136.2661154

[53] Roger King. 1989. My Cat Is Object-Oriented. In Object-Oriented
Concepts, Databases, and Applications, Won Kim and Frederick H.

Lochovsky (Eds.). ACM, New York, 23–30.

[54] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2016.

Evidence-Based Software Engineering and Systematic Reviews. CRC,
Boca Raton.

[55] Imre Lakatos. 1976. Proofs and Refutations: The Logic of Mathematical
Discovery. Cambridge University Press, Cambridge.

[56] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017.

Research Methods in Human–Computer Interaction (2 ed.). Morgan

Kaufmann, Cambridge, MA.

[57] Henry Lieberman. 1986. Using Prototypical Objects to Implement

Shared Behavior in Object Oriented Systems. In OOPSLA ’86 Confer-
ence proceedings on Object-oriented programming systems, languages
and applications. ACM, New York, 214–223. https://doi.org/10.1145/
28697.28718

[58] Yvonna S. Lincoln and Egon G. Guba. 1985. Naturalistic Inquiry.
SAGE, Newbury Park, CA.

[59] Yvonna S. Lincoln and Egon G. Guba. 2013. The Constructivist Credo.
Left Coast, Walnut Creek, CA.

[60] Yvonna S. Lincoln, Susan A. Lynham, and Egon G. Guba. 2011.

Paradigmatic Controversies, Contradictions, and Emerging Conflu-

ences, Revisited. In The SAGE Handbook of Qualitative Research (4

ed.), Norman K. Denzin and Yvonna S. Lincoln (Eds.). SAGE, Los

Angeles.

[61] Judith Lorber. 1994. Paradoxes of Gender. Yale University Press,

New Haven, Chapter “Night to His Day”: The Social Construction of

Gender, 13–36.

[62] Eric Margolis and Stephen Laurence. 2014. Concepts. In The Stanford
Encyclopedia of Philosophy (spring 2014 ed.), Edward N. Zalta (Ed.).

Metaphysics Research Lab, Stanford University, Stanford, CA. https:
//plato.stanford.edu/archives/spr2014/entries/concepts/

[63] Peter Markie. 2015. Rationalism vs. Empiricism. In The Stanford Ency-
clopedia of Philosophy (summer 2015 ed.), Edward N. Zalta (Ed.). Meta-

physics Research Lab, Stanford University, Stanford, CA. https://plato.
stanford.edu/archives/sum2015/entries/rationalism-empiricism/

[64] Shane Markstrum. 2010. Staking Claims: A History of Programming

Language Design Claims and Evidence: A PositionalWork in Progress.

In Proceeding PLATEAU ’10 Evaluation and Usability of Programming
Languages and Tools. ACM, New York, Article 7, 5 pages. https:
//doi.org/10.1145/1937117.1937124

[65] Simone Martini. 2016. Several Types of Types in Programming Lan-

guages. In History and Philosophy of Computing: Third International
Conference, HaPoC 2015, Pisa, Italy, October 8–11, 2015, Revised Selected
Papers (IFIP Advances in Information and Communication Technology
(IFIPAICT)), Fabio Gadducci and Mirko Tavosanis (Eds.). Springer,

Cham, 216–227. https://doi.org/10.1007/978-3-319-47286-7_15
[66] Simone Martini. 2016. Types in Programming Languages, Between

Modelling, Abstraction, and Correctness. In Pursuit of the Universal:
12th Conference on Computability in Europe, CiE 2016, Paris, France,
June 27 – July 1, 2016, Proceedings (Lecture Notes in Computer Science),
Arnold Beckmann, Laurent Bienvenu, and Nataša Jonoska (Eds.).

Springer, Cham, 164–169. https://doi.org/10.1007/978-3-319-40189-8_
17

[67] Catherine C. McGeoch. 1996. Toward an Experimental Method for

Algorithm Simulation. INFORMS Journal on Computing 8, 1 (1996),

1–15.

[68] ColinMcGinn. 2012. Truth by Analysis: Games, Names, and Philosophy.
Oxford University Press, New York.

[69] Mari Mikkola. 2017. Feminist Perspectives on Sex and Gender.

In The Stanford Encyclopedia of Philosophy (summer 2017 ed.), Ed-

ward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University,

Stanford, CA. https://plato.stanford.edu/archives/sum2017/entries/
feminism-gender/

12 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

https://doi.org/10.1007/978-3-319-60074-1_3
https://doi.org/10.18489/sacj.v46i0.50
https://doi.org/10.1145/2578903.2579162
http://www.gutenberg.org/ebooks/9662
http://www.gutenberg.org/ebooks/9662
https://play.google.com/store/books/details?id=0a4TAAAAQAAJ
https://play.google.com/store/books/details?id=0a4TAAAAQAAJ
http://bitsavers.trailing-edge.com/pdf/intel/iAPX_432/171821-001_Introduction_to_the_iAPX_432_Architecture_Aug81.pdf
http://bitsavers.trailing-edge.com/pdf/intel/iAPX_432/171821-001_Introduction_to_the_iAPX_432_Architecture_Aug81.pdf
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1007/978-0-387-09682-7-9_3
https://doi.org/10.1007/978-0-387-09682-7-9_3
https://doi.org/10.1016/j.scico.2014.02.009
https://doi.org/10.1016/j.scico.2014.02.009
http://urn.fi/URN:ISBN:978-951-39-6388-0
http://antti-juhani.kaijanaho.fi/newblog/archives/1979
http://antti-juhani.kaijanaho.fi/newblog/archives/1979
https://doi.org/10.1145/2464157.2464160
https://doi.org/10.1145/2464157.2464160
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/2661136.2661154
https://doi.org/10.1145/28697.28718
https://doi.org/10.1145/28697.28718
https://plato.stanford.edu/archives/spr2014/entries/concepts/
https://plato.stanford.edu/archives/spr2014/entries/concepts/
https://plato.stanford.edu/archives/sum2015/entries/rationalism-empiricism/
https://plato.stanford.edu/archives/sum2015/entries/rationalism-empiricism/
https://doi.org/10.1145/1937117.1937124
https://doi.org/10.1145/1937117.1937124
https://doi.org/10.1007/978-3-319-47286-7_15
https://doi.org/10.1007/978-3-319-40189-8_17
https://doi.org/10.1007/978-3-319-40189-8_17
https://plato.stanford.edu/archives/sum2017/entries/feminism-gender/
https://plato.stanford.edu/archives/sum2017/entries/feminism-gender/

Concept Analysis in Programming Language Research Onward!’17, October 25–27, 2017, Vancouver, Canada

[70] Katie Moon and Deborah Blackman. 2014. A Guide to Understanding

Social Science Research for Natural Scientists. Conservation Biology
28, 5 (2014), 1167–1177. https://doi.org/10.1111/cobi.12326

[71] Brad A. Myers, Andreas Stefik, Stefan Hanenberg, Antti-Juhani Kai-

janaho, Margaret Burnett, Franklyn Turbak, and Philip Wadler. 2016.

Usability of Programming Languages Special Interest Group (SIG)

Meeting at CHI 2016. In CHI EA ’16 Proceedings of the 2016 CHI Con-
ference Extended Abstracts on Human Factors in Computing Systems.
ACM, New York, 1104–1107. https://doi.org/10.1145/2851581.2886434

[72] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.

Sweeney. 2009. Producing Wrong Data Without Doing Anything

Obviously Wrong!. In ASPLOS XIV Proceedings of the 14th inter-
national conference on Architectural support for programming lan-
guages and operating systems. ACM, New York, 265–276. https:
//doi.org/10.1145/1508244.1508275

[73] Evaldas Nekrašas. 2016. The Positive Mind: Its Development and Impact
on Modernity and Postmodernity. Central European University Press,

Budapest.

[74] James Noble. 2009. TheMyths of Object-Orientation. In ECOOP 2009—
Object-Oriented Programming—23rd European Conference—Genoa,
Italy, July 6–10, 2009—Proceedings (Lecture Notes in Computer Sci-
ence), Sophia Drossopoulou (Ed.). Springer, Berlin, 619–629. https:
//doi.org/10.1007/978-3-642-03013-0_29

[75] James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and

Mark S. Miller. 2016. The Left Hand of Equals. In Onward! 2016
Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM,

New York, 224–237. https://doi.org/10.1145/2986012.2986031
[76] Oxford English Dictionary 2014. empiric, n. and adj. (March 2014).

Retrieved June 21, 2017 from http://www.oed.com/view/Entry/61340
[77] A. C. Paseau. 2016. What’s the Point of Complete Rigour? Mind 125,

497 (2016), 177–207. https://doi.org/10.1093/mind/fzv140
[78] Chaïm Perelman and L. Olbrechts-Tyteca. 1969. The New Rhetoric: A

Treatise on Argumentation. University of Notre Dame Press, Notre

Dame. Translated from the French “La Nouvelle Rhétorique: Traité

de l’Argumentation” (1958) by John Wilkinson and Purcell Weaver.

[79] Kai Petersen, Cigdem Gencel, Negin Asghari, Dejan Baca, and Ste-

fanie Betz. 2014. Action Research as a Model for Industry–Academia

Collaboration in the Software Engineering Context. In WISE ’14
Proceedings of the 2014 international workshop on Long-term indus-
trial collaboration on software engineering. ACM, New York, 55–62.

https://doi.org/10.1145/2647648.2647656
[80] Tomas Petricek. 2015. Against a Universal Definition of ‘Type’.

In Onward! 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!).
ACM, New York, 254–266. https://doi.org/10.1145/2814228.2814249

[81] Massimo Pigliucci and Maarten Boundry. 2013. Philosophy of Pseudo-
science: Reconsidering the Demarcation Problem. University of Chicago

Press, Chicago.

[82] Gianna Pomata. 2011. A Word of the Empirics: The Ancient Concept

of Observation and its Recovery in Early Modern Medicine. Annals of
Science 68, 1 (2011), 517–538. https://doi.org/10.1080/00033790.2010.
495039

[83] Karl R. Popper. 1980. The Logic of Scientific Discovery. Unwin Hyman,

Boston. Originally published in German as ‘Logic der Forschung‘ in

1934.

[84] Emil L. Post. 1936. Finite Combinatory Processes—Formulation 1.

Journal of Symbolic Logic 1, 3 (1936), 103–105. https://doi.org/10.2307/
2269031

[85] William J. Rapaport. 2012. Intensionality vs. Intentionality. (March

2012). Retrieved 2017-07-06 from https://www.cse.buffalo.edu/
/~rapaport/intensional.html

[86] Tim Rentsch. 1982. Object Oriented Programming. ACM SIGPLAN
Notices 17, 9 (1982), 51–57. https://doi.org/10.1145/947955.947961

[87] John C. Reynolds. 1974. Towards a Theory of Type Structure. In

Programming Symposium Proceedings, Colloque sur la Programma-
tion, Paris, April 9–11, 1974 (Lecture Notes in Computer Science),
B. Robinet (Ed.). Springer, Berlin, 408–425. https://doi.org/10.1007/
3-540-06859-7_148

[88] Per Runeson, Marting Höst, Austen Rainer, and Björn Regnell. 2012.

Case Study Research in Software Engineering: Guidelines and Examples.
Wiley, Hoboken, NJ.

[89] Bertrand Russell. 1908. Mathematical Logic as based on the Theory

of Types. American Journal of Mathematics 30, 3 (1908), 222–262.

https://doi.org/10.2307/2369948
[90] John R. Searle. 2006. Social Ontology: Some Basic Principles. An-

thropological Theory 6, 1 (2006), 12–29. https://doi.org/10.1177/
1463499606061731

[91] Andreas Stefik and Stefan Hanenberg. 2014. The Programming

Language Wars: Questions and Responsibilities for the Program-

ming Language Community. In Onward! 2014 Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. ACM, New York, 283–299.

https://doi.org/10.1145/2661136.2661156
[92] Andreas Stefik and Stefan Hanenberg. 2017. Methodological Irregu-

larities in Programming-Language Research. Computer 50, 8 (2017),
60–63. https://doi.org/10.1109/MC.2017.3001257

[93] Andreas Stefik, Stefan Hanenberg, Mark McKenney, Anneliese An-

drews, Srinivas Kalyan Yellanki, and Susanna Siebert. 2014. What

is the Foundation of Evidence of Human Factors Decisions in Lan-

guage Design? An Empirical Study on Programming Language Work-

shops. In ICPC 2014 Proceedings of the 22nd International Confer-
ence on Program Comprehension. ACM, New York, 223–231. https:
//doi.org/10.1145/2597008.2597154

[94] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded

Theory in Software Engineering Research: A Critical Review and

Guidelines. In ICSE ’16 Proceedings of the 38th International Conference
on Software Engineering. ACM, New York, 120–131. https://doi.org/
10.1145/2884781.2884833

[95] Christopher Strachey. 2000. Fundamental Concepts in Programming

Languages. Higher-Order and Symbolic Computation 13, 1–2 (2000),

11–49. https://doi.org/10.1023/A:1010000313106 Written in 1967 and

widely circulated as a typescript before posthumous publication.

[96] William P. Thurston. 1994. On Proof and Progress in Mathematics.

Bull. Amer. Math. Soc. 30, 2 (1994), 161–177. https://doi.org/10.1090/
S0273-0979-1994-00502-6

[97] Walter F. Tichy. 1998. Should Computer Scientists Experiment More?

Computer 31, 5 (1998), 32–40. https://doi.org/10.1109/2.675631
[98] Stephen E. Toulmin. 2003. The Uses of Argument (updated ed.). Cam-

bridge University Press, New York. First edition published in 1958.

[99] A. M. Turing. 1937. On Computable Numbers, with an Application to

the Entscheidungsproblem. Proceedings of the London Mathematical
Society s2-42, 1 (1937), 230–265. https://doi.org/10.1112/plms/s2-42.1.
230

[100] Iris Vessey, V. Ramesh, and Robert L. Glass. 2005. A unified clas-

sification system for research in the computing disciplines. In-
formation and Software Technology 47, 4 (2005), 245–255. https:
//doi.org/10.1016/j.infsof.2004.08.006

[101] Candace West and Don H. Zimmerman. 1987. Doing Gender.

Gender & Society 1, 2 (1987), 125–151. https://doi.org/10.1177/
0891243287001002002

[102] Rudolf Wille. 2009. Restructuring Lattice Theory: An Approach

Based on Hierarchies of Concepts. In Formal Concept Analysis: 7th
International Conference, Darmstadt, Germany, May 21–24, 2009, Pro-
ceedings (Lecture Notes in Artificial Intelligence), Sébastien Ferré

and Sebastian Rudolph (Eds.). Springer, Berlin, 314–339. https:
//doi.org/10.1007/978-3-642-01815-2_23 Originally published in 1982.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 13

https://doi.org/10.1111/cobi.12326
https://doi.org/10.1145/2851581.2886434
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1007/978-3-642-03013-0_29
https://doi.org/10.1007/978-3-642-03013-0_29
https://doi.org/10.1145/2986012.2986031
http://www.oed.com/view/Entry/61340
https://doi.org/10.1093/mind/fzv140
https://doi.org/10.1145/2647648.2647656
https://doi.org/10.1145/2814228.2814249
https://doi.org/10.1080/00033790.2010.495039
https://doi.org/10.1080/00033790.2010.495039
https://doi.org/10.2307/2269031
https://doi.org/10.2307/2269031
https://www.cse.buffalo.edu//~rapaport/intensional.html
https://www.cse.buffalo.edu//~rapaport/intensional.html
https://doi.org/10.1145/947955.947961
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.2307/2369948
https://doi.org/10.1177/1463499606061731
https://doi.org/10.1177/1463499606061731
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1109/MC.2017.3001257
https://doi.org/10.1145/2597008.2597154
https://doi.org/10.1145/2597008.2597154
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1090/S0273-0979-1994-00502-6
https://doi.org/10.1090/S0273-0979-1994-00502-6
https://doi.org/10.1109/2.675631
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1016/j.infsof.2004.08.006
https://doi.org/10.1016/j.infsof.2004.08.006
https://doi.org/10.1177/0891243287001002002
https://doi.org/10.1177/0891243287001002002
https://doi.org/10.1007/978-3-642-01815-2_23
https://doi.org/10.1007/978-3-642-01815-2_23

Onward!’17, October 25–27, 2017, Vancouver, Canada Antti-Juhani Kaijanaho

[103] LudwigWittgenstein. 1974. Tractatus Logico-Philosophicus. Routledge,
London. Translated to English by D. F. Pears and B. F. McGuinness.

[104] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,

Björn Regnell, and Anders Wesslén. 2012. Experimentation in Soft-
ware Engineering. Springer, Heidelberg. https://doi.org/10.1007/

978-3-642-29044-2
[105] Stelios Xinogalos. 2015. Object-Oriented Design and Programming:

An Investigation of Novices’ Conceptions on Objects and Classes.

ACM Transactions on Computing Education 15, 3, Article 13 (2015),

21 pages. https://doi.org/10.1145/2700519

14 This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/2700519

	Abstract
	1 Introduction
	2 Concepts
	2.1 The Concept of Concepts
	2.2 Universals versus Social Constructions

	3 Conceptual Questions
	3.1 Examples
	3.2 They Are Not Mathematical
	3.3 They Are Not Empirical

	4 Methodology
	4.1 Philosophical Concept Analysis
	4.2 Argumentation
	4.3 Standard of Correctness

	5 Assessment of a Concept Analysis Essay
	6 Contributions and Non-contributions
	7 Conclusion
	Acknowledgments
	References

