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CHAPTER 1

Introduction

Electrical Impedance Tomography (EIT) is an imaging method with

potential applications in medical imaging and nondestructive testing.

The method is based on the following important inverse problem.

Calderón problem: Is it possible to determine the

electrical conductivity of a medium by making voltage

and current measurements on its boundary?

In this course we will prove a fundamental uniqueness result due

to Sylvester and Uhlmann, which states that the conductivity is de-

termined by the boundary measurements. We will also consider stable

dependence of the conductivity on boundary measurements, and the

case where measurements are only made on part of the boundary. In

addition, we will discuss useful techniques in partial differential equa-

tions, Fourier analysis, and inverse problems.

Let us begin by recalling the mathematical model of EIT, see [5] for

details. The purpose is to determine the electrical conductivity γ(x) at

each point x ∈ Ω, where Ω ⊆ Rn represents the body which is imaged

(in practice n = 3). We assume that Ω is a bounded open subset of Rn

with C∞ boundary, and that γ is a positive C2 function in Ω.

Under the assumption of no sources or sinks of current in Ω, a

voltage potential f at the boundary ∂Ω induces a voltage potential u

in Ω, which solves the Dirichlet problem for the conductivity equation,

(1.1)

{
∇ · γ∇u = 0 in Ω,

u = f on ∂Ω.

Since γ is positive, there is a unique weak solution u ∈ H1(Ω) for

any boundary value f ∈ H1/2(∂Ω). One can define the Dirichlet to

Neumann map (DN map) formally as

Λγf = γ
∂u

∂ν

∣∣∣
∂Ω
.

1



2 1. INTRODUCTION

This is the current flowing through the boundary. More precisely, the

DN map is defined weakly as

(Λγf, g)∂Ω =

∫
Ω

γ∇u · ∇v dx, f, g ∈ H1/2(∂Ω),

where u is the solution of (1.1), and v is any function in H1(Ω) with

v|∂Ω = g. The pairing on the boundary is integration with respect to

the surface measure,

(f, g)∂Ω =

∫
∂Ω

fg dS.

With this definition Λγ is a bounded linear map from H1/2(∂Ω) into

H−1/2(∂Ω).

The Calderón problem (also called the inverse conductivity prob-

lem) is to determine the conductivity function γ from the knowledge

of the map Λγ. That is, if the measured current Λγf is known for all

boundary voltages f ∈ H1/2(∂Ω), one would like to determine the con-

ductivity γ. There are several aspects of this inverse problem which are

interesting both for mathematical theory and practical applications.

1. Uniqueness. If Λγ1 = Λγ2 , show that γ1 = γ2.

2. Reconstruction. Given the boundary measurements Λγ, find

a procedure to reconstruct the conductivity γ.

3. Stability. If Λγ1 is close to Λγ2 , show that γ1 and γ2 are close

(in a suitable sense).

4. Partial data. If Γ is a subset of ∂Ω and if Λγ1f |Γ = Λγ2f |Γ
for all boundary voltages f , show that γ1 = γ2.

Starting from the work of Calderón in 1980, the inverse conductivity

problem has been studied intensively. In the case where n ≥ 3 and

all conductivities are in C2(Ω), the following positive results are an

example of what can be proved.

Theorem. (Sylvester-Uhlmann 1987) If Λγ1 = Λγ2, then γ1 = γ2

in Ω.

Theorem. (Nachman 1988) There is a convergent algorithm for

reconstructing γ from Λγ.

Theorem. (Alessandrini 1988) Let γj ∈ Hs(Ω) for s > n
2

+ 2, and

assume that ‖γj‖Hs(Ω) ≤M and 1/M ≤ γj ≤M (j = 1, 2). Then

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω))
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where ω(t) = C|log t|−σ for small t > 0, with C = C(Ω,M, n, s) > 0,

σ = σ(n, s) ∈ (0, 1).

Theorem. (Kenig-Sjöstrand-Uhlmann 2007) Assume that Ω is con-

vex and Γ is any open subset of ∂Ω. If Λγ1f |Γ = Λγ2f |Γ for all

f ∈ H1/2(∂Ω), and if γ1|∂Ω = γ2|∂Ω, then γ1 = γ2 in Ω.

During this course we will discuss the methods involved in these re-

sults. The main tool will be the construction of special solutions, called

complex geometrical optics solutions, to the conductivity equation and

related equations. This will involve Fourier analysis, and we will begin

the course with a discussion of n-dimensional Fourier series.

References. This course a continuation of the class ”Impedanssi-

tomografian perusteet” (Principles of EIT) given by Petri Ola [5]. From

[5] we will mainly use the solvability of the Dirichlet problem for el-

liptic equations, the definition of the DN map, and results which state

that the boundary values of the conductivity can be recovered from the

DN map. Chapter 2 on multiple Fourier series is classical, an excellent

reference is Zygmund [8]. In Chapter 3 we prove the uniqueness result

of Sylvester-Uhlmann [6]. The proof of the main estimate, Theorem

3.7, follows Hähner [4]. The stability question is taken up in Chapter 4,

where the main results are due to Alessandrini [1]. The treatment also

benefited from Feldman-Uhlmann [3]. In the final Chapter 5 we intro-

duce Carleman estimates and prove the result in Bukhgeim-Uhlmann

[2], which states that it is enough to measure currents on roughly half

of the boundary to determine the conductivity.





CHAPTER 2

Multiple Fourier series

2.1. Fourier series in L2

Joseph Fourier laid the foundations of the mathematical field now

known as Fourier analysis in his 1822 treatise on heat flow. The basic

question is to represent periodic functions as sums of elementary pieces.

If the period of f is 2π and the elementary pieces are sine and cosine

functions, then the desired representation would be

f(x) =
∞∑
k=0

(ak cos(kx) + bk sin(kx)).

Since eikx = cos(kx)+i sin(kx), we may alternatively consider the series

(2.1) f(x) =
∞∑

k=−∞

cke
ikx.

We will need to represent functions of n variables as Fourier series. If f

is a function in Rn which is 2π-periodic in each variable, then a natural

analog of (2.1) would be

f(x) =
∑
k∈Zn

cke
ik·x.

This is the form of Fourier series which we will study. Note that the

terms on the right-hand side are 2π-periodic in each variable.

There are many subtle issues related to various modes of conver-

gence for the series above. However, we will mostly just need the case

of convergence in L2 norm for Fourier series of L2 functions, and in this

case no problems arise. Consider the cube Q = [−π, π]n, and define an

inner product on L2(Q) by

(f, g) = (2π)−n
∫
Q

fḡ dx, f, g ∈ L2(Q).

With this inner product, L2(Q) is a separable infinite-dimensional Hilbert

space. The space of functions which are locally square integrable and

5



6 2. MULTIPLE FOURIER SERIES

2π-periodic in each variable may be identified with L2(Q). Therefore,

we will consider Fourier series of functions in L2(Q).

Lemma 2.1. The set {eik·x} is an orthonormal subset of L2(Q).

Proof. A direct computation: if k, l ∈ Zn then

(eik·x, eil·x) = (2π)−n
∫
Q

ei(k−l)·x dx

= (2π)−n
∫ π

−π
· · ·
∫ π

−π
ei(k1−l1)x1 · · · ei(kn−ln)xn dxn · · · dx1

=

{
1, k = l,

0, k 6= l.

�

We recall a Hilbert space fact: if {ej}∞j=1 is an orthonormal subset

of a separable Hilbert space H, then the following are equivalent:

(1) {ej}∞j=1 is an orthonormal basis, in the sense that any f ∈ H
may be written as the series

f =
∞∑
j=1

(f, ej)ej

with convergence in H,

(2) for any f ∈ H one has

‖f‖2 =
∞∑
j=1

|(f, ej)|2,

(3) if f ∈ H and (f, ej) = 0 for all j, then f ≡ 0.

If the condition (3) is satisfied, the orthonormal system {ej} is called

complete. The main point is that {eik·x}k∈Zn is complete in L2(Q).

Lemma 2.2. If f ∈ L2(Q) satisfies (f, eik·x) = 0 for all k ∈ Zn,

then f ≡ 0.

The proof is given below. The main result on Fourier series of L2

functions is now immediate. Below we denote by `2(Zn) the space of

complex sequences c = (ck)k∈Zn with norm

‖c‖`2(Zn) =
( ∑
k∈Zn
|ck|2

)1/2

.
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Theorem 2.3. If f ∈ L2(Q), then one has the Fourier series

f(x) =
∑
k∈Zn

f̂(k)eik·x

with convergence in L2(Q), where the Fourier coefficients are given by

f̂(k) = (f, eik·x) = (2π)−n
∫
Q

f(x)e−ik·x dx.

One has the Plancherel formula

‖f‖2
L2(Q) =

∑
k∈Zn
|f̂(k)|2.

Conversely, if c = (ck) ∈ `2(Zn), then the series

f(x) =
∑
k∈Zn

cke
ik·x

converges in L2(Q) to a function f satisfying f̂(k) = ck.

Proof. The facts on the Fourier series of f ∈ L2(Q) follow directly

from the discussion above, since {eik·x}k∈Zn is a complete orthonormal

system in L2(Q). For the converse, if (ck) ∈ `2(Zn), then

‖
∑
k∈Zn

M≤|k|≤N

cke
ik·x‖2

L2(Q) =
∑
k∈Zn

M≤|k|≤N

|ck|2

by orthogonality. Since the right hand side can be made arbitrarily

small by choosing M and N large, we see that fN =
∑

k∈Zn,|k|≤N cke
ik·x

is a Cauchy sequence in L2(Q), and converges to f ∈ L2(Q). One

obtains f̂(k) = (f, eik·x) = ck again by orthogonality. �

It remains to prove Lemma 2.2. We begin with the most familiar

case, n = 1. The partial sums of the Fourier series of a function

f ∈ L2([−π, π]), extended as a 2π-periodic function into R, are given

by

Smf(x) =
m∑

k=−m

f̂(k)eikx =
m∑

k=−m

( 1

2π

∫ π

−π
f(y)e−iky dy

)
eikx

=

∫ π

−π
Dm(x− y)f(y) dy
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where Dm(x) is the Dirichlet kernel

Dm(x) =
1

2π

m∑
k=−m

eikx =
1

2π
e−imx(1 + eix + . . .+ ei2mx)

=
1

2π
e−imx

ei(2m+1)x − 1

eix − 1
=

1

2π

ei(m+ 1
2

)x − e−i(m+ 1
2

)x

ei
1
2
x − e−i 1

2
x

=
1

2π

sin((m+ 1
2
)x)

sin(1
2
x)

.

Thus, definining the convolution of two 2π-periodic locally integrable

functions by

f ∗ g(x) =

∫ π

−π
f(x− y)g(y) dy,

we see that Smf(x) = (Dm ∗ f)(x). The Dirichlet kernel acts in a

similar way as an approximate identity, but is problematic because it

takes both positive and negative values.

Definition. A sequence (KN(x))∞N=1 of 2π-periodic continuous

functions on the real line is called an approximate identity if

(1) KN ≥ 0 for all N ,

(2)
∫ π
−πKN(x) dx = 1 for all N , and

(3) for all δ > 0 one has

lim
N→∞

sup
δ≤|x|≤π

KN(x)→ 0.

Thus, an approximate identity (KN) for large N resembles a Dirac

delta at 0, extended in a 2π-periodic way. It is possible to approximate

Lp functions by convolving them against an approximate identity.

Lemma 2.4. Let (KN) be an approximate identity. If f ∈ Lp([−π, π])

where 1 ≤ p < ∞, or if f is a continuous 2π-periodic function and

p =∞, then

‖KN ∗ f − f‖Lp([−π,π]) → 0 as N →∞.

Proof. Since KN has integral 1, we have

(KN ∗ f)(x)− f(x) =

∫ π

−π
KN(y)[f(x− y)− f(x)] dy
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Let first f be continuous and p = ∞. To estimate the L∞ norm of

KN ∗ f − f , we fix ε > 0 and compute

|(KN ∗ f)(x)− f(x)| ≤
∫ π

−π
KN(y)|f(x− y)− f(x)| dy

≤
∫
|y|≤δ

KN(y)|f(x−y)−f(x)| dy+

∫
δ≤|y|≤π

KN(y)|f(x−y)−f(x)| dy.

Here δ > 0 is chosen so that

|f(x− y)− f(x)| < ε

2
whenever x ∈ R and |y| ≤ δ.

This is possible because f is uniformly continuous. Further, we use the

definition of an approximate identity and choose N0 so that

sup
δ≤|x|≤π

KN(x) <
ε

4π‖f‖L∞
, for N ≥ N0.

With these choices, we obtain

|(KN ∗ f)(x)− f(x)| ≤ ε

2

∫
|y|≤δ

KN(y) dy + 4π‖f‖L∞ sup
δ≤|x|≤π

KN(x) < ε

whenever N ≥ N0. The result is proved in the case p =∞.

Let now f ∈ Lp([−π, π]) and 1 ≤ p < ∞. We need the integral

form of Minkowski’s inequality,(∫
X

∣∣∣ ∫
Y

F (x, y) dν(y)
∣∣∣p dµ(x)

)1/p

≤
∫
Y

(∫
X

|F (x, y)|p dµ(x)
)1/p

dν(y),

which is valid on σ-finite measure spaces (X,µ) and (Y, ν), cf. the

usual Minkowski inequality ‖
∑

y F ( · , y)‖Lp ≤
∑

y‖F ( · , y)‖Lp . Using

this, we obtain

‖KN ∗ f − f‖Lp([−π,π]) ≤
∫ π

−π
KN(y)‖f( · − y)− f‖Lp([−π,π]) dy

=

∫
δ≤|y|≤π

KN(y)‖f( · −y)−f‖Lp dy+

∫
|y|≤δ

KN(y)‖f( · −y)−f‖Lp dy

≤ 4π‖f‖Lp sup
δ≤|x|≤π

KN(x) + sup
|y|≤δ
‖f( · − y)− f‖Lp .

Now, for any ε > 0, there is δ > 0 such that

‖f( · − y)− f‖Lp([−π,π]) <
ε

2
whenever |y| ≤ δ.

Thus the second term can be made arbitrarily small by choosing δ

sufficiently small, and then the first term is also small if N is large.

This shows the result. �
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Now, if the Dirichlet kernels (Dm) were an approximate identity, by

Lemma 2.4 one would have Smf → f in L2 for any f ∈ L2. This would

in particular imply that any f ∈ L2 which satisfies (f, eikx) = f̂(k) = 0

for all k ∈ Zn, would be the zero function.

However, Dm is not an approximate identity because it takes nega-

tive values. One does get an approximate identity if a different summa-

tion method used: instead of the partial sums Smf consider the Cesàro

sums

σNf(x) =
1

N + 1

N∑
m=0

Smf(x).

This can be written in convolution form as

σNf(x) =
1

N + 1

N∑
m=0

(Dm ∗ f)(x) = (FN ∗ f)(x)

where FN is the Fejér kernel,

FN(x) =
1

2π(N + 1)

N∑
m=0

ei(m+ 1
2

)x − e−i(m+ 1
2

)x

ei
1
2
x − e−i 1

2
x

=
1

2π(N + 1)

ei
1
2
x ei(N+1)x−1

eix−1
− e−i 1

2
x e−i(N+1)x−1

e−ix−1

ei
1
2
x − e−i 1

2
x

=
1

2π(N + 1)

ei(N+1)x − 1 + e−i(N+1)x − 1

(ei
1
2
x − e−i 1

2
x)2

=
1

2π(N + 1)

sin2(N+1
2
x)

sin2(1
2
x)

.

Clearly this is nonnegative, and in fact FN is an approximate identity

(exercise). It follows from Lemma 2.4 that Cesàro sums of the Fourier

series an Lp function always converge in the Lp norm if 1 ≤ p <∞.

Lemma 2.5. If f ∈ Lp([−π, π]) where 1 ≤ p < ∞, or if f is a

continuous 2π-periodic function and p =∞, then

‖σNf − f‖Lp([−π,π]) → 0 as N →∞.

Proof of Lemma 2.2. We begin with the case n = 1. If f ∈
L2([−π, π]) and (f, eikx) = 0 for all k ∈ Z, then Smf = 0 and also

σNf = 0 for all N . By Lemma 2.5 it follows that f ≡ 0.
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Now let n ≥ 2, and assume that f ∈ L2(Q) and (f, eik·x) = 0 for all

k ∈ Zn. Since eik·x = eik1x1 · · · eiknxn , we have∫ π

−π
h(x1; k2, . . . , kn)e−ik1x1 dx1 = 0

for all k1 ∈ Z, where

h(x1; k2, . . . , kn) =

∫
[−π,π]n−1

f(x1, x2, . . . , xn)e−i(k2x2+...+knxn) dx2 · · · dxn.

Now h( · ; k2, . . . , kn) is in L2([−π, π]) by the Cauchy-Schwarz inequal-

ity. By the completeness of the system {eik1x1} in one dimension, we

obtain that h( · ; k2, . . . , kn) = 0 for all k2, . . . , kn ∈ Z. Applying the

same argument in the other variables shows that f ≡ 0. �

We have now proved the main facts on Fourier series of L2 functions.

2.2. Sobolev spaces

In this section we wish to consider Sobolev spaces of periodic func-

tions. In fact, most of the results given here will not be used in their

present form, but they provide good motivation for the developments

in Chapter 3.

Let T n = Rn/2πZn be the n-dimensional torus. Note that L2(Q)

above may be identified with L2(T n). However, C(Q) is different from

C(T n); in fact C(T n) (resp. C∞(T n)) can be identified with the con-

tinuous (resp. C∞) 2π-periodic functions in Rn.

First we need to define weak derivatives of periodic functions. This

is similar to the nonperiodic case, except that here the test function

space will be C∞(T n). We use the notation

Dj =
1

i

∂

∂xj
, Dα = Dα1

1 · · ·Dαn
n .

Definition. Let f ∈ L2(T n). We say that Dαf ∈ L2(T n) if there

is a function v ∈ L2(T n) which satisfies∫
Tn
fDαϕdx = (−1)|α|

∫
Tn
vϕ dx

for all ϕ ∈ C∞(T n). In this case we define Dαf = v.

As in the nonperiodic case, weak derivatives are unique, and for

smooth functions the definition coincides with the usual derivative.
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This uses the fact that there are no boundary terms arising from inte-

gration by parts, because of periodicity.

Definition. If m ≥ 0 is an integer, we denote by Hm(T n) the

space of functions f ∈ L2(T n) such that Dαf ∈ L2(T n) for all α ∈ Nn

satisfying |α| ≤ m.

We equip Hm(T n) with the inner product

(f, g)Hm(Tn) =
∑
|α|≤m

(Dαf,Dαg).

Then Hm(T n) is a Hilbert space.

If f and Dαf are in L2(T n), one may compute the Fourier coeffi-

cients of Dαf to be

(Dαf )̂ (k) = (2π)−n
∫
Tn
Dαf(x)e−ik·x dx

= (2π)−n(−1)|α|
∫
Tn
f(x)Dα(e−ik·x) dx

= kαf̂(k)

by the definition of weak derivative, since eik·x ∈ C∞(T n). This mo-

tivates the following characterization of Hm(T n) in terms of Fourier

coefficients.

Lemma 2.6. Let f ∈ L2(T n). Then f ∈ Hm(T n) if and only if

〈k〉mf̂ ∈ `2(Zn), where 〈k〉 = (1 + k2
1 + . . .+ kn)1/2.

Proof. One has

f ∈ Hm(T n) ⇔ Dαf ∈ L2(T n) for |α| ≤ m

⇔ kαf̂(k) ∈ `2(Zn) for |α| ≤ m

⇔ (k2
1, . . . , k

2
n)α|f̂(k)|2 ∈ `1(Zn) for |α| ≤ m.

If the last condition is satisfied, then

〈k〉2m|f̂(k)|2 =
∑
|β|≤m

cβ(k2
1, . . . , k

2
n)β|f̂(k)|2 ∈ `1(Zn),

consequently 〈k〉mf̂(k) ∈ `2(Zn). Conversely, if 〈k〉mf̂(k) ∈ `2(Zn),

then kαf̂(k) ∈ `2(Zn) for |α| ≤ m because |kj| ≤ 〈k〉. �

It is now easy to prove a version of the Sobolev embedding theorem.

Theorem 2.7. If m > n/2 then Hm(T n) ⊆ C(T n).
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Proof. Let f ∈ Hm(T n), so that 〈k〉mf̂ ∈ `2(Zn) and

f(x) =
∑
k∈Zn

f̂(k)eik·x.

Let Mk = |f̂(k)eik·x| = 〈k〉−m(〈k〉mf̂(k)). We have∑
k∈Zn

Mk ≤ ‖〈k〉−m‖`2(Zn)‖〈k〉mf̂(k)‖`2(Zn) <∞,

by Lemma 2.6 and since m > n/2. Since the terms in the Fourier series

of f are continuous functions, this Fourier series converges absolutely

and uniformly into a continuous function in T n by the Weierstrass M -

test. �

The final result in this section will be elliptic regularity in the pe-

riodic case. Consider a second order differential operator P (D) acting

on 2π-periodic functions in Rn,

P (D) =
∑
|α|≤2

aαD
α,

where aα are complex constants. The principal part of P (D) is

P2(D) =
∑
|α|=2

aαD
α.

We say that P (D) is elliptic if P2(D) has real coefficients, and

P2(k) > 0

whenever k ∈ Znr{0}. The following proof also indicates how Fourier

series are used in the solution of partial differential equations.

Theorem 2.8. Let P (D) be an elliptic second order differential

operator with constant coefficients, and assume that u ∈ L2(T n) solves

the equation

P (D)u = f in T n,

for some f ∈ L2(T n). Then u ∈ H2(T n).

Proof. Taking the Fourier coefficients on both sides of P (D)u = f

gives

(2.2) P (k)û(k) = f̂(k), k ∈ Zn.

We have

P2(k) = |k|2P2(k/|k|) ≥ c|k|2



14 2. MULTIPLE FOURIER SERIES

for some c > 0, by ellipticity. Then for k 6= 0,

|P (k)| = |P2(k) +
n∑
j=1

ajkj + a0|

≥ |P2(k)| − (
n∑
j=1

|aj|)|k| − |a0|

≥ c|k|2 − C|k|.

If C ′ > 0 is sufficiently large, it follows that

|P (k)| ≥ 1

2
c|k|2, for |k| ≥ C ′.

From (2.2) we obtain

|û(k)| =
∣∣∣ f̂(k)

P (k)

∣∣∣ ≤ 2

c|k|2
|f̂(k)|, |k| ≥ C ′.

Since f̂(k) ∈ `2(Zn) this shows that 〈k〉2û(k) ∈ `2(Zn), which implies

u ∈ H2(T n) as required. �



CHAPTER 3

Uniqueness

In this chapter, we will discuss the proof of the following uniqueness

result of Sylvester and Uhlmann.

Theorem 3.1. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let γ1 and γ2 be two positive functions in

C2(Ω). If Λγ1 = Λγ2, then γ1 = γ2 in Ω.

In fact, this theorem will be reduced to a uniqueness result for the

Schrödinger equation (also due to Sylvester and Uhlmann).

Theorem 3.2. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let q1 and q2 be two functions in L∞(Ω)

such that the Dirichlet problems for −∆+q1 and −∆+q2 in Ω are well

posed. If Λq1 = Λq2, then q1 = q2 in Ω.

The reduction of Theorem 3.1 to Theorem 3.2 is presented in Sec-

tion 3.1 along with the relevant definitions. The proof of the uniqueness

results relies on complex geometrical optics (CGO) solutions, which

are constructed in Section 3.2 for the Schrödinger equation by Fourier

analysis and perturbation arguments. Section 3.3 includes an integral

identity relating boundary measurements to interior information about

the coefficients, and this identity is used to prove Theorem 3.2 by taking

an asymptotic limit with suitable CGO solutions.

3.1. Reduction to Schrödinger equation

The first step in the proof is the reduction of the conductivity equa-

tion to a Schrödinger equation,

(−∆ + q)u = 0 in Ω,

where q is a function in L∞(Ω). This equation turns out to be easier

to handle, since the principal part is the Laplacian −∆.

15
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Lemma 3.3. If γ ∈ C2(Ω) and u ∈ H1(Ω) then

(3.1) −∇ · γ∇(γ−1/2u) = γ1/2(−∆ + q)u

in the weak sense, where

q =
∆
√
γ

√
γ
.

Proof. This is a direct computation: if u ∈ C2(Ω) then

− ∂j(γ∂j(
1
√
γ
u)) = −∂j(

√
γ∂ju) + ∂j(∂j(

√
γ)u)

= −√γ∂2
ju− ∂j(

√
γ)∂ju+ ∂j(

√
γ)∂ju+ ∂2

j (
√
γ)u.

The claim follows by taking the sum over j. The case where u ∈ H1(Ω)

can be proved by approximation1. �

If q ∈ L∞(Ω), we consider the Dirichlet problem for the Schrödinger

equation,

(3.2)

{
(−∆ + q)u = 0 in Ω,

u = f on ∂Ω,

where f ∈ H1/2(∂Ω). We say that u ∈ H1(Ω) is a weak solution of

(3.2) if u|∂Ω = f , and if for all ϕ ∈ H1
0 (Ω) one has∫

Ω

(∇u · ∇ϕ+ quϕ) dx = 0.

1Let (uk) ⊆ C2(Ω) be a sequence with uk → u in H1(Ω). We have

−∇ · γ∇(γ−1/2uk) = γ1/2(−∆ + q)uk.

If a ∈ C1(Ω) then u 7→ au is a continuous map on H1(Ω), since

‖au‖H1(Ω) = ‖au‖L2(Ω)+‖(∇a)u+a∇u‖L2(Ω) ≤ 2(‖a‖L∞(Ω)+‖∇a‖L∞(Ω))‖u‖H1(Ω).

Using that γ is in C2(Ω) and that ∇ : Hm(Ω) → Hm−1(Ω) is a continuous map,
we have

uk → u in H1(Ω)

=⇒ γ−1/2uk → γ−1/2u in H1(Ω)

=⇒ ∇(γ−1/2uk)→ ∇(γ−1/2u) in L2(Ω)

=⇒ γ∇(γ−1/2uk)→ γ∇(γ−1/2u) in L2(Ω)

=⇒ −∇ · γ∇(γ−1/2uk)→ −∇ · γ∇(γ−1/2u) in H−1(Ω).

Similarly, γ1/2(−∆ + q)uk → γ1/2(−∆ + q)u in H−1(Ω), which shows that (3.1)
holds in the sense of H−1(Ω).
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The problem (3.2) is said to be well-posed if the following three condi-

tions hold:

1. (existence) there is a weak solution u in H1(Ω) for any bound-

ary value f in H1/2(∂Ω),

2. (uniqueness) the solution u is unique,

3. (stability) the solution operator f 7→ u is continuous from

H1/2(∂Ω)→ H1(Ω), that is,

‖u‖H1(Ω) ≤ C‖f‖H1/2(∂Ω).

If the problem is well-posed, we can define a DN map formally by

Λq : H1/2(∂Ω)→ H−1/2(∂Ω), f 7→ ∂u

∂ν

∣∣∣
∂Ω
.

This is analogous to the conductivity equation, and also here the precise

definition of the DN map is given by the weak formulation

(Λqf, g)∂Ω =

∫
Ω

(∇u · ∇v + quv) dx, f, g ∈ H1/2(∂Ω),

where u solves (3.2) and v is any function in H1(Ω) with v|∂Ω = g. The

next proof shows that this is a valid definition and Λq is a bounded

linear map.

Lemma 3.4. If q ∈ L∞(Ω) is such that the problem (3.2) is well-

posed, then Λq is a bounded linear map from H1/2(∂Ω) to H−1/2(∂Ω),

and satisfies

(Λqf, g)∂Ω = (f,Λqg)∂Ω, f, g ∈ H1/2(∂Ω).

Proof. Fix f ∈ H1/2(∂Ω), and define a map T : H1/2(∂Ω) → C

by

T (g) =

∫
Ω

(∇u · ∇v + quv) dx,

where u solves (3.2) and v is any function in H1(Ω) with v|∂Ω = g.

Since u is a solution, we have∫
Ω

(∇u · ∇ϕ+ quϕ) dx

for any ϕ ∈ H1
0 (Ω). Therefore we may replace v by v + ϕ in the

definition of T (g). If v, ṽ ∈ H1(Ω) and v|∂Ω = ṽ∂Ω = g, then v −
ṽ ∈ H1

0 (Ω), so indeed the definition does not depend on the particular

choice of v (as long as v ∈ H1(Ω) and v|∂Ω = g).
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Now, for g ∈ H1/2(∂Ω), use the one-sided inverse to the trace op-

erator to obtain vg ∈ H1(Ω) with ‖vg‖H1(Ω) ≤ C‖g‖H1/2(∂Ω). Then by

Cauchy-Schwarz

|T (g)| ≤
∫

Ω

|∇u · ∇vg + quvg| dx ≤ C ′‖u‖H1(Ω)‖vg‖H1(Ω)

≤ C ′′‖f‖H1/2(∂Ω)‖g‖H1/2(∂Ω).

Thus T : H1/2(∂Ω)→ C is a continuous map, and there is an element

Λqf ∈ H−1/2(∂Ω) satisfying (Λqf, g) = T (g). Consequently, the map

Λq : f 7→ Λqf is a bounded linear map H1/2(∂Ω)→ H−1/2(∂Ω).

To show the last identity, let f, g ∈ H1/2(Ω), and let u, v be solutions

of (3.2) with boundary values u|∂Ω = f , v|∂Ω = g. Then

(Λqf, g)∂Ω =

∫
Ω

(∇u · ∇v + quv) dx =

∫
Ω

(∇v · ∇u+ qvu) dx = (Λqg, f)

by the definition of Λq. �

The problem (3.2) is not always well-posed, consider for instance

the case q = −λ where λ > 0 is an eigenvalue of the Laplacian in Ω

(then there exists a nonzero u ∈ H1(Ω) with −∆u = λu in Ω and

u|∂Ω = 0). However, for potentials q coming from conductivities, the

Dirichlet problem is always well-posed, and there is a relation between

the DN maps Λγ and Λq.

Lemma 3.5. If γ ∈ C2(Ω) and q = ∆
√
γ/
√
γ, then the Dirichlet

problem (3.2) is well-posed and

Λqf = γ−1/2Λγ(γ
−1/2f) +

1

2
γ−1∂γ

∂ν
f
∣∣∣
∂Ω
, f ∈ H1/2(Ω).

Proof. Fix f ∈ H1/2(∂Ω). We need to show that there is u in

H1(Ω) which solves (3.2). Motivated by Lemma 3.3, we take v be the

solution of ∇ · γ∇v = 0 in Ω with v|∂Ω = γ−1/2f . Then u = γ1/2v

is a function in H1(Ω) which solves (−∆ + q)u = 0 with the right

boundary values. The same argument with f = 0 shows that the

solution is unique. Further, since γ ∈ C2(Ω), we have the estimate

‖u‖H1(Ω) ≤ C‖v‖H1(Ω) ≤ C ′‖γ−1/2f‖H1/2(∂Ω) ≤ C ′′‖f‖H1/2(∂Ω).

If u solves (3.2), then v = γ−1/2u solves the conductivity equation

and

Λγ(γ
−1/2f) = γ

∂v

∂ν
= γ1/2∂u

∂ν
− 1

2
γ−1/2∂γ

∂ν
f.
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Since Λqf = ∂u/∂ν, we obtain the relation between Λγ and Λq. �

We may now show that uniqueness in the inverse conductivity prob-

lem can be deduced from the corresponding result for the Schrödinger

equation.

Proof that Theorem 3.2 implies Theorem 3.1. Let γ1, γ2 be

positive functions in C2(Ω), and assume that Λγ1 = Λγ2 . If qj =

∆
√
γj/
√
γj, then qj ∈ L∞(Ω) and by Theorem 3.5 the Dirichlet prob-

lems for −∆ + qj are well posed. Also, the boundary reconstruction

result ([5], Theorem 6.6.1) implies that γ1 = γ2 and ∂γ1/∂ν = ∂γ2/∂ν

on ∂Ω. Thus, for any f in H1/2(∂Ω) one has

Λq1f = γ
−1/2
1 Λγ1(γ

−1/2
1 f) +

1

2
γ−1

1

∂γ1

∂ν
f
∣∣∣
∂Ω

= γ
−1/2
2 Λγ2(γ

−1/2
2 f) +

1

2
γ−1

2

∂γ2

∂ν
f
∣∣∣
∂Ω

= Λq2f.

Theorem 3.2 gives that q1 = q2 in Ω. Therefore,

(3.3)
∆
√
γ1√
γ1

=
∆
√
γ2√
γ2

in Ω.

We would like to conclude from (3.3) that γ1 = γ2. Let q =

γ
−1/2
1 ∆γ1 = γ

−1/2
2 ∆γ2, and consider the equation

(−∆ + q)u = 0 in Ω.

Both
√
γ1 and

√
γ2 solve this equation, and

√
γ1|∂Ω =

√
γ2|∂Ω by bound-

ary determination. Since the Schrödinger equation with potential q

coming from a conductivity is well-posed, we obtain γ1 = γ2 by unique-

ness of solutions. �

Remark 3.6. We record for later use another argument showing

that (3.3) implies γ1 = γ2. The equation (3.3) looks like a nonlinear

PDE involving γ1 and γ2. To simplify the equation, we note that

∆(log
√
γ) =

n∑
j=1

∂j(
1
√
γ
∂j
√
γ) =

∆
√
γ

√
γ
− |∇(log

√
γ)|2.

The equation becomes

∆(log
√
γ1 − log

√
γ2) + |∇(log

√
γ1)|2 − |∇(log

√
γ2)|2 = 0.
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Rewriting slightly, we get

∆(log

√
γ1√
γ2

) +∇a · ∇(log

√
γ1√
γ2

) = 0,

where a = log
√
γ1γ2. This is a linear equation for the C2 function

v = log
√
γ1√
γ2

. Further, noting the identity

∇ · (ea∇v) = ea(∆v +∇a · ∇v),

and using the fact that γ1 = γ2 on ∂Ω, we see that v solves the Dirichlet

problem {
∇ · ((γ1γ2)1/2∇v) = 0 in Ω,

v = 0 on ∂Ω.

This problem is well-posed, and we get v ≡ 0 and γ1 ≡ γ2.

3.2. Complex geometrical optics

In this section, we will construct complex geometrical optics (CGO)

solutions to the Schrödinger equation

(−∆ + q)u = 0 in Ω.

The potential q is assumed to be in L∞(Ω).

Motivation. First let q = 0. We try as a solution to the equation

−∆u = 0 the complex exponential at frequency ζ ∈ Cn,

u(x) = eiζ·x.

This satisfies

Du(x) = ζeiζ·x, D2u(x) = (ζ · ζ)eiζ·x.

Thus, if ζ ∈ Cn satisfies ζ · ζ = 0, then u(x) = eiζ·x solves −∆u = 0.

Writing ζ = Re ζ + i Im ζ, we see that

ζ · ζ = 0 ⇐⇒ |Re ζ| = |Im ζ|, Re ζ · Im ζ = 0.

Now suppose q is nonzero. The function u = eiζ·x is not an exact

solution of (−∆ + q)u = 0 anymore, but we can find solutions which

resemble complex exponentials. These are the CGO solutions, which

have the form

(3.4) u(x) = eiζ·x(1 + r(x)).

Here r is a correction term which is needed to convert the approximate

solution eiζ·x to an exact solution.
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In fact, we are interested in solutions in the asymptotic limit as

|ζ| → ∞. This follows the principle that it is usually not possible

to obtain explicit formulas for solutions to general equations, but in

suitable asymptotic limits explicit expressions for solutions may exist.

We note that (3.4) is a solution of (−∆ + q)u = 0 iff

(3.5) e−iζ·x(−∆ + q)eiζ·x(1 + r) = 0.

It will be convenient to conjugate the exponentials eiζ·x into the Lapla-

cian. By this we mean that

e−iζ·xDj(e
iζ·xv) = (Dj + ζj)v,

e−iζ·xD2(eiζ·xv) = (D + ζ)2v = (D2 + 2ζ ·D)v.

We can rewrite (3.5) as

(D2 + 2ζ ·D + q)(1 + r) = 0.

This implies the following equation for r:

(3.6) (D2 + 2ζ ·D + q)r = −q.

The solvability of (3.6) is the most important step in the construction

of CGO solutions. We proceed in several steps.

3.2.1. Basic estimate. We first consider the free case in which

there is no potential on the left hand side of (3.6).

Theorem 3.7. There is a constant C0 depending only on Ω and n,

such that for any ζ ∈ Cn satisfying ζ · ζ = 0 and |ζ| ≥ 1, and for any

f ∈ L2(Ω), the equation

(3.7) (D2 + 2ζ ·D)r = f in Ω

has a solution r ∈ H1(Ω) satisfying

‖r‖L2(Ω) ≤
C0

|ζ|
‖f‖L2(Ω),

‖∇r‖L2(Ω) ≤ C0‖f‖L2(Ω).

The idea of the proof is that (3.7) is a linear equation with constant

coefficients, so one can try to solve it by the Fourier transform. Since

(Dju)̂ (ξ) = ξjû(ξ), the Fourier transformed equation is

(ξ2 + 2ζ · ξ)r̂(ξ) = f̂(ξ).
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We would like to divide by ξ2 + 2ζ · ξ and use the inverse Fourier

transform to get a solution r. However, the symbol ξ2 + 2ζ · ξ vanishes

for some ξ ∈ Rn, and the division cannot be done directly.

It turns out that we can divide by the symbol if we use Fourier

series in a large cube instead of the Fourier transform, and moreover

take the Fourier coefficients in a shifted lattice instead of the usual

integer coordinate lattice.

Proof of Theorem 3.7. Write ζ = s(ω1+iω2) where s = |ζ|/
√

2

and ω1 and ω2 are orthogonal unit vectors in Rn. By rotating coor-

dinates in a suitable way, we can assume that ω1 = e1 and ω2 = e2

(the first and second coordinate vectors). Thus we need to solve the

equation

(D2 + 2s(D1 + iD2))r = f.

We assume for simplicity that Ω is contained in the cube Q =

[−π, π]n. Extend f by zero outside Ω into Q, which gives a function in

L2(Q) also denoted by f . We need to solve

(3.8) (D2 + 2s(D1 + iD2))r = f in Q.

Let wk(x) = ei(k+ 1
2
e2)·x for k ∈ Zn. That is, we consider Fourier series

in the lattice Zn + 1
2
e2. Writing

(u, v) = (2π)−n
∫
Q

uv̄ dx, u, v ∈ L2(Q),

we see that (wk, wl) = 0 if k 6= l and (wk, wk) = 1, so {wk} is an

orthonormal set in L2(Q). It is also complete: if v ∈ L2(Q) and

(v, wk) = 0 for all k ∈ Zn then (ve−
1
2
ix2 , eik·x) = 0 for all k ∈ Zn,

which implies v = 0.

Hilbert space theory gives that f can be written as the series f =∑
k∈Zn fkwk, where fk = (f, wk) and ‖f‖2

L2(Q) =
∑

k∈Zn|fk|2. Seeking

also r in the form r =
∑

k∈Zn rkwk, and using that

Dwk = (k +
1

2
e2)wk,

the equation (3.8) results in

pkrk = fk, k ∈ Zn,

where

pk := (k +
1

2
e2)2 + 2s(k1 + i(k2 +

1

2
)).
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Note that Im pk = 2s(k2 + 1
2
) is never zero, which was the reason for

considering the shifted lattice. We define

rk :=
1

pk
fk

and

r :=
∑
k∈Zn

rkwk.

The last series converges in L2(Q) to a function r ∈ L2(Q) since

|rk| ≤
1

|pk|
|fk| ≤

1

|2s(k2 + 1
2
)|
|fk| ≤

1

s
|fk|,

and then

‖r‖L2(Q) =
(∑

k

|rk|2
)1/2

≤ 1

s

(∑
k

|fk|2
)1/2

=
1

s
‖f‖L2(Q).

This shows the desired estimate in L2(Q).

It remains to show that Dr ∈ L2(Q) with correct bounds. We have

Dr =
∑
k∈Zn

(k +
1

2
e2)rkwk.

The derivative is justified since this is a convergent series in L2(Q): we

claim

(3.9) |(k +
1

2
e2)rk| ≤ 4|fk|, k ∈ Zn,

which implies that ‖Dr‖L2(Q) ≤ 4‖f‖L2(Q). To show (3.9) we consider

two cases: if |k + 1
2
e2| ≤ 4s we have

|(k +
1

2
e2)rk| ≤

4s

2s|k2 + 1/2|
|fk| ≤ 4|fk|,

and if |k + 1
2
e2| ≥ 4s then

||k +
1

2
e2|2 + 2sk1| ≥ |k +

1

2
e2|2 − 2s|k +

1

2
e2| ≥

1

2
|k +

1

2
e2|2

which implies

|(k +
1

2
e2)rk| ≤

|k + 1
2
e2|

1
2
|k + 1

2
e2|2
|fk| ≤

1

2s
|fk|.

The statement is proved. �
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3.2.2. Basic estimate with potential. Now we consider the so-

lution of (3.6) in the presence of a nonzero potential. It will be conve-

nient to give a name to the solution operator in the free case.

Notation. Let ζ ∈ Cn satisfy ζ · ζ = 0 and |ζ| sufficiently large.

We denote by Gζ the solution operator

Gζ : L2(Ω)→ H1(Ω), f 7→ r,

where r is the solution to (D2 + 2ζ ·D)r = f provided by Theorem 3.7.

Theorem 3.8. Let q ∈ L∞(Ω). There is a constant C0 depending

only on Ω and n, such that for any ζ ∈ Cn satisfying ζ · ζ = 0 and

|ζ| ≥ max(C0‖q‖L∞(Ω), 1), and for any f ∈ L2(Ω), the equation

(3.10) (D2 + 2ζ ·D + q)r = f in Ω

has a solution r ∈ H1(Ω) satisfying

‖r‖L2(Ω) ≤
C0

|ζ|
‖f‖L2(Ω),

‖∇r‖L2(Ω) ≤ C0‖f‖L2(Ω).

Proof. If one has q = 0, a solution would be given by r = Gζf .

Here q may be nonzero, so we try a solution of the form

(3.11) r := Gζ f̃ ,

where f̃ ∈ L2(Ω) is a function to be determined. Inserting (3.11) in

the equation (3.10), and using that (D2 + 2ζ ·D)Gζ = I, we see that f̃

should satisfy

(3.12) (I + qGζ)f̃ = f in Ω.

We have the norm estimate

‖qGζ‖L2(Ω)→L2(Ω) ≤
C0‖q‖L∞(Ω)

|ζ|
.

If |ζ| ≥ max(2C0‖q‖L∞(Ω), 1) then

‖qGζ‖L2(Ω)→L2(Ω) ≤
1

2
.

It follows that I + qGζ is an invertible operator on L2(Ω), and the

equation (3.12) has a solution

f̃ := (I + qGζ)
−1f.
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The definition (3.11) for r implies

(D2 + 2ζ ·D + q)r = f̃ + qGζ f̃ = (I + qGζ)f̃ = f,

and r indeed solves the equation (3.10). Since ‖(I+qGζ)
−1‖L2(Ω)→L2(Ω) ≤

2, we have ‖f̃‖L2(Ω) ≤ 2‖f‖L2(Ω). The norm estimates in Theorem 3.7

imply the desired estimates for r, if we replace C0 by 2C0. �

3.2.3. Construction of CGO solutions. It is now easy to give

the main result on the existence of CGO solutions. Note that the

constant function a ≡ 1 always satisfies ζ · ∇a = 0, so as a special case

one obtains the solutions u = eiζ·x(1 + r) in (3.4).

Theorem 3.9. Let q ∈ L∞(Ω). There is a constant C0 depending

only on Ω and n, such that for any ζ ∈ Cn satisfying ζ · ζ = 0 and

|ζ| ≥ max(C0‖q‖L∞(Ω), 1), and for any function a ∈ H2(Ω) satisfying

ζ · ∇a = 0 in Ω,

the equation (−∆ + q)u = 0 in Ω has a solution

(3.13) u(x) = eiζ·x(a+ r),

where r ∈ H1(Ω) satisfies

‖r‖L2(Ω) ≤
C0

|ζ|
‖(−∆ + q)a‖L2(Ω),

‖∇r‖L2(Ω) ≤ C0‖(−∆ + q)a‖L2(Ω).

Proof. The function (3.13) is a solution of (−∆ + q)u = 0 iff

(3.14) e−iζ·x(−∆ + q)eiζ·x(a+ r) = 0.

As in the beginning of this section, we conjugate the exponentials into

the derivatives and rewrite (3.5) as

(D2 + 2ζ ·D + q)(a+ r) = 0.

Since ζ ·Da = 0, this implies the following equation for r:

(D2 + 2ζ ·D + q)r = −(D2 + q)a.

Theorem 3.8 guarantees the existence of a solution r satisfying the norm

estimates above. Then (3.13) is the required solution to (−∆+q)u = 0

in Ω. �
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3.3. Uniqueness proof

In this section we prove the Sylvester-Uhlmann uniqueness results.

As shown in Section 3.1, uniqueness in the inverse conductivity problem

(Theorem 3.1) follows from the uniqueness result for the Schrödinger

equation, which we now recall.

Theorem 3.2. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let q1 and q2 be two functions in L∞(Ω)

such that the Dirichlet problems for −∆+q1 and −∆+q2 in Ω are well

posed. If Λq1 = Λq2, then q1 = q2 in Ω.

The starting point is an integral identity which relates the differ-

ence of the boundary measurements Λq1 − Λq2 to the difference of the

potentials.

Lemma 3.8. Let q1 and q2 be two functions in L∞(Ω) such that the

Dirichlet problems for −∆ + q1 and −∆ + q2 in Ω are well-posed. Then

for any f1, f2 ∈ H1/2(∂Ω) one has

〈(Λq1 − Λq2)f1, f2〉 =

∫
Ω

(q1 − q2)u1u2 dx,

where uj ∈ H1(Ω) is the solution of (−∆+qj)uj = 0 in Ω with boundary

values uj|∂Ω = fj, j = 1, 2.

Proof. By the weak definition of the DN map, we have

〈Λq1f1, f2〉 =

∫
Ω

(∇u1 · ∇u2 + q1u1u2) dx

since u1 is a solution with boundary values f1, and u2 has boundary

values f2. Also, since the DN map is self-adjoint,

〈Λq2f1, f2〉 = 〈f1,Λq2f2〉 = 〈Λq2f2, f1〉 =

∫
Ω

(∇u2 · ∇u1 + q2u2u1) dx.

The claim follows. �

Proof of Theorem 3.2. Since Λq1 = Λq2 , we know from Lemma

3.8 that

(3.15)

∫
Ω

(q1 − q2)u1u2 dx = 0

for any H1 solutions uj to the equations (−∆ + qj)uj = 0, j = 1, 2.

Thus, to prove that q1 = q2, it is enough to establish that products

u1u2 of such solutions are dense in L1(Ω).
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Fix ξ ∈ Rn. We would like to choose the solutions in such a way

that u1u2 is close to eix·ξ, since the functions eix·ξ form a dense set. We

begin by taking unit vectors ω1 and ω2 in Rn such that {ω1, ω2, ξ} is

an orthogonal set (here we need that n ≥ 3). Let

ζ = s(ω1 + iω2),

so that ζ · ζ = 0. By Theorem 3.9, if s is sufficiently large there exist

H1 solutions u1 and u2 which satisfy (−∆ + qj)uj = 0, and which are

of the form

u1 = eiζ·x(eix·ξ + r1),

u2 = e−iζ·x(1 + r2),

where ‖rj‖L2(Ω) ≤ C/s for j = 1, 2. For the first solution we chose

a = eix·ξ which satisfies ζ · ∇a = (ζ · ξ)eix·ξ = 0 by orthogonality, and

for the second solution we chose a to be constant.

Inserting these solutions in (3.15), we obtain

(3.16)

∫
Ω

(q1 − q2)(eix·ξ + r1)(1 + r2) dx = 0.

In this identity, only r1 and r2 depend on s. Since the L2 norms of r1

and r2 are bounded by C/s, it is possible to take the limit as s → ∞
in (3.15), and then the terms involving r1 and r2 will vanish. Taking

this limit in (3.16), we get∫
Ω

(q1 − q2)eix·ξ dx = 0.

This holds for every ξ ∈ Rn. If q̃ is the function in L1(Rn) which is

equal to q1 − q2 in Ω and vanishes outside Ω, the last identity implies

that the Fourier transform of q̃ vanishes for every frequency ξ ∈ Rn.

Consequently q̃ = 0, and q1 = q2 in Ω. �





CHAPTER 4

Stability

In the preceding chapter, we proved that if γ1, γ2 are two conduc-

tivities in C2(Ω) such that Λγ1 is equal to Λγ2 , then γ1 ≡ γ2. Here we

address the stability question: if γ1, γ2 are two conductivities such that

Λγ1 is close to Λγ2 , does this imply that γ1 is close to γ2?

More precisely, we are looking for an estimate of the form

(4.1) ‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖∗),

where ‖ · ‖∗ = ‖ · ‖H1/2(∂Ω)→H−1/2(∂Ω) is the natural operator norm for

the DN maps, and ω : [0,∞)→ [0,∞) is a modulus of continuity, that

is, a continuous nondecreasing function satisfying ω(t)→ 0 as t→ 0+.

We begin with an example due to Alessandrini.

Example. Let D be the unit disc in R2, and let γ1, γ2 ∈ L∞(D) be

two conductivities such that γ1 ≡ 1 in D, and

γ2(x) =

{
1 + A, |x| < r0,

1, r0 < |x| < 1,

where A is a positive constant and r0 ∈ (0, 1). If f ∈ H1/2(∂D), then

f may be written as Fourier series

f(eiθ) =
∞∑

k=−∞

f̂(k)eikθ.

It can be shown (exercise) that

Λγ1f(eiθ) =
∞∑

k=−∞

|k|f̂(k)eikθ,

Λγ2f(eiθ) =
∞∑

k=−∞

|k|2 + A(1 + r
2|k|
0 )

2 + A(1− r2|k|
0 )

f̂(k)eikθ.

29
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Then

‖(Λγ1−Λγ2)f‖2
H−1/2 =

∞∑
k=−∞

(1+k2)−1/2k2

∣∣∣∣∣1−2 + A(1 + r
2|k|
0 )

2 + A(1− r2|k|
0 )

2∣∣∣∣∣
2

|f̂(k)|2

=
∞∑

k=−∞

k2

1 + k2

(
2Ar

2|k|
0

2 + A(1− r2|k|
0 )

)2

(1 + k2)1/2|f̂(k)|2.

The sum is actually over k 6= 0, and then the expression in parentheses

is ≤ Ar2
0 since it attains its maximum value when |k| = 1. It follows

that

‖Λγ1 − Λγ2‖∗ = sup
‖f‖

H1/2=1

‖(Λγ1 − Λγ2)f‖H−1/2 ≤ Ar2
0.

Now ‖Λγ1 − Λγ2‖∗ → 0 as r0 → 0, but

‖γ1 − γ2‖L∞(D) = A.

Thus, an estimate of the form (4.1) can not be valid if one only assumes

that γ1, γ2 ∈ L∞.

It turns out that under certain a priori assumptions on γ1 and γ2,

it is possible to prove a stability estimate with logarithmic modulus of

continuity.

Theorem 4.1. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let γj, j = 1, 2, be two positive functions

in Hs+2(Ω) with s > n/2, satisfying

1
M
≤ γj ≤M,(4.2)

‖γj‖Hs+2(Ω) ≤M.(4.3)

There are constants C = C(Ω, n,M, s) > 0 and σ = σ(n, s) ∈ (0, 1)

such that

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖∗)
where ω is a modulus of continuity satisfying

ω(t) ≤ C|log t|−σ, 0 < t < 1/e.

Note that γj ∈ Hs+2(Ω) with s > n/2 implies that γj ∈ C2(Ω) by

Sobolev embedding. The logarithmic modulus of continuity is rather

weak, in the sense that even small changes in γ can result in large

changes in Λγ. However, it has been proved that the logarithmic mod-

ulus is optimal, and for instance Hölder type stability can not hold for

conductivities of general form.
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4.1. Schrödinger equation

As in the uniqueness proof, we will use the inverse problem for the

Schrödinger equation to study the stability question. In the following,

Ω ⊆ Rn is a bounded open set with C∞ boundary, and n ≥ 3.

Theorem 4.2. Let qj ∈ L∞(Ω) be two potentials such that the

Dirichlet problems for −∆ + qj are well-posed. Further, assume that

‖qj‖L∞(Ω) ≤M.

There is a constant C = C(Ω, n,M) such that

‖q1 − q2‖H−1(Ω) ≤ ω(‖Λq1 − Λq2‖∗)

where ω is a modulus of continuity satisfying

ω(t) ≤ C|log t|−
2

n+2 , 0 < t < 1/e.

Proof. Let ξ ∈ Rn. We start from the identity in Lemma 3.8,

which states that

(4.4)

∫
Ω

(q1 − q2)u1u2 dx = ((Λq1 − Λq2)(u1|∂Ω), u2|∂Ω)∂Ω,

for any uj ∈ H1(Ω) which solve (−∆ + qj)uj = 0 in Ω. As in the proof

of Theorem 3.2, let ω1 and ω2 be unit vectors such that {ω1, ω2, ξ} is

an orthogonal set. The choice of complex vectors is slightly different

(we make this choice to obtain better constants), we take

ζ1 =
s√
2

(

√
1− |ξ|

2

2s2
ω1 +

1√
2s
ξ + iω2),

ζ2 = − s√
2

(

√
1− |ξ|

2

2s2
ω1 −

1√
2s
ξ + iω2).

These satisfy ζj · ζj = 0 and |ζ1| = |ζ2| = s. Theorem 3.9 ensures

the existence of solutions uj to (−∆ + qj)uj = 0, provided that s ≥
max(C0M, 1), of the form

u1 = eiζ1·x(1 + r1),

u2 = eiζ2·x(1 + r2),

with ‖rj‖L2(Ω) ≤ C0‖qj‖L∞
s

, and C0 = C0(Ω, n).
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Inserting u1 and u2 in (4.4) and using that ei(ζ1+ζ2)·x = eix·ξ, we

obtain∣∣∣ ∫
Ω

(q1 − q2)eix·ξ dx
∣∣∣ ≤ ‖Λq1 − Λq2‖∗‖u1‖H1/2(∂Ω)‖u2‖H1/2(∂Ω)

+
∣∣∣ ∫

Ω

(q1 − q2)eix·ξ(r1 + r2 + r1r2) dx
∣∣∣

≤ ‖Λq1 − Λq2‖∗‖u1‖H1‖u2‖H1 + C(‖r1‖L2 + ‖r2‖L2 + ‖r1‖L2‖r2‖L2)

with C = C(Ω, n,M). If Ω ⊆ B(0, R) then

‖uj‖H1 ≤ ‖eiζj ·x(1 + rj)‖L2 +
n∑
k=1

‖∂k(eiζj ·x)(1 + rj) + eiζj ·x∂krj‖L2

≤ CseRs.

We assume that s is so large that s ≤ eRs, and have

(4.5) |(q̃1 − q̃2)̂ (ξ)| ≤ C
(
e4Rs‖Λq1 − Λq2‖∗ +

1

s

)
,

where q̃j is the extension of qj to Rn by zero (thus q̃j ∈ L1(Rn)).

So far, we have proved that there are constants C and C ′, depending

on Ω, n, and M , such that (4.5) holds whenever s ≥ C ′. It is possible

to obtain a bound for q1− q2 in H−1 by using (4.5) and the L∞ bounds

for qj. If ρ > 0 is a constant which will be determined later, we have

‖q1−q2‖2
H−1(Ω) ≤ ‖q1−q2‖2

H−1(Rn) =
(∫
|ξ|≤ρ

+

∫
|ξ|>ρ

) |(q1 − q2)̂ (ξ)|2

1 + |ξ|2
dξ

≤ Cρn
(
e8Rs‖Λq1 − Λq2‖2

∗ +
1

s2

)
+ (1 + ρ2)−1‖q1 − q2‖2

L2(Rn)

≤ Cρne8Rs‖Λq1 − Λq2‖2
∗ +

Cρn

s2
+
C

ρ2
.

To make the last two terms of equal size, we choose

ρ = s
2

n+2 .

Then

‖q1 − q2‖2
H−1(Ω) ≤ Ce16Rs‖Λq1 − Λq2‖2

∗ + Cs−
4

n+2

for s ≥ C ′(Ω, n,M). We make the final choice

s =
1

16R
|log‖Λq1 − Λq2‖∗|
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where we assume that

0 < ‖Λq1 − Λq2‖∗ < c′(Ω, n,M)

with c′ chosen so that s ≥ C ′. With this assumption, it follows that

‖q1 − q2‖2
H−1(Ω) ≤ C(‖Λq1 − Λq2‖∗ + |log‖Λq1 − Λq2‖∗|−

4
n+2 ).

The claim is an easy consequence. �

4.2. More facts on Sobolev spaces

To reduce the stability result for the conductivity equation to The-

orem 4.2, we will need more properties of Sobolev spaces. There

are three settings to consider: Sobolev spaces in Rn, Sobolev spaces

in bounded C∞ domains Ω ⊆ Rn, and Sobolev spaces on (n − 1)-

dimensional boundaries ∂Ω. Further, we want to consider the case

where s may not be an integer.

The philosophy is thatHs(Rn) may be defined via the Fourier trans-

form, Hs(Ω) is the restriction of Hs(Rn) to Ω, and Hs(∂Ω) can be

defined by locally flattening the boundary and reducing matters to

Hs(Rn−1). We now give some specifics, see [7] for more details.

Definition. If s ≥ 0, let

Hs(Rn) = {u ∈ L2(Rn) ; 〈ξ〉sû(ξ) ∈ L2(Rn)},

with norm

‖u‖Hs(Rn) = ‖〈ξ〉sû‖L2(Rn).

Here 〈ξ〉 = (1 + |ξ|2)1/2 for ξ ∈ Rn.

The space Hs(Rn) is in fact a Hilbert space, with inner product

(u, v)Hs =
∫
〈ξ〉2sû(ξ)v̂(ξ). Recall from [5] that if k ≥ 0 is an integer,

there is the equivalent norm

(4.6) ‖u‖Wk,2(Rn) :=
∑
|α|≤k

‖∂αu‖L2(Rn) ∼ ‖u‖Hk(Rn),

where A ∼ B means that c−1B ≤ A ≤ cB for some constant c > 0

(independent of u).

The following properties of Sobolev spaces are the main point in

this section. Recall that Ck(Rn) is the space of k times continuously

differentiable functions on Rn, such that all partial derivatives up to

order k are bounded. The norm is ‖u‖Ck(Rn) =
∑
|α|≤k‖∂αu‖L∞(Rn).
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Theorem 4.3.

• (Sobolev embedding theorem) If u ∈ Hs+k(Rn) where s > n/2

and k is a nonnegative integer, then u ∈ Ck(Rn) and

‖u‖Ck(Rn) ≤ C‖u‖Hs+k(Rn).

• (Multiplication by functions) If u ∈ Hs(Rn) and s ≥ 0, and if

f ∈ Ck(Rn) where k is an integer ≥ s, then fu ∈ Hs(Rn) and

‖fu‖Hs(Rn) ≤ ‖f‖Ck(Rn)‖u‖Hs(Rn).

• (Logarithmic convexity of Sobolev norms) If 0 ≤ α ≤ β and

0 ≤ t ≤ 1, then

‖u‖Hγ(Rn) ≤ ‖u‖1−t
Hα(Rn)‖u‖

t
Hβ(Rn), u ∈ Hβ(Rn),

where γ = (1− t)α + tβ.

Proof. The first statement was proved in [5]. The second fact

follows, if s is an integer, by using the equivalent norm (4.6) and the

Leibniz rule. If s is not an integer, the most convenient way to prove

the result is by interpolation: if s = l − ε where l is an integer and

0 < ε < 1, the claim is true if s is replaced by l− 1 or l, and the claim

follows for s by interpolation between these two cases.

We now prove the third statement. The claim is trivial if t = 0 or

t = 1, so assume that 0 < t < 1. Then

‖u‖2
Hγ(Rn) =

∫
〈ξ〉2((1−t)α+tβ)|û(ξ)|2 dξ

=

∫
(〈ξ〉2α|û(ξ)|2)1−t(〈ξ〉2β|û(ξ)|2)t dξ

≤
(∫
〈ξ〉2α|û(ξ)|2 dξ

)1−t(∫
〈ξ〉2β|û(ξ)|2 dξ

)t
= ‖u‖2(1−t)

Hα(Rn)‖u‖
2t
Hβ(Rn)

by using Hölder’s inequality with p = 1
1−t and p′ = 1

t
. �

We would like to use similar results for Sobolev spaces in bounded

domains. In the following, let Ω ⊆ Rn be a bounded open set with

C∞ boundary. In [5] one has the Sobolev spaces in Ω, denoted here by

W k,2(Ω), consisting of the functions in L2(Ω) whose all weak partial

derivatives up to order k are in L2(Ω). The norm is

‖u‖Wk,2(Ω) :=
∑
|α|≤k

‖∂αu‖L2(Ω).
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We wish to relate these to Sobolev spaces in Rn. The main tool for

doing this is the extension operator.

Theorem 4.4. (Extension operator) If k is a nonnegative integer,

there is a bounded linear operator E : W k,2(Ω) → Hk(Rn) satisfying

Eu|Ω = u.

Proof. See the exercises. �

Definition. If s ≥ 0, let Hs(Ω) be the set of those u ∈ L2(Ω) such

that u = v|Ω for some v ∈ Hs(Rn). The norm is the quotient norm

‖u‖Hs(Ω) = inf
v∈Hs(Rn),v|Ω=u

‖v‖Hs(Rn).

The space Hs(Ω) is a Hilbert space. The definition is justified by

the fact that

Hk(Ω) = W k,2(Ω),

with equivalent norms, if k ≥ 0 is an integer. To see this, note that

‖u‖Hk(Ω) ≤ ‖Eu‖Hk(Rn) ≤ C‖u‖Wk,2(Ω).

Further, if u ∈ W k,2(Ω) and if v ∈ Hk(Rn) with v|Ω = u, then

‖u‖Wk,2(Ω) ≤ ‖v‖Wk,2(Rn). Therefore

‖u‖Wk,2(Ω) ≤ C‖u‖Hk(Ω).

On domains, the following results correspond to the ones above.

Theorem 4.5.

• (Sobolev embedding theorem) If u ∈ Hs+k(Ω) where s > n/2

and k is a nonnegative integer, then u ∈ Ck(Ω) and

‖u‖Ck(Ω) ≤ C‖u‖Hs+k(Ω).

• (Multiplication by functions) If u ∈ Hs(Ω) and s ≥ 0, and if

f ∈ Ck(Ω) where k is an integer ≥ s, then fu ∈ Hs(Ω) and

‖fu‖Hs(Ω) ≤ ‖f‖Ck(Ω)‖u‖Hs(Ω).

• (Logarithmic convexity of Sobolev norms) If 0 ≤ α ≤ β and

0 ≤ t ≤ 1, then

‖u‖H(1−t)α+tβ(Ω) ≤ ‖u‖1−t
Hα(Ω)‖u‖

t
Hβ(Ω), u ∈ Hβ(Ω).
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Proof. The first item follows from the corresponding result on Rn

by using the extension operator: if u ∈ Hs+k(Ω), there is v ∈ Hs+k(Rn)

with v|Ω = u and ‖v‖Hs+k(Rn) ≤ C‖u‖Hs+k(Ω). Sobolev embedding in

Rn implies v ∈ Ck(Rn) with ‖v‖Ck(Rn) ≤ C‖v‖Hs+k(Rn). Then

‖u‖Ck(Ω) ≤ ‖v‖Ck(Rn) ≤ C‖v‖Hs+k(Rn) ≤ C‖u‖Hs+k(Ω).

The second item is again a direct computation for integer s and in

general can be proved by interpolation, and this is also true for the

third item. �

Next consider the spaces Hs(∂Ω), where ∂Ω is the boundary of a

bounded C∞ domain Ω. As described in [5], one can define Hs(∂Ω) via

the spaces Hs(Rn−1), by using a partition of unity and diffeomorphisms

which locally flatten the boundary. The above properties carry over to

the spaces Hs(∂Ω). Note that in the Sobolev embedding theorem, the

condition is s > n−1
2

since ∂Ω is an (n− 1)-dimensional manifold.

Theorem 4.6.

• (Sobolev embedding theorem) If u ∈ Hs+k(∂Ω) where s > n−1
2

and k is a nonnegative integer, then u ∈ Ck(∂Ω) and

‖u‖Ck(∂Ω) ≤ C‖u‖Hs+k(∂Ω).

• (Multiplication by functions) If u ∈ Hs(∂Ω) and s ≥ 0, and if

f ∈ Ck(∂Ω) where k is an integer ≥ s, then fu ∈ Hs(∂Ω) and

‖fu‖Hs(∂Ω) ≤ ‖f‖Ck(∂Ω)‖u‖Hs(∂Ω).

• (Logarithmic convexity of Sobolev norms) If 0 ≤ α ≤ β and

0 ≤ t ≤ 1, then

‖u‖H(1−t)α+tβ(∂Ω) ≤ ‖u‖1−t
Hα(∂Ω)‖u‖

t
Hβ(∂Ω), u ∈ Hβ(∂Ω).

Finally, a remark about negative index Sobolev spaces Hs(Rn),

Hs(Ω), Hs(∂Ω), where s < 0. These spaces contain elements which are

no longer L2 functions, and in fact are not functions at all. The most

convenient definition uses the space of tempered distributions S ′(Rn),

which contains for instance all Lp functions and polynomially bounded

measures, and which is closed under the Fourier transform. Then, if

s ∈ R, one defines

Hs(Rn) = {u ∈ S ′(Rn) ; 〈ξ〉sû(ξ) ∈ L2(Rn)},
‖u‖Hs(Rn) = ‖〈ξ〉sû(ξ)‖L2(Rn).
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Further, Hs(Ω) can be defined via restriction as above, and Hs(∂Ω) by

reducing to Hs(Rn−1). We will use the fact that multiplication by Ck

functions is bounded on Hs for |s| ≤ k, which can be proved by duality

arguments.

4.3. Conductivity equation

We proceed to prove the main result on stability for the conductivity

equation, which we recall here.

Theorem 4.1. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let γj, j = 1, 2, be two positive functions

in Hs+2(Ω) with s > n/2, satisfying

1
M
≤ γj ≤M,(4.7)

‖γj‖Hs+2(Ω) ≤M.(4.8)

There are constants C = C(Ω, n,M, s) > 0 and σ = σ(n, s) ∈ (0, 1)

such that

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖∗)
where ω is a modulus of continuity satisfying

ω(t) ≤ C|log t|−σ, 0 < t < 1/e.

The proof will involve a stability result at the boundary. This is an

easier problem, and in fact one has stability with a Lipschitz modulus

of continuity.

Theorem 4.7. (Boundary stability) Under the assumptions in The-

orem 4.1, one has

‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖∗
where C = C(Ω, n,M, s).

Proof. Follows by using the same method as in the proof of the

boundary determination result in [5], see the exercises. �

We need to relate the difference of DN maps for the conductivity

equation to a corresponding quantity in the Schrödinger case.

Lemma 4.8. Under the assumptions in Theorem 4.1, if

qj =
∆
√
γj

√
γj

,
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we have

‖Λq1 − Λq2‖∗ ≤ C(‖Λγ1 − Λγ2‖∗ + ‖Λγ1 − Λγ2‖
2

2s+3
∗ ),

with C = C(Ω, n,M, s).

Proof. We use the identity in Lemma 3.5,

Λqjf = γ
−1/2
j Λγj(γ

−1/2
j f) +

1

2
γ−1
j

∂γj
∂ν

f
∣∣∣
∂Ω
.

If f ∈ H1/2(∂Ω), we obtain

(Λq1 − Λq2)f = (γ
−1/2
1 − γ−1/2

2 )Λγ1(γ
−1/2
1 f)

+ γ
−1/2
2 (Λγ1 − Λγ2)(γ

−1/2
1 f) + γ

−1/2
2 Λγ2((γ

−1/2
1 − γ−1/2

2 )f)

+
1

2
(γ−1

1 − γ−1
2 )

∂γ1

∂ν
f +

1

2
γ−1

2

(∂γ1

∂ν
− ∂γ2

∂ν

)
f.

We estimate the H−1/2 norm of this expression by the triangle inequal-

ity. For the first three terms we use the estimate

‖au‖H−1/2(∂Ω) ≤ ‖a‖C1(∂Ω)‖u‖H−1/2(∂Ω),

and for the last two terms we use that

‖au‖H−1/2(∂Ω) ≤ ‖a‖L∞(∂Ω)‖u‖H1/2(∂Ω).

The a priori estimates for γj imply

‖γp1 − γ
p
2‖C1(∂Ω) ≤ C‖γ1 − γ2‖C1(∂Ω),

‖γpj ‖C1(∂Ω) ≤ C, ‖Λγj‖∗ ≤ C,

where C = C(Ω, n,M). Consequently

‖Λq1 − Λq2‖∗ ≤ C(‖Λγ1 − Λγ2‖∗ + ‖γ1 − γ2‖C1(∂Ω)).

We would like to use Lemma 4.7 to estimate the last term. By Sobolev

embedding, logarithmic convexity of Sobolev norms, the trace theorem,

and the a priori estimates for γj, we have

‖γ1 − γ2‖C1(∂Ω) ≤ C‖γ1 − γ2‖Hs+ 1
2 (∂Ω)

≤ C‖γ1 − γ2‖
2

2s+3

L2(∂Ω)‖γ1 − γ2‖
2s+1
2s+3

Hs+ 3
2 (∂Ω)

≤ C‖γ1 − γ2‖
2

2s+3

L2(∂Ω)‖γ1 − γ2‖
2s+1
2s+3

Hs+2(Ω)

≤ C‖γ1 − γ2‖
2

2s+3

L2(∂Ω).
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Now ‖γ1 − γ2‖L2(∂Ω) ≤ C‖γ1 − γ2‖L∞(∂Ω), and the claim follows by

Lemma 4.7. �

We can now give the proof of the main stability result. It will be

convenient to use the approach in Remark 3.6 to reduce matters to the

Schrödinger equation.

Proof of Theorem 4.1. As in Remark 3.6, we introduce the

function

v = log

√
γ1√
γ2

=
1

2
(log γ1 − log γ2).

This is a C2 function in Ω, and satisfies{
∇ · (γ1γ2)1/2∇v = (γ1γ2)1/2(q1 − q2) in Ω,

v = 1
2
(log γ1 − log γ2) on ∂Ω,

where qj = ∆
√
γj/
√
γj. Therefore

1

2
‖log γ1 − log γ2‖H1(Ω) = ‖v‖H1(Ω)

≤ ‖(γ1γ2)1/2(q1 − q2)‖H−1(Ω) +
1

2
‖log γ1 − log γ2‖H1/2(∂Ω)

≤ C‖q1 − q2‖H−1(Ω) + C‖log γ1 − log γ2‖H1/2(∂Ω).

By Theorem 4.2 and Lemma 4.8, if ‖Λγ1 − Λγ2‖∗ is small we have

‖q1 − q2‖H−1(Ω) ≤ C|log ‖Λq1 − Λq2‖∗|−
2

n+2

≤ C|log ‖Λγ1 − Λγ2‖
2

2s+3
∗ |−

2
n+2

≤ C|log ‖Λγ1 − Λγ2‖∗|−
2

n+2 .

We obtain

‖log γ1 − log γ2‖H1(Ω) ≤ C|log ‖Λγ1 − Λγ2‖∗|−
2

n+2

+ C‖log γ1 − log γ2‖H1/2(∂Ω).

We would like to change the norms of log γ1−log γ2 on both sides to L∞

norms. As before, this can be done by Sobolev embedding, logarithmic

convexity of Sobolev norms, and the a priori bounds on γj:

‖log γ1 − log γ2‖L∞(Ω) ≤ C‖log γ1 − log γ2‖Hs(Ω)

≤ C‖log γ1 − log γ2‖
2
s+1

H1(Ω)‖log γ1 − log γ2‖
s−1
s+1

Hs+2(Ω)

≤ C‖log γ1 − log γ2‖
2
s+1

H1(Ω),
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and

‖log γ1 − log γ2‖H1/2(∂Ω) ≤ C‖log γ1 − log γ2‖
2s

2s+3

L2(∂Ω)‖log γ1 − log γ2‖
1

2s+3

Hs+ 3
2 (Ω)

≤ C‖log γ1 − log γ2‖
2s

2s+3

L∞(∂Ω).

It follows that

‖log γ1 − log γ2‖
s+1

2

L∞(Ω) ≤ C|log ‖Λγ1 − Λγ2‖∗|−
2

n+2

+ C‖log γ1 − log γ2‖
2s

2s+3

L∞(∂Ω).

Finally, we obtain bounds in terms of γ1 − γ2 by using that

log γ1 − log γ2 =

∫ 1

0

d

dt
log ((1− t)γ2 + tγ1) dt

=
(∫ 1

0

1

(1− t)γ2 + tγ1

)
(γ1 − γ2).

The a priori bounds on γj imply that

‖γ1 − γ2‖L∞(Ω) ≤ C‖log γ1 − log γ2‖L∞(Ω),

‖log γ1 − log γ2‖L∞(∂Ω) ≤ C‖γ1 − γ2‖L∞(∂Ω).

This shows that

‖γ1 − γ2‖
s+1

2

L∞(Ω) ≤ C|log ‖Λγ1 − Λγ2‖∗|−
2

n+2 + C‖γ1 − γ2‖
2s

2s+3

L∞(∂Ω).

The result follows by Theorem 4.7. �



CHAPTER 5

Partial data

In Chapter 3, we showed that if the boundary measurements for

two C2 conductivities coincide on the whole boundary, then the con-

ductivities are equal. Here we consider the case where measurements

are made only on part of the boundary.

The first result in this direction was proved by Bukhgeim and

Uhlmann. It involves a unit vector α in Rn and the subset of the

boundary

∂Ω−,ε = {x ∈ ∂Ω ; α · ν(x) < ε}.
The theorem is as follows.

Theorem 5.1. Let Ω ⊆ Rn be a bounded open set with smooth

boundary, where n ≥ 3, and let γ1 and γ2 be two positive functions in

C2(Ω). If α ∈ Rn is a unit vector, if γ1|∂Ω = γ2|∂Ω, and if for some

ε > 0 one has

Λγ1f |∂Ω−,ε = Λγ2f |∂Ω−,ε for all f ∈ H1/2(∂Ω),

then γ1 = γ2 in Ω.

The proof is based on complex geometrical optics solutions, but

requires new elements since we need some control of the solutions on

parts of the boundary. The main tool is a weighted norm estimate

known as a Carleman estimate. This estimate also gives rise to a new

construction of complex geometrical optics solutions, which does not

involve Fourier analysis.

5.1. Carleman estimates

Again, we first consider the Schrödinger equation, (−∆+q)u = 0 in

Ω, where q ∈ L∞(Ω) and Ω ⊆ Rn is a bounded open set with smooth

boundary.

Motivation. Recall from Theorem 3.8 that in the construction of

complex geometrical optics solutions, which depend on a large vector

41
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ζ ∈ Cn satisfying ζ · ζ = 0, we needed to solve equations of the form

(D2 + 2ζ ·D + q)r = f in Ω,

or written in another way,

e−iζ·x(−∆ + q)eiζ·xr = f in Ω.

In particular, Theorem 3.8 shows the existence of a solution and implies

the estimate

‖r‖L2(Ω) ≤
C0

|ζ|
‖f‖L2(Ω).

We write

ζ =
1

h
(β + iα),

where α and β are orthogonal unit vectors in Rn, and h > 0 is a small

parameter. The estimate for r may be written as

‖r‖L2(Ω) ≤ C0h‖e
1
h
α·x(−∆ + q)e−

1
h
α·xr‖L2(Ω).

It is possible to view this as a uniqueness result: if the right hand side

is zero, then the solution r also vanishes. It turns out that such a

uniqueness result can be proved directly without Fourier analysis, and

this is sufficient to imply also existence of a solution.

Remark 5.2. We will systematically use a small parameter h in-

stead of a large parameter |ζ| (these are related by h =
√

2
|ζ| ). This is

of course just a matter of convention, but has the benefit of being con-

sistent with semiclassical calculus which is a well-developed theory for

the analysis of certain asymptotic limits. We will also arrange so that

our basic partial derivatives will be hDj instead of ∂
∂xj

. The usefulness

of these choices will hopefully be evident below.

5.1.1. Carleman estimates for test functions. We begin with

the simplest Carleman estimate, which is valid for test functions and

does not involve boundary terms.

Theorem 5.3. (Carleman estimate) Let q ∈ L∞(Ω), let α be a unit

vector in Rn, and let ϕ(x) = α · x. There exist constants C > 0 and

h0 > 0 such that whenever 0 < h ≤ h0, we have

‖u‖L2(Ω) ≤ Ch‖eϕ/h(−∆ + q)e−ϕ/hu‖L2(Ω), u ∈ C∞c (Ω).
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We introduce some notation which will be used in the proof and

also later. If u, v ∈ L2(Ω) we write

(u|v) =
∫

Ω
uv̄ dx,

‖u‖ = (u|u)1/2 = ‖u‖L2(Ω).

Consider the semiclassical Laplacian

P0 = −h2∆ = (hD)2,

and the corresponding Schrödinger operator

P = h2(−∆ + q) = P0 + h2q.

The operators conjugated with exponential weights will be denoted by

P0,ϕ = eϕ/hP0e
−ϕ/h,

Pϕ = eϕ/hPe−ϕ/h = P0,ϕ + h2q.

We will also need the concept of adjoints of differential operators. If

L =
∑
|α|≤m

aα(x)Dα

is a differential operator in Ω, with aα ∈ W |α|,∞(Ω) (that is, all partial

derivatives up to order |α| are in L∞(Ω)), then L∗ is the differential

operator which satisfies

(Lu|v) = (u|L∗v), u, v ∈ C∞c (Ω).

For L of the above form, an integration by parts shows that

L∗v =
∑
|α|≤m

Dα(aα(x)v).

Proof of Theorem 5.3. Using the notation above, the desired

estimate can be written as

h‖u‖ ≤ C‖Pϕu‖, u ∈ C∞c (Ω).

First consider the case q = 0, that is, the estimate

h‖u‖ ≤ C‖P0,ϕu‖, u ∈ C∞c (Ω).

We need an explicit expression for P0,ϕ. On the level of operators, one

has

eϕ/hhDje
−ϕ/h = hDj + i∂jϕ.
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Since ϕ(x) = α · x where α is a unit vector, we obtain

P0,ϕ =
n∑
j=1

(eϕ/hhDje
−ϕ/h)(eϕ/hhDje

−ϕ/h) =
n∑
j=1

(hDj + iαj)
2

= (hD)2 − 1 + 2iα · hD.

The objective is to prove a positive lower bound for

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu).

To this end, we decompose P0,ϕ in a way which is useful for determin-

ing which parts in the inner product are positive and which may be

negative. Write

P0,ϕ = A+ iB

where A∗ = A and B∗ = B. Here, A and iB are the self-adjoint and

skew-adjoint parts of P0,ϕ. Since

P ∗0,ϕ = (eϕ/hP0e
−ϕ/h)∗ = e−ϕ/hP0e

ϕ/h = P0,−ϕ

= (hD)2 − 1− 2iα · hD,

we obtain A and B from the formulas (cf. the real and imaginary parts

of a complex number)

A =
P0,ϕ + P ∗0,ϕ

2
= (hD)2 − 1,

B =
P0,ϕ − P ∗0,ϕ

2i
= 2α · hD.

Now we have

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu) = ((A+ iB)u|(A+ iB)u)

= (Au|Au) + (Bu|Bu) + i(Bu|Au)− i(Au|Bu)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u),

where [A,B] = AB−BA is the commutator of A and B. This argument

used integration by parts and the fact that A∗ = A and B∗ = B. There

are no boundary terms since u ∈ C∞c (Ω).

The terms ‖Au‖2 and ‖Bu‖2 are nonnegative, so the only nega-

tive contributions could come from the commutator term. But in our

case A and B are constant coefficient differential operators, and these

operators always satisfy

[A,B] ≡ 0.
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Therefore

‖P0,ϕu‖2 = ‖Au‖2 + ‖Bu‖2.

By the Poincaré inequality (see [5]) 1,

‖Bu‖ = 2h‖α ·Du‖ ≥ ch‖u‖,

where c depends on Ω. This shows that for any h > 0, one has

h‖u‖ ≤ C‖P0,ϕu‖, u ∈ C∞c (Ω).

Finally, consider the case where q may be nonzero. The last esti-

mate implies that for u ∈ C∞c (Ω), one has

h‖u‖ ≤ C‖P0,ϕu‖ ≤ C‖(P0,ϕ + h2q)u‖+ C‖h2qu‖
≤ C‖Pϕu‖+ Ch2‖q‖L∞(Ω)‖u‖.

Choose h0 so that C‖q‖L∞(Ω)h0 = 1
2
, that is,

h0 =
1

2C‖q‖L∞(Ω)

.

Then, if 0 < h ≤ h0,

h‖u‖ ≤ C‖Pϕu‖+
1

2
h‖u‖.

The last term may be absorbed in the left hand side, which completes

the proof. �

5.1.2. Complex geometrical optics solutions. Here, we show

how the Carleman estimate gives a new method for constructing com-

plex geometrical optics solutions. We first establish an existence result

for an inhomogeneous equation, analogous to Theorem 3.8.

Theorem 5.4. Let q ∈ L∞(Ω), let α be a unit vector in Rn, and

let ϕ(x) = α · x. There exist constants C > 0 and h0 > 0 such that

whenever 0 < h ≤ h0, the equation

eϕ/h(−∆ + q)e−ϕ/hr = f in Ω

has a solution r ∈ L2(Ω) for any f ∈ L2(Ω), satisfying

‖r‖L2(Ω) ≤ Ch‖f‖L2(Ω).

1In fact, if α ∈ Rn is a unit vector, then the proof given in [5] implies the
following Poincaré inequality in the unbounded strip S = {x ∈ Rn ; a < x ·α < b}:

‖u‖L2(S) ≤
b− a√

2
‖α ·Du‖L2(S), u ∈ C∞c (S).
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Remark 5.5. With some knowledge of unbounded operators on

Hilbert space, the proof is immediate. Consider P ∗ϕ : L2(Ω) → L2(Ω)

with domain C∞c (Ω). It is a general fact that{
T injective

range of T closed
=⇒ T ∗ surjective.

Since the Carleman estimate is valid for P ∗ϕ one obtains injectivity and

closed range for P ∗ϕ, and thus solvability for Pϕ. Below we give a direct

proof based on duality and the Hahn-Banach theorem, and also obtain

the norm bound.

Proof of Theorem 5.4. Note that P ∗ϕ = P0,−ϕ +h2q̄. If h0 is as

in Theorem 5.3, for h ≤ h0 we have

‖u‖ ≤ C

h
‖P ∗ϕu‖, u ∈ C∞c (Ω).

Let D = P ∗ϕC
∞
c (Ω) be a subspace of L2(Ω), and consider the linear

functional

L : D → C, L(P ∗ϕv) = (v|f), for v ∈ C∞c (Ω).

This is well defined since any element of D has a unique representation

as P ∗ϕv with v ∈ C∞c (Ω), by the Carleman estimate. Also, the Carleman

estimate implies

|L(P ∗ϕv)| ≤ ‖v‖‖f‖ ≤ C

h
‖f‖‖P ∗ϕv‖.

Thus L is a bounded linear functional on D.

The Hahn-Banach theorem ensures that there is a bounded linear

functional L̂ : L2(Ω) → C satisfying L̂|D = L and ‖L̂‖ ≤ Ch−1‖f‖.
By the Riesz representation theorem, there is r̃ ∈ L2(Ω) such that

L̂(w) = (w|r̃), w ∈ L2(Ω),

and ‖r̃‖ ≤ Ch−1‖f‖. Then, for v ∈ C∞c (Ω), by the definition of weak

derivatives we have

(v|Pϕr̃) = (P ∗ϕv|r̃) = L̂(P ∗ϕv) = L(P ∗ϕv) = (v|f),

which shows that Pϕr̃ = f in the weak sense.

Finally, set r = h2r̃. This satisfies eϕ/h(−∆ + q)e−ϕ/hr = f in Ω,

and ‖r‖ ≤ Ch‖f‖. �
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We now give a construction of complex geometrical optics solutions

to the equation (−∆ + q)u = 0 in Ω, based on Theorem 5.4. This is

slightly more general than the discussion in Chapter 3, and is analogous

to the WKB construction used in finding geometrical optics solutions

for the wave equation.

Our solutions are of the form

(5.1) u = e−
1
h

(ϕ+iψ)(a+ r).

Here h > 0 is small and ϕ(x) = α ·x as before, ψ is a real valued phase

function, a is a complex amplitude, and r is a correction term which is

small when h is small.

Writing ρ = ϕ+ iψ for the complex phase, using the formula

eρ/hhDje
−ρ/h = hDj + i∂jρ

which is valid for operators, and inserting (5.1) in the equation, we

have

(−∆ + q)u = 0

⇔ eρ/h((hD)2 + h2q)e−ρ/h(a+ r) = 0

⇔ eρ/h((hD)2 + h2q)e−ρ/hr = −((hD + i∇ρ)2 + h2q)a

The last equation may be written as

eϕ/h(−∆ + q)e−ϕ/h(e−iψ/hr) = f

where

f = −e−iψ/h(−h−2(∇ρ)2 + h−1[2∇ρ · ∇+ ∆ρ] + (−∆ + q))a.

Now, Theorem 5.4 ensures that one can find a correction term r sat-

isfying ‖r‖ ≤ Ch, thus showing the existence of complex geometrical

optics solutions, provided that

‖f‖ ≤ C

with C independent of h. Looking at the expression for f , we see that

it is enough to choose ψ and a in such a way that

(∇ρ)2 = 0,

2∇ρ · ∇a+ (∆ρ)a = 0.

Since ϕ(x) = α · x with α a unit vector, expanding the square in

(∇ρ)2 = 0 gives the following equations for ψ:

|∇ψ|2 = 1, α · ∇ψ = 0.
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This is an eikonal equation (a certain nonlinear first order PDE) for

ψ. We obtain one solution by choosing ψ(x) = β · x where β ∈ Rn is

a unit vector satisfying α · β = 0. It would be possible to use other

solutions ψ, but this choice is close to the discussion in Chapter 3.

If ψ(x) = β · x, then the second equation becomes

(α + iβ) · ∇a = 0.

This is a complex transport equation (a first order linear equation) for

a, analogous to the equation for a in Theorem 3.9. One solution is

given by a ≡ 1. Again, other choices would be possible.

This ends the construction of complex geometrical optics solutions

based on Carleman estimates. There is one additional difference with

the analogous result in Theorem 3.9: the correction term r given by

this argument is only in L2(Ω), not in H1(Ω). The same is true for

the solution u. One can in fact obtain r and u in H1(Ω) (and even

in H2(Ω)), but this requires a slightly stronger Carleman estimate and

some additional work. Some details for this were given in the exercises

and lectures.

5.1.3. Carleman estimates with boundary terms. We will

continue by deriving a Carleman estimate for functions which vanish

at the boundary but are not compactly supported. The estimate will

include terms involving the normal derivative. We will use the notation

(u|v)∂Ω =
∫
∂Ω
uv̄ dS,

∂νu = ∇u · ν|∂Ω

and

∂Ω± = ∂Ω±(α) = {x ∈ ∂Ω ; ±α · ν(x) ≥ 0}.

Theorem 5.6. (Carleman estimate with boundary terms) Let q ∈
L∞(Ω), let α be a unit vector in Rn, and let ϕ(x) = α · x. There exist

constants C > 0 and h0 > 0 such that whenever 0 < h ≤ h0, we have

− h((α · ν)∂νu|∂νu)∂Ω− + ‖u‖2
L2(Ω)

≤ Ch2‖eϕ/h(−∆ + q)e−ϕ/hu‖2
L2(Ω) + Ch((α · ν)∂νu|∂νu)∂Ω+

for any u ∈ C∞(Ω) with u|∂Ω = 0.

Note that the sign of α · ν on ∂Ω± ensures that all terms in the

Carleman estimate are nonnegative.
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Proof. We first claim that

(5.2) ch2‖u‖2 − 2h3((α · ν)∂νu|∂νu)∂Ω ≤ ‖P0,ϕu‖2

for u ∈ C∞(Ω) with u|∂Ω = 0. It is easy to see that this implies the

desired estimate in the case q = 0.

As in the proof of Theorem 5.3, we decompose

P0,ϕ = A+ iB

where A = (hD)2 − 1 and B = 2α · hD, and A∗ = A, B∗ = B. Then

‖P0,ϕu‖2 = (P0,ϕu|P0,ϕu) = ((A+ iB)u|(A+ iB)u)

= ‖Au‖2 + ‖Bu‖2 + i(Bu|Au)− i(Au|Bu).

We wish to integrate by parts to obtain the commutator term in-

volving i[A,B], but this time boundary terms will arise. We have

i(Bu|(hD)2u) =
n∑
j=1

i(Bu|(hDj)
2u)

=
n∑
j=1

[
i(Bu|h

i
νjhDju)∂Ω + i(hDjBu|hDju)

]
= −2h3(α · ∇u|∂νu)∂Ω +

n∑
j=1

[
i(hDjBu|

h

i
νju)∂Ω + i((hDj)

2Bu|u)
]
.

But u|∂Ω = 0, so the boundary term involving h
i
νju is zero. For the

first boundary term we use the decomposition

∇u|∂Ω = (∂νu)ν + (∇u)tan

where (∇u)tan := ∇u− (∇u ·ν)ν|∂Ω is the tangential part of ∇u, which

vanishes since u|∂Ω = 0. By these facts, we obtain

i(Bu|Au) = i(ABu|u)− 2h3((α · ν)∂νu|∂νu)∂Ω.

Similarly, using that u|∂Ω = 0,

i(Au|Bu) = i(Au|2α · h
i
νu)∂Ω + i(BAu|u)

= i(BAu|u).

We have proved that

‖P0,ϕu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u)− 2h3((α · ν)∂νu|∂νu)∂Ω.
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Again, sinceA andB are constant coefficient operators, we have [A,B] =

AB − BA ≡ 0. The Poincaré inequality gives ‖Bu‖ ≥ ch‖u‖, which

proves (5.2).

Writing (5.2) in a different form, we have

− 2h((α · ν)∂νu|∂νu)∂Ω− + c‖u‖2

≤ h2‖eϕ/h(−∆)e−ϕ/hu‖2 + 2h((α · ν)∂νu|∂νu)∂Ω+ .

Adding a potential, it follows that

− 2h((α · ν)∂νu|∂νu)∂Ω− + c‖u‖2

≤ h2‖eϕ/h(−∆ + q)e−ϕ/hu‖2 + h2‖q‖2
L∞(Ω)‖u‖2

+ 2h((α · ν)∂νu|∂νu)∂Ω+ .

Choosing h small enough (depending on ‖q‖L∞(Ω)), the term involving

‖u‖2 on the right can be absorbed to the left hand side. This concludes

the proof. �

5.2. Uniqueness with partial data

Let Ω be a bounded open set in Rn with smooth boundary, where

n ≥ 3. If α ∈ Rn, recall the subsets of the boundary

∂Ω± = {x ∈ ∂Ω ; ±α · ν(x) > 0},
∂Ω−,ε = {x ∈ ∂Ω ; α · ν(x) < ε}.

Also, let ∂Ω+,ε = {x ∈ ∂Ω ; α · ν(x) > ε}. We first consider a partial

data uniqueness result for the Schrödinger equation.

Theorem 5.7. Let q1 and q2 be two functions in L∞(Ω) such that

the Dirichlet problems for −∆ + q1 and −∆ + q2 are well-posed. If α

is a unit vector in Rn, and if

Λq1f |∂Ω−,ε = Λq2f |∂Ω−,ε for all f ∈ H1/2(∂Ω),

then q1 = q2 in Ω.

Given this result, it is easy to prove the corresponding theorem for

the conductivity equation.

Proof that Theorem 5.7 implies Theorem 5.1. Define qj =

∆
√
γj/
√
γj. By Lemma 3.5 we have the relation

Λqjf = γ
−1/2
j Λγj(γ

−1/2
j f) +

1

2
γ−1
j

∂γj
∂ν

f
∣∣∣
∂Ω
.
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Since Λγ1f |∂Ω−,ε = Λγ2f |∂Ω−,ε for all f , boundary determination results

(see [5]) imply that

γ1|∂Ω−,ε = γ2|∂Ω−,ε ,
∂γ1

∂ν
|∂Ω−,ε =

∂γ2

∂ν
|∂Ω−,ε .

Thus Λq1f |∂Ω−,ε = Λq2f |∂Ω−,ε for all f ∈ H1/2(∂Ω). Theorem 5.7 then

implies q1 = q2, or

∆
√
γ1√
γ1

=
∆
√
γ2√
γ2

in Ω.

Now also γ1|∂Ω = γ2|∂Ω, so the arguments in Section 3.1 imply that

γ1 = γ2 in Ω. �

We proceed to the proof of Theorem 5.7. The main tool is the

Carleman estimate in Theorem 5.6, which will be applied with the

weight −ϕ instead of ϕ. The estimate then has the form

h((α · ν)∂νu|∂νu)∂Ω+ + ‖u‖2
L2(Ω)

≤ Ch2‖e−ϕ/h(−∆ + q)eϕ/hu‖2
L2(Ω) − Ch((α · ν)∂νu|∂νu)∂Ω−

with u ∈ C∞(Ω) and u|∂Ω = 0. Choosing v = eϕ/hu and noting that

v|∂Ω = 0, this may be written as

(5.3) h((α · ν)e−ϕ/h∂νv|e−ϕ/h∂νv)∂Ω+ + ‖e−ϕ/hv‖2
L2(Ω)

≤ Ch2‖e−ϕ/h(−∆ + q)v‖2
L2(Ω) − Ch((α · ν)e−ϕ/h∂νv|e−ϕ/h∂νv)∂Ω− .

This last estimate is valid for all v ∈ H2 ∩H1
0 (Ω), which follows by an

approximation argument (or can be proved directly).

Proof of Theorem 5.7. Recall from Lemma 3.8 that

(5.4)

∫
Ω

(q1 − q2)u1u2 dx = 〈(Λq1 − Λq2)(u1|∂Ω), u2|∂Ω〉∂Ω,

whenever uj ∈ H1(Ω) are solutions of (−∆ + qj)uj = 0 in Ω. By the

assumption on the DN maps, the boundary integral is really over ∂Ω+,ε.

If further u1 ∈ H2(Ω), then

Λq1(u1|∂Ω) = ∂νu1|∂Ω

since ∇u1 ∈ H1(Ω) and ∂νu1|∂Ω = (tr∇u1) · ν|∂Ω ∈ H1/2(∂Ω). Also,

Λq2(u1|∂Ω) = ∂ν ũ2|∂Ω,
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where ũ2 solves {
(−∆ + q2)ũ2 = 0 in Ω,

ũ2 = u1 on ∂Ω.

We have ũ2 ∈ H2(Ω) since u1|∂Ω ∈ H3/2(∂Ω). Therefore, (5.4) implies∫
Ω

(q1 − q2)u1u2 dx =

∫
∂Ω+,ε

∂ν(u1 − ũ2)u2 dS

for any uj ∈ H2(Ω) which solve (−∆ + qj)uj = 0 in Ω.

Given the unit vector α ∈ Rn, let ξ ∈ Rn be a vector orthogonal to

α, and let β ∈ Rn be a unit vector such that {α, β, ξ} is an orthogonal

triplet. Write ϕ(x) = α · x and ψ(x) = β · x. Theorem 3.9 ensures that

there exist CGO solutions to (−∆ + qj)uj = 0 of the form

u1 = e
1
h

(ϕ+iψ)eix·ξ(1 + r1),

u2 = e−
1
h

(ϕ+iψ)(1 + r2),

where ‖rj‖ ≤ Ch, ‖∇rj‖ ≤ C, and uj ∈ H2(Ω) (the part that rj ∈
H2(Ω) was in the exercises). Then, writing u := u1− ũ2 ∈ H2∩H1

0 (Ω),

we have

(5.5)

∫
Ω

eixξ̇(q1 − q2)(1 + r1 + r2 + r1r2) dx =

∫
∂Ω+,ε

(∂νu)u2 dS.

By the estimates for rj, the limit as h → 0 of the left hand side is∫
Ω
eix·ξ(q1−q2) dx. We wish to show that the right hand side converges

to zero as h→ 0.

By Cauchy-Schwarz, one has

(5.6)
∣∣∣ ∫

∂Ω+,ε

(∂νu)u2 dS
∣∣∣2 =

∣∣∣ ∫
∂Ω+,ε

e−ϕ/h(∂νu)eϕ/hu2 dS
∣∣∣2

≤
(∫

∂Ω+,ε

|e−ϕ/h∂νu|2 dS
)(∫

∂Ω+,ε

|eϕ/hu2|2 dS
)
.

To use the Carleman estimate, we note that ε ≤ α · ν on ∂Ω+,ε, By

(5.3) applied to u and with potential q2, and using that ∂νu|∂Ω−,ε = 0

by the assumption on DN maps, we obtain for small h that∫
∂Ω+,ε

|e−ϕ/h∂νu|2 ≤
1

ε

∫
∂Ω+,ε

(α · ν)|e−ϕ/h∂νu|2 dS

≤ 1

ε
Ch‖e−ϕ/h(−∆ + q2)u‖2

L2(Ω).
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The reason for choosing the potential q2 is that

(−∆ + q2)u = (−∆ + q2)u1 = (q2 − q1)u1.

Thus, the solution ũ2 goes away, and we are left with an expression

involving only u1 for which we know exact asymptotics. We have∫
∂Ω+,ε

|e−ϕ/h∂νu|2 ≤
1

ε
Ch‖(q2 − q1)eiψ/heix·ξ(1 + r1)‖2

L2(Ω) ≤ Ch.

This takes care of the first term on the right hand side of (5.6). For

the other term we compute∫
∂Ω+,ε

|eϕ/hu2|2 dS =

∫
∂Ω+,ε

|1 + r2|2 dS

≤ 1

2

∫
∂Ω+,ε

(1 + r2
2) dS ≤ C(1 + ‖r2‖2

L2(∂Ω)).

By the trace theorem, ‖r2‖L2(∂Ω) ≤ C‖r2‖H1(Ω) ≤ C. Combining these

estimates, we have for small h that∣∣∣ ∫
∂Ω+,ε

(∂νu)u2 dS
∣∣∣ ≤ C

√
h.

Taking the limit as h→ 0 in (5.5), we are left with

(5.7)

∫
Ω

eix·ξ(q1 − q2) dx = 0.

This is true for all ξ ∈ Rn orthogonal to α. However, since the DN

maps agree on ∂Ω−,ε(α) for a fixed constant ε > 0, they also agree on

∂Ω−,ε′(α
′) for α′ sufficiently close to α on the unit sphere and for some

smaller constant ε′. Thus, in particular, (5.7) holds for ξ in an open

cone in Rn. Writing q for the function which is equal to q1 − q2 in Ω

and which is zero outside of Ω, this implies that the Fourier transform

of q vanishes in an open set. But since q is compactly supported, the

Fourier transform is analytic by the Paley-Wiener theorem, and this

implies that q ≡ 0. We have proved that q1 ≡ q2. �
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