
What Can Databases Do for
Peer-to-Peer?

Paper’s authors: S. Gribble,
A. Halevy, Z. Ives, M. Rodrig,

D. Suciu

2

Introduction (1/3)

 Peer-to-Peer (P2P) is totally decentralized
distributed system where peers act both
servers and clients
 Dynamic: nodes may arrive or leave the

system when ever they want
 No single point of failure
 System’s robustness, availability and

performance might grow with the number of
the peers

 Data placement must be done in totally
distributed manner

3

Introduction (2/3)

 Semantics provided by P2P systems is
typically weak

 Only popular content is readily accessible

 P2P systems don’t support updates to
content and support only retrieval of
objects by name

4

Introduction (3/3)

 P2P systems are lacking in the areas of

 Semantics,

 Data transformation and

 Data relationships

 Those are the core strenghts of the data
management community

5

Data Placement for Peer-to-Peer
(1/2)

 Peer may have any or all of the
following roles:
 Data origin provides original content to

the system

 Storage provider stores materialized
views

 Query evaluator evaluates the set of
queries forming its workload

 Query initiator poses new queries

6

Data Placement for Peer-to-Peer
(2/2)

 Data placement problem

 Distribute data and work

 Full query workload is answered

 With lowest cost under the existing resource
and bandwidth constraints

7

P2P Design Choices Affecting Data
Placement

 Dimensions that affect the data placement
problem in P2P

 Scope of desicion-making

 Extent of knowledge sharing

 Heterogeneity of information sources

 Dynamicity of participants

 Data granularity

 Degrees of replication

 Freshness and update consistency

8

Scope of decision making

 Scale at which query processing and view
materialization decisions are made

 All queries are optimized together or

 Every decision is made on a single-node

 Because the decisions are expensive to
make on global scale, smaller scope must
be used

9

Extent of knowledge sharing

 How much knowledge is available to a
system during its query optimization
process

 Centralized catalog of all views and their
locations
 Single point of failure, potential scalability

bottleneck

 Replicate the complete catalog at all peers
 Too much update traffic

 Construct a hierarchical organization as in
DNS or LDAP

10

Heterogeneity of information
sources

 Only few authoritative sources or every
participant might be allowed to contribute
data

 Level of heterogeneity of the data
influences the degree to which a system
can ensure uniform, global semantics for
the data

 Single schema might be too restrictive
 Limited number of data sources and

schemas is allowed

11

Dynamicity of participants

 Some systems assume fixed set of nodes
but usually peers may join and leave at
will

 If original data is distributed uniformely
across network, it may become impossible
to reliably access certain items

 If all data is placed only on the set of
static ”servers”, the system’s flexibility
and performance suffers

 Intermediate approach places all original
content on the consistenly available nodes
and replicates data at dynamic peers

12

Data granularity

 Atomic granularity level: data consists of a
collection of invisibke objects

 Place an entire object at peer or not at all

 Hierarchical granularity level: objects can
be grouped into larger objects

13

Degrees of replication

 Data items can be replicated at will or not
at all

 Large degree of replication improves
query time and efficiency but makes
updates harder and increases retrieval
complexity

 Typical solution is to have each object be

owned by a singel master

14

Freshness and update consistency

 Many possible ways of propagating
updates from the data origins to
intermediate nodes

 Invalidation messages pushed by the server or
client-initiated validation messages incur
overhead and limits scalability

 Timeout/expiration-based protocol

15

Complexity of the Data Placement
Problem (1/3)

 Simplified form of the problem:

 N peers, each node nj has storage Bj and query
workload Qj={qj1, ..., qjm}, where each query
qji has an associated non-negative weight qji.
Weights sum up to 1.

 Nodes ns and nt is connected by the edge es,t
with cost cs,t per unit of data transferred

 Object queries: given object identifier oida,
return object oa. Object oa consumes sa units
of space.

16

Complexity of the Data Placement
Problem (2/3)

 Query cost: sa×cs,j, where sa is object’s
size and cs,j the cost of edge between the
querying node and the closest node
providing the queried object

 Cost of the workload at node is the
weighted sum of the costs of its
constituent queries

 Cost of the data placement is the sum of
the costs of the workloads of the peers in
the network

17

Complexity of the Data Placement
Problem (3/3)

 Given a graph G describing a network of
peers, the static data placement problem
is to perform data placement with optimal
cost where queries are zero-cost object
lookups

 The static data placement problem is NP-
complete even if all queries in the
workloads in G are object queries

 Challenge is to find more specific settings
in which to study problem
 Dynamic data placement problem includes

dynamic data, dynamic query workloads and
dynamic peer membership

18

Exploiring Peer-to-Peer with the
Piazza System (1/4)

 Focuses on the dynamic data placement
problem

 Peers forms spheres of cooperation

19

Exploiring Peer-to-Peer with the
Piazza System (2/4)

 Focuses on data freshness guaranteeing
and the query optimization

 For guaranteering data freshness, the
materialized views must be refreshed
when original data is updated

 Piazza uses expiration times on the data items

20

Exploiring Peer-to-Peer with the
Piazza System (3/4)

 Query optimization exploits commonalities
and available data

 Takes current query workload, finds
commonalities among the queries, exploits
materialized views whenever cost-effective,
distibutes work under resource and bandwidth
constraints, and determines whether certain
results should be materialized for future use

 Decisions are made at a level of the sphere of
cooperation

21

Exploiring Peer-to-Peer with the
Piazza System (4/4)

 Propagating information about
materialized views
 Node advertises its materialized views to its

neighbors
 Each node consolidates the advertisements

and propagates them to its neighbor

 Consolidating query evaluation and data
placement
 All un-evaluable queries are broadcast within

the cluster, which identifies commonalities and
then assigns roles to specific nodes

22

Conclusions

 In my opinion the paper was quite a
shallow (maybe too shallow) review to
different data management issues in the
P2P systems

 But some little issues came to my mind
while reading the paper
 How those spheres are actually formed (and

how ”big” those are) in the Piazza system?
 How much the advertising of materialized

views in the Piazza system really add the
traffic? There are also other search algorithms
than the broadcasting one.

23

References

 Gribble S., Halevy A., Ives Z., Rodrig M.,
Suciu D., ”What Can Databases Do for
Peer-to-Peer?”, In Proc. Fourth
International Workshop on the Web and
Databases (WebDB) 2001.

 Course Material of Microcomputer
Applications 2002, <URL:

http://appro.mit.jyu.fi/2002/kevat/ohjelmistot/lu
ennot/luento10/>.

