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1 Stubborn Sets
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2 Static and Dynamic

Algorithm
deletion

Algorithm closure

Static def.

∃t : M [t〉 ⇒ ∃t ∈ Stubb(M) : M [t〉
M [t〉 ⇒ (•t)• ⊆ Stubb(M)
¬M [t〉 ⇒ ∃p ∈ •t : M(p) < W (p, t) ∧ •p ⊆ Stubb(M)

Dynamic def.
D0, D1, D2

Static def. . . .
. . . ∀p ∈ •t : ∀t′ /∈ Stubb(M) : min(W (t, p),W (t′, p)) ≥ . . .
. . .W (p, t′) ≥ min(W (t′, p),W (p, t))

Algorithm strong components

Property
deadlocks

better static def.s,
better algorithms
⇒ better reductionD0: if ∃t : s0 −t→, then ∃t ∈ Stubb(s0) : s0−t→

If red, then green → /∈ Stubb(s0) ↓ ∈ Stubb(s0)

D1:
· · ·

· · ·
D2:

· · ·
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3 The Ignoring Problem
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4 Method Explosion

dead- ∃ inf. EF t, LTL−×, determ. CTL∗

−×

locks execu. AG EF t traces Sfail CSP CFFD CTL∗

−×
obs.eq.

D1 • • • • • • • • ◦

D2’ • • • • • • • • ◦

D3 • • • (◦) ◦

V • • • • ◦ ◦

L1 • • • ◦ ◦

S • • • •

L2 • ◦ ◦

B • ◦

NB •

◦ = condition follows from others

D2’ is a variant of D2 that implies D0:

Stubb(s) contains at least one enabled t that satisfies D2.

D3 is only needed when transitions are not deterministic.

More properties ⇒ more and stronger conditions ⇒ worse reduction results
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5 The Common Cycle Condition

If t ∈ Stubb(s) closes a cycle in the reduced state space, then make Stubb(s) = T

Clarke, Grumberg, Peled 1999 Model Checking book and elsewhere
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We do not know how common this problem is.

Something is known about how to avoid this, but not much. [Evangelista, Pajault 2010]

⇒ There is still room for better solutions to the ignoring problem.
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6 Always May-Terminating Models

Typical requirements of a mutual exclusion system:

✷¬(in-cs1 ∧ in-cs2)

✷(requesting
1
⇒ ✸in-cs1) and ✷(requesting

2
⇒ ✸in-cs2)

✷(in-cs1 ⇒ ✸¬in-cs1) and ✷(in-cs2 ⇒ ✸¬in-cs2)

How about the following “solution”?

1: /* not requesting 1 */

2: wait until turn = 1

3: /* critical section 1 */

4: turn := 2; goto 1

1: /* not requesting 2 */

2: wait until turn = 2

3: /* critical section 2 */

4: turn := 1; goto 1

⇒ Must say that moving from 1 to 2 is not obligatory — while other moves are!

LTL solution: idling transitions and weak fairness

Process algebra solution: stable failures

1: goto 2 goto 5
5: stop

Always may-terminating :⇔ ∀ reachable state: a terminal state is reachable

Making models am-t (or something else) is necessary to catch certain liveness errors.
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7 New Results

With always may-terminating models and many properties,
no condition for the ignoring problem is needed!

Consider also not being am-t as an error that the tool should catch.

Theorem With D0, D1, D2, the model is am-t if and only if the reduced state space is.

Fast algorithms for checking the above condition

• on-the-fly: construct rss depth-first, recognize strong components

• afterwards: reverse the edges, perform any good graph-search

⇒ If the model has errors, at least one is caught. (It may be the not am-t error.)

Theorem With D0, D1, D2, and am-t models, the following are preserved:

• for each transition, the possibility of it occurring
– safety properties

• existence of reachable states with no reachable progress states
– “fairness-insensitive progress” (often used in process algebras)

• tω may occur ∞ times without any of T∗ occurring ∞ times
– e.g., if the channel is strongly fair to success, then the protocol succeeds

Counterexamples are valid even if the model is not am-t.
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8 Measurements

Demand-driven token-ring (times in seconds)

plain stubborn sets symmetries both

n states time states time states time states time

5 17 280 0.1 3 505 0.0 3 456 0.0 701 0.0

6 98 064 0.2 12 540 0.1 16 344 0.1 2 090 0.0

7 541 296 0.8 43 015 0.2 77 328 0.4 6 145 0.1

8 2 927 232 4.5 143 408 0.4 365 904 1.6 17 926 0.2

9 15 583 104 30.0 469 053 1.4 1 731 456 10.0 52 117 0.3

10 81 933 120 262 1 514 900 4.6 8 193 312 59.5 151 490 0.9

11 – 341 4 852 771 16.3 38 771 136 339 441 161 2.6

12 15 464 040 60.1 – 1039 1 288 670 9.1

13 .. 65.0 3 777 949 30.0

14 11 116 762 96.1

15 32 826 001 353

16 .. 131

Symmetric Peterson-n: exponential ❀ quadratic

More realistic Peterson-n: less spectacular, see paper
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9 Discussion

Too much has been taken for granted in partial order reduction research.

• heuristics preserving various properties were developed

• little has been done to study and improve their reduction power
– e.g., the common cycle condition

• possibilities of widening static definitions are largely unexploited
– e.g., the controlling of currently disabled transitions
– some tricks to that direction were used in my measurements

There has never been a well-working way of dealing with weak fairness.

• it seems that all other essential aspects of linear temporal logic are solved ≈ ok

• with loosely enough coupled systems, weak fairness becomes necessary

• this publication developed further methods that do not need weak fairness

I believe that for new good results, the static–dynamic dichotomy is very useful.

Thank you for attention!
Questions?
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