Stubborn Set Intuition Explained

Antti Valmari

Tampere University of Technology Department of Mathematics

- 1 Introduction
- 2 Why Not Steps?
- 3 Deadlock-Preserving Strong Stubborn Sets
- 4 Construction of Strong Stubborn Sets
- 5 Comparison to Ample and Persistent Sets
- 6 Visibility
- 7 A New Result on Safety Properties
- 8 Discussion

1 Introduction

There are two classes of partial order methods

- based on partial order semantics
 - unfolding, step graphs, ...
- not based on partial order semantics
 - ample sets, persistent sets, stubborn sets
 - aps sets

Idea of aps sets

- in each state, only (try to) fire a subset of transitions
 aps set
- choose the set so that the answer to the verification question does not change
- \Rightarrow choice of aps sets depends on the verified property
 - easiest property: deadlocks
 - safety, home markings, LTL_X , CTL_X^* , CSP-equivalence, ...

Goal of this publication:

why stubborn sets are like they are

• especially compared to ample and persistent sets

2 Why Not Steps?

Idea: fire all transitions of a step simultaneously

- intermediate states not stored
- order of firing not represented
- (aps sets choose, e.g., the brown path)

Elegant attractive idea, but ... fails in practice for more than one reason

• we discuss one reason

This net has 2^n deadlocks

- initially 2^n steps
- \Rightarrow too many steps with big n
- 2^n deadlocks
- \Rightarrow any deadlock-preserving method suffers, so aps sets are not better

This net has one deadlock

- initially the same steps
- \Rightarrow 2^{n} steps (plus 2^{n} second steps)

With a bit of luck, aps sets construct a small reduced state space

- e.g., always try leftmost transition first
 - -3n+1 states
- e.g., always try topmost transition first
 - $-3 \cdot 2^n 2$ states
- aps sets *may* perform badly here
- steps are guaranteed to perform badly

Additional lesson

- we would like to treat input order as irrelevant ...
- ... but it may be crucial

 $M_{1,2}$

 $M_{1.3}$

 \hat{M}

3 Deadlock-Preserving Strong Stubborn Sets

Facilitates an easy proof that the reduced state space contains all reachable deadlocks

- assume $M \in$ reduced, n > 0, $M [t_1 \cdots t_n) M_d$, and M_d is a deadlock
- because $M[t_1\rangle$, **D0** implies that the stubborn set contains an enabled transition t
- if none of $t_1, \ldots, t_n \in \operatorname{stubb}(M)$, then $M_d [t\rangle$ by **D2** \checkmark
- by **D1**, the first t_i in stubb(M) moves to the front
- \Rightarrow a transition firing in the reduced state space leads towards the deadlock

 t_i

4 Construction of Strong Stubborn Sets

D1 and **D2** are ensured via a suitable " \rightsquigarrow_M " $\subseteq T \times T$

- encodes knowledge about how transitions interfere with each other
- if $t \rightsquigarrow_M t'$ and $t \in \operatorname{stubb}(M)$, then $t' \in \operatorname{stubb}(M)$
- not necessarily vice versa
- not necessarily $t \in \mathsf{stubb}(M)$

A simple (not good) example " \rightsquigarrow_M "

- if $\neg M[t\rangle$, then choose $p_t \in \bullet t$ such that $M(p_t) < W(p_t, t)$ and let $t \rightsquigarrow_M t' \Leftrightarrow t' \in \bullet p_t$
 - disabled inside transitions remain disabled while outside transitions occur
- if $M[t\rangle$, then let $t \rightsquigarrow_M t' \Leftrightarrow \bullet t \cap \bullet t' \neq \emptyset$
 - enabled inside transitions are \approx concurrent with outside transitions

AV

Two algorithms

- $\operatorname{clsr}(t) = \{t' \mid t \rightsquigarrow_M^* t'\}$
 - bad sets in general, needed in Section 6

- esc(t) = a minimal closed subset of clsr(t) that contains an enabled transition, or indication that clsr(t) contains no enabled transitions
 - O(|T| + |F|) time, often o(|T|)

Old observations

- if T_1 and T_2 are stubborn and $T_1 \cap en(M) \subset T_2 \cap en(M)$, then T_1 yields better (or as good) reduction results
- favouring the smallest number of enabled transitions does not necessarily yield best reduction

New observation

 a stubborn set with one enabled transition is not always the best choice

The non-subset choice problem

• little is known how to choose, if $T_1 \cap \operatorname{en}(M) \not\subseteq T_2 \cap \operatorname{en}(M)$ and $T_2 \cap \operatorname{en}(M) \not\subseteq T_1 \cap \operatorname{en}(M)$

5 Comparison to Ample and Persistent Sets

Ample sets

- [Clarke, Grumberg, Peled 1999] Model Checking
- $\operatorname{ample}(M) \subseteq \operatorname{en}(M)$

C0 If $en(M) \neq \emptyset$, then $ample(M) \neq \emptyset$.

C1 If $M [t_1 \cdots t_n)$ and none of t_1, \ldots, t_n is in ample(M), then each of them is independent of all transitions in ample(M).

If transitions are deterministic

- C0 \wedge C1 \Rightarrow D0 \wedge D1 \wedge D2
- $D0 \land D1 \land D2 \not\Rightarrow C0 \land C1$
 - D1 and D2 only require independence in certain states
- \Rightarrow they are pretty much the same, although stubborn sets have a small advantage

If transitions (or actions) are not necessarily deterministic

- e.g., process algebras
- ample set formulation does not work
- stubborn set formulation does

No disabled transitions in ample sets

 \Rightarrow " \rightsquigarrow_M ", ${\rm clsr}(t),$ and ${\rm esc}(t)$ cannot be formulated

• ample set algorithms try some obviously " \rightsquigarrow_M "-closed sets, and if that fails, revert to $\operatorname{ample}(M) = \operatorname{en}(M)$

Persistent sets

- [Godefroid 1996] LNCS 1032
- deterministic transitions: the same as stubborn sets without disabled transitions (except when $en(M) = \emptyset$)
- nondeterministic transitions: the formulation does not work

Weak stubborn sets

- **D0** and **D2** replaced by a weaker condition: one enabled transition satisfies what **D2** requires from all enabled transitions
- more reduction potential
- we largely lack good algorithms to exploit that potential

 \Rightarrow not in this talk

6 Visibility

Assume we want to (dis)prove $\Box(M(p_1) = 0 \lor M(p_8) = 0)$

- $t_3t_4t_5$ violates it
- **D0**, **D1**, and **D2** allow stubb $(\hat{M}) = \{t_1\}$ \Rightarrow all counterexamples may be lost

Solution

- atomic propositions: $M(p_1) = 0$ and $M(p_8) = 0$
- at least transitions that affect atomic propositions are *visible*
- the rest are *invisible*
- **V** If stubb(M) contains an enabled visible transition, then stubb(M) contains all visible transitions (also disabled).
- V adds the dashed edge to the " $\sim_{\hat{M}}$ "-graph \Rightarrow also t_3 must be in stubb(\hat{M})

6 Visibility

Implementation

- add $t \rightsquigarrow_M t'$ for every $t \in en(M) \cap Vis$ and $t' \in Vis$
- easy!

Ample sets

C2 If ample(M) contains a visible transition, then ample(M) = en(M).

- $\textbf{C2} \Rightarrow \textbf{V} \text{ and } \textbf{V} \not\Rightarrow \textbf{C2}$
- taking initially an enabled visible transition t_1 cannot be avoided in the example \Rightarrow C2 unnecessarily forces to take t_6

 ${\bf V}$ cannot be formulated without disabled transitions in the stubborn set

• e.g., $Vis \cap en(M) \subseteq stubb(M)$ fails in the example - yields $\{t_1\}$

Future work

 $\bullet\,$ a paper replacing a better condition for V has been submitted

7 A New Result on Safety Properties

The ignoring problem

- $\{t_7\}$ satisfies **D0**, **D1**, **D2**, and **V**
- $\hat{M} [t_7\rangle \hat{M}$ \Rightarrow that is all ??

Old solution 1

- for every terminal strong component C of the reduced state space and every $t \in en(root(C))$, there is $M_t \in C$ such that $t \in stubb(M_t)$
- construct the reduced state space in depth-first order, apply Tarjan's strong component algorithm, and extend stubb(${\rm root}(C)$) as needed
- may fire irrelevant transitions
 - t_6 in the example

Old solution 2

AV

- ... every $t \in \mathsf{Vis}$...
- too big stubborn sets

Interesting transitions T_i

- e.g., all transitions, visible transitions, ...
- every (remaining) counterexample contains at least one interesting transition

Semi-interesting transitions $T_{si}(M)$

- at least all interesting transitions
- only semi-interesting transitions can enable disabled interesting transitions
- \Rightarrow every remaining counterexample contains a currently enabled semi-interesting transition
- $T_{si}(M)$ is computed as $\bigcup_{t \in T_i} clsr'(t)$, where $t' \rightsquigarrow'_M t''$ if and only if $\neg M[t'\rangle$ and ...
- for every terminal strong component C of the reduced state space and every $t \in en(T_{si}(root(C)))$, there is $M_t \in C$ such that $t \in stubb(M_t)$
- \Rightarrow The transitions in en($T_{si}(root(C))$) are interleaved instead of fired all in root(C)

8 Discussion

Comparison to ample and persistent sets

- same basic idea, different formulations
- advantages of stubborn set formulation:
 - nondeterministic transitions \rightsquigarrow process algebras
 - disabled transitions in the set and \rightsquigarrow_M : better conditions and algorithms
 - (weak stubborn sets)

New results

- small improvement: singleton set not always best
- $\bullet\,$ new ${\bf S}$ condition that combines advantages of two old ones
 - good algorithm is known, but has not been implemented
- (new **V**)

Liveness properties

- in the paper but not in the talk
- the performance of the well-known cycle condition deserves more research
- $\bullet\,$ extending the new ${\boldsymbol{S}}$ to liveness is future work

The non-subset choice problem

- if one stubborn set is not a subset of another in either direction, which one to choose?
- important unstudied problem

Input order may be crucial

• do each measurement with more than one input order!

The how to stop Valmari talking problem:

Thank you for attention! Questions?