

Parallelization of Evolutionary Algorithms

in Peer-to-Peer Environment

Annemari Auvinen

Niko Kotilainen

Mikko Vapa

15.12.2003

Exercise Work for

TIE331 Parallel and Distributed Computing –course

 2

Contents

1 INTRODUCTION TO PEER-TO-PEER NETWORKS .. 3

2 NEUROSEARCH – NEURAL NETWORK SEARCH ALGORITHM ... 4

3 OPTIMIZATION OF NEURAL NETWORK .. 5

4 PARALLEL EVOLUTIONARY ALGORITHMS ... 6

5 SOLUTION USING CHEDAR P2P PLATFORM ... 7

6 TEST SCENARIO AND RESULTS .. 10

7 CONCLUSIONS AND FUTURE WORK ... 11

REFERENCES.. 12

 3

1 Introduction to Peer-to-Peer Networks

Recently, the peer-to-peer (P2P) paradigm for building distributed applications has gained

attention from both industry and the media. The classical definition of peer-to-peer states that a P2P

system is composed of a distributed collection of peer nodes where each node acts both as a server

and a client. Thus the nodes may provide services to other peers and may consume services from

other peers. P2P is completely different from the client-server model, where few specialized servers

provide services to a large number of clients.

Despite its poor reputation, P2P is extremely interesting from a technical point of view. Its

completely decentralized model enables the development of applications with characteristics of

high-availability, fault-tolerance and scalability that are previously unseen in Internet.

Peer-to-peer paradigm exploits what has been defined as the “dark matter” of Internet. Dark

matter consists of the unused CPU and storage capacity that can be found from the idling PCs. With

the means of peer-to-peer resource discovery this matter can be located and used efficiently.

File sharing has been the main application area for peer-to-peer. For example in 2003 KaZaA

Media Desktop of Sharman Networks hit the most downloaded software record with 230 million

downloads. Moreover, P2P is not limited to file sharing, but it can be applied to e.g., distributed

computing and collaboration tools. Also some researchers see P2P as a robust information diffusion

media in the future that can change the way content is distributed over the Internet.

 4

2 NeuroSearch – Neural Network Search Algorithm

In peer-to-peer networks the main problem is how to locate resources when there is no

centralized index to look for. This can be done using resource discovery search algorithms. One

such algorithm is NeuroSearch [1], which has been developed in University of Jyväskylä in Cheese

Factory research project [2]. Cheese Factory is part of Innovations in Business, Communication and

Technology (InBCT) venture [3] in Agora Center and is funded by Nokia, TeliaSonera, Tietoenator,

Metso Paper and Jyväskylä Science Park.

NeuroSearch uses multi-layer perceptron neural network as shown in Figure 1.

Figure 1. NeuroSearch neural network’s structure.

Before NeuroSearch algorithm can be used the neural network’s weights need to be optimized.

This can be done using evolutionary computing.

 5

3 Optimization of Neural Network

Neural network’s structure is optimized using iterative optimization process based on

evolutionary algorithm. This process is illustrated in Figure 2.

Define the

training

environment

Define the fitness

requirements

for the algorithm

Select the best

ones for next

generation based

on their fitness

Breed a new

population

Finally select the

best neural

network and

stop the process

Iterate

thousands

of

generations

Evaluate neural

networks’ fitness

Create candidate

neural networks

randomly

Figure 2. Evolutionary optimization process.

Evolving neural networks needs a lot of computing power and in NeuroSearch’s case this may

take about one week with a standard desktop PC. This is because the optimization process is

sequential and thus can be run only on one computer. To study for example how the number of

neurons in the neural network affect the neural network’s performance multiplies the time with the

number of different neuron settings. For a thorough investigation of neural network the total time

scale shifts from days to months and perhaps years.

However, there are also ways to parallelize evolutionary algorithms because the population can

be distributed and the fitness evaluation is independent from other population members. Therefore

we sought for other alternatives to speed up the optimization process.

 6

4 Parallel Evolutionary Algorithms

There are multiple ways how evolutionary algorithms can be parallelized. The most suitable

ones for our case we found two alternatives that were presented in [4]: master-slave parallel

evolutionary algorithm and multiple-population parallel evolutionary algorithm.

Master-slave parallel evolutionary algorithm as shown in Figure 3 uses one population and

distributed fitness evaluation. This approach is efficient if fitness evaluation is computationally

demanding but scales poorly because of master. The parallel version of the algorithm retains the

converge properties of the sequential algorithm and therefore they are equivalent to each other in

sense of optimization performance.

Master

Slave Slave Slave

Figure 3. Master-slave parallel evolutionary algorithm.

Multiple-population parallel evolutionary algorithm presented in uses multiple populations

and infrequent migration between populations. Algorithm is efficient if population can be divided

and scales well on large population sizes. However, because the optimization proceeds without

synchronization between populations the parallel version of the algorithm changes the converge

properties compared to the sequential algorithm. Therefore a number of researchers have been able

to measure super-linear speed-ups [5] when the parallel version of the algorithm converges better

than the sequential version.

Population

Population

Population

Population

Figure 4. Multiple-population parallel evolutionary algorithm.

 7

5 Solution Using Chedar P2P Platform

As computation resources we planned to use the publicly available desktop computers in the

Agora building and thus defined two requirements for the software:

o The solution had to be as invisible as possible to the user of the neural network training

program

o The computation should not interfere with the desktop use of the distributed computers

The solution we came up with is based on Chedar peer-to-peer platform developed also in the

Cheese Factory –project. Chedar is a Peer-to-Peer (P2P) platform written in Java for searching

resources from the distributed network and building P2P applications. Resources can be for

example processor power or files. Because of the peer-to-peer design the distributed system does

not have any central points.

Chedar is built over TCP-sockets and it uses the architecture shown in Figure 5 and Figure 6.

Chedar
Chedar

Chedar

Chedar
Chedar

TCP

TCP

TCP

TCP

TCP

Figure 5. Chedar peer-to-peer network architecture.

P2P Applications

Chedar

IP

TCP

Network

Figure 6. Chedar’s layer-wise architecture.

 8

The computation is distributed using the following process. First the node that wants to

distribute its computation joins the Chedar network (steps 1 and 2). Next it sends a query to locate

free computation resources (step 3) and gets responses from idling nodes (step 4). Then by selecting

the most suitable nodes for processing the task it divides the computation tasks and distributes them

to the selected nodes (step 5). Finally when the computation is over the nodes send their results

back to the initiating node that started the computation (step 6). Calculation ends and everyone is

happy.

Chedar

node

Chedar

node

Chedar

node Chedar

node

Chedar

node

Master

Chedar

node

Chedar

node

Chedar

node Chedar

node

Chedar

node

Master

Chedar

node

Chedar

node

Chedar

node Chedar

node

Chedar

node

Master

Q
uery

Query

Query: ”Who has processing

power available?

Step 1. Startup Step 2. Join the network Step 3. Resource query

Chedar

node

Chedar

node

Chedar

node
Chedar

node

Chedar

node

Master

Reply

Reply

Reply

Reply: ”I do!”

Chedar

node

Chedar

node

Chedar

node
Chedar

node

Chedar

node

Master

Task

Task

Task

Task: ”Compute this task.”

Chedar

node

Chedar

node

Chedar

node
Chedar

node

Chedar

node

Master

Resu
lt

Result

Result

Computation…

Result: “Here are the results.”

Step 4. Resource reply Step 5. Task allocation Step 6. Result collection

 9

What happens inside a Chedar node is that when Chedar node starts the distributed program its

file operations are hijacked. Therefore any Java program that uses files to read input and store

output can be distributed without any extra work. The communication between Chedar and

distributed program is shown in Figure 7.

Task
Chedar

Distributed program

Result

Figure 7. Input and output communication using file streams.

There are clear advantages of this kind of a peer-to-peer design over ordinary clusters:

o The costs are minimal costs because there is no need for new hardware and only the

processing power that is idling is being used

o The approach is can handle dynamic scenarios and achieves better fault-tolerance

because computers can join or leave the network at any time

o The solution is scalable because peer-to-peer network size can be huge

Input Output

 10

6 Test Scenario and Results

To test the solution we computed twice the running times of a typical NeuroSearch optimization

case where 8 tasks were distributed to 1, 2, 4 and 8 machines in the computer class on Agora’s 5th

floor. All the 8 machines were identical and running AMD Athlon XP 2400+ processors.

The minimum time of the two runs was taken into account when calculating speedup, efficiency

and serial fraction values. These three measures are the most commonly used when measuring the

performance of parallel programs [6].

Speedup is defined as

)(

)1(

pT

T
s

, where T(1) is the time used for processing the tasks with one

processor and T(p) is the time used for processing the tasks with p processors.

Efficiency is defined as

p

s
e

, where s is the speedup with p processors and p is the number of

processors.

Serial fraction is defined as

p

ps
f

11

11

 , where s is the speedup with p processors and p

is the number of processors.

The results of the tests are shown in Table 1.

P roc es so rs T im e (se c) S pe ed up Efficien cy S erial frac tion

1 53744 - - -

2 26430 2.0334468 1.016723 -0.016448348

4 11330 4.7435128 1.185878 -0.052247693

8 6622 8.115977 1.014497 -0.002041424

Table 1. Results of the test scenario.

The results indicate that because the speedup is greater than number of processors the

computation is useful to distribute at least for 8 machines. Serial fraction is below zero meaning that

super-linear speedup occurs. Efficiency is highest and serial fraction is lowest with 4 processors

thus suggesting that the price to performance is best when the tasks are distributed to 4 processors.

 11

7 Conclusions and Future Work

As a conclusion it seems that the distribution over Chedar peer-to-peer platform was successful.

Still there are many things that still require future work to make the system complete.

First, we are planning to make a larger deployment of the system to more machines and see

how the system performs.

Second, the system would benefit of some improvements that were not done yet. For example it

should be possible that master can leave the network and gather results afterwards when it rejoins

the network. The tasks should be load-balanced between peer nodes if one machine stops idling

when users start to use the machine and the intermediate results should be sent to the initiating node

thus avoiding the need to restart computation when failures or computer resets occur.

Third, in case that there would be a need for example to parallelize computation using multiple-

population evolutionary algorithm the system should provide means for the Chedar nodes to

communicate directly with each other rather than just using the initiating node for the

communication. Also a monitoring interface to measure how computation is proceeding would be

beneficial to provide user more control over the computation process.

 12

References

[1] Vapa M., Kotilainen N., Auvinen A., Töyrylä J., Hyytiälä H., Vuori J.,

”NeuroSearch: evolutionary neural network resource discovery algorithm for peer-

to-peer networks”, being submitted to Elsevier Science Ad Hoc Networks Journal,

December 2003

[2] Cheese Factory -project, tisu.it.jyu.fi/cheesefactory

[3] Innovations in Business, Communication and Technology (InBCT), Agora Center,

University of Jyväskylä, www.jyu.fi/agora-center/inbctF.html

[4] Cantú-Paz E., ”A Survey of Parallel Genetic Algorithms”, 1998

[5] Alba E., ”Parallel evolutionary algorithms can achieve super-linear performance”,

Elsevier Science Information Processing Letters 82(1), 2002

[6] Karp A. H., Flatt H. P., ”Measuring Parallel Processor Performance”,

Communications of the ACM 33(5), 1990

http://tisu.it.jyu.fi/cheesefactory
http://www.jyu.fi/agora-center/inbctF.html

