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1 Introduction

There are two classes of partial order methods

e based on partial order semantics
— unfolding, step graphs, ...

e not based on partial order semantics
— ample sets, persistent sets, stubborn sets
— aps sets

ldea of aps sets

e in each state, only (try to) fire a subset of transitions
— aps set

e choose the set so that the answer to the
verification question does not change

= choice of aps sets depends on the verified property
— easiest property: deadlocks
— safety, home markings, LTLy, CTL;<, CSP-equivalence, . ..

Goal of this publication:

why stubborn sets are like they are
e especially compared to ample and persistent sets
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2 Why Not Steps?

|dea: fire all transitions
of a step simultaneously

e intermediate states not stored

e order of firing not represented

e (aps sets choose, e.g.,
the brown path)

Elegant attractive idea, but ...
fails in practice for more than one reason

e we discuss one reason

This net has 2" deadlocks
e initially 2" steps
= too many steps with big n

e 2" deadlocks

= any deadlock-preserving method suffers,
SO aps sets are not better
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This net has one deadlock

e initially the same steps

= 2" steps (plus 2" second steps)

With a bit of luck, aps sets construct
a small reduced state space

e e.g., always try leftmost
transition first
— 3n + 1 states

e e.g., always try topmost
transition first
— 3-2™ — 2 states

e aps sets may perform badly here

e steps are guaranteed to perform badly

Additional lesson

e we would like to treat
input order as irrelevant . ..

e ... but it may be crucial
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3 Deadlock-Preserving Strong Stubborn Sets

Build stubb(M) so that for every t € stubb(M) and ¢; ¢ stubb(M):

DO If en(M) # (), then stubb(M) N en( ) £ ().
D1 If M [ty---t,t) M”, then M [ty - ) M.

ET

D2 If M [t) and M [t;-- M’ then M’ [t

33

Facilitates an easy proof that the reduced state space contains all reachable deadlocks

e assume M € reduced, n >0, M [ty ---t,) My, and My is a deadlock

e because M [t1), DO implies that the stubborn set contains an enabled transition ¢
e if none of t1, ..., t,, € stubb(M), then My [t) by D2 N

e by D1, the first ¢; in stubb(M) moves to the front

= a transition firing in the reduced state
space leads towards the deadlock
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4 Construction of Strong Stubborn Sets

D1 and D2 are ensured
via a suitable “~ " CT x T

e encodes knowledge about how
transitions interfere with each other

o if t~>pr t' and t € stubb(M), then t' € stubb(M)
e not necessarily vice versa
e not necessarily t € stubb(M)

A simple (not good) example “~s ;"
e if =M [t), then choose p; € ot such that M (p;) < W (py,t)
and let t ~p t/ <t/ € opy
— disabled inside transitions remain disabled while outside transitions occur
o if M [t), then let t ~p; t/ < ot Not’ £ ()
— enabled inside transitions are =~ concurrent with outside transitions

ty 4, ts B
@ O O pt5_p5

s e
O @)

t4 (O
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Two algorithms @ (O)—0—(0O

~4 I
o clsr(t)={t' |t~ t'}
— bad sets in general, needed in Section 6 O

e esc(t) = a minimal closed subset of clsr(t) that contains an enabled
transition, or indication that clsr(¢) contains no enabled transitions
— O(|T| 4+ | F|) time, often o(|T])

Old observations

e if 77 and 75 are stubborn and Ty Nen(M) C To Nen(M),
then T} yields better (or as good) reduction results

e favouring the smallest number of enabled transitions
does not necessarily yield best reduction

New observation

e a stubborn set with one enabled
transition is not always the best choice

The non-subset choice problem

e little is known how to choose, if
TyNen(M) < ToNen(M) and
T2 M en(M) Z T1 M en(M)
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5 Comparison to Ample and Persistent Sets

Ample sets
e [Clarke, Grumberg, Peled 1999] Model Checking
e ample(M) C en(M)
CO If en(M) # (), then ample(M) #£ 0.

ClIf M [t;---t,) and none of ¢y, ..., t, is in ample(M), then
each of them is independent of all transitions in ample(M).

If transitions are deterministic

e CONC1= DO0OANADI1AD2

e DOAD1AD2=% COAC1
— D1 and D2 only require independence in certain states

= they are pretty much the same, although stubborn sets have a small advantage

If transitions (or actions) are not necessarily deterministic

e e.g., process algebras
e ample set formulation does not work

e stubborn set formulation does
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No disabled transitions in ample sets

= "~ clsr(t), and esc(t) cannot be formulated

e ample set algorithms try some obviously “~»,; -closed sets,
and if that fails, revert to ample(M) = en(M)

Persistent sets

e [Godefroid 1996] LNCS 1032

e deterministic transitions:
the same as stubborn sets without disabled transitions (except when en(M) = ()

e nondeterministic transitions:
the formulation does not work
Weak stubborn sets

e DO and D2 replaced by a weaker condition:
one enabled transition satisfies what D2 requires from all enabled transitions

e more reduction potential
e we largely lack good algorithms to exploit that potential

= not in this talk
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6 Visibility
Assume we want to (dis)prove O(M(p1) =0V M(pg) = 0)

o—1f
P11

® {3t4t5 violates it

e DO, D1, and D2 allow stubb(M) = {t;}
= all counterexamples may be lost

Solution

e atomic propositions: M(p1) =0 and M(pg) =0
e at least transitions that affect atomic propositions are visible
e the rest are invisible

V If stubb(M) contains an enabled visible transition, then
stubb(M) contains all visible transitions (also disabled).

e V adds the dashed edge to the "~ ;"-graph
= also t3 must be in stubb(M)
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Implementation

e add t ~»); t’ for every t € en(M) N Vis and t' € Vis

e easy!

Ample sets

C2 If ample(M) contains a visible transition, then ample(M) = en(M).

e C2=V and V # C2

e taking initially an enabled visible transition ¢; cannot be avoided in the example
= C2 unnecessarily forces to take tg

V cannot be formulated without disabled transitions in the stubborn set

e e.g., VisNnen(M) C stubb(M) fails in the example
- yields {tl}

Future work

e a paper replacing a better condition for V has been submitted
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7 A New Result on Safety Properties

The ignoring problem o)

e {t7} satisfies DO, P11
D1, D2, and V

A A

M [t7) M
= that is all 77

solution 1

for every terminal strong component C' of the reduced state space and

construct the reduced state space in depth-first order, apply Tarjan's

every t € en(root(C')), there is M; € C such that ¢t € stubb(M;) 4
strong component algorithm, and extend stubb( root(C') ) as needed ij

may fire irrelevant transitions
— tg in the example

solution 2

. everyt € Vis ...

too big stubborn sets
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Interesting transitions 1T;

e e.g., all transitions, visible transitions, . ..

e every (remaining) counterexample contains at least one interesting transition

Semi-interesting transitions Tg (M)

e at least all interesting transitions
e only semi-interesting transitions can enable disabled interesting transitions

= every remaining counterexample contains
a currently enabled semi-interesting transition

o Ty(M) is computed as | J,c clst’(t), where t' ~} ;¢ if and only if M [t') and ...

e for every terminal strong component C' of the reduced state space and
every t € en( Ty( root(C) ) ), there is M; € C such that ¢ € stubb(M;)

= The transitions in en( Tg( root(C) ) ) are interleaved instead of fired all in root(C)

~

@ —
@ —
®

()
-/
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8 Discussion

Comparison to ample and persistent sets

e same basic idea, different formulations

e advantages of stubborn set formulation:

— nondeterministic transitions ~» process algebras
— disabled transitions in the set and ~»,;: better conditions and algorithms
— (weak stubborn sets)

New results

e small improvement: singleton set not always best

e new S condition that combines advantages of two old ones
— good algorithm is known, but has not been implemented

e (new V)

Liveness properties

e in the paper but not in the talk
e the performance of the well-known cycle condition deserves more research

e extending the new S to liveness is future work
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The non-subset choice problem

e if one stubborn set is not a subset of another in either direction,
which one to choose?

e important unstudied problem

Input order may be crucial

e do each measurement with more than one input order!

The how to stop Valmari talking problem:
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