Stop It, and Be Stubborn!

Antti Valmari

Tampere University of Technology Department of Mathematics

- 1 Stubborn Sets
- 2 Static and Dynamic
- 3 The Ignoring Problem
- 4 Method Explosion
- 5 The Common Cycle Condition
- 6 Always May-Terminating Models
- 7 New Results
- 8 Measurements
- 9 Discussion

1 Stubborn Sets

Stop It, and Be Stubborn!

June 21, 2015

AV

2 Static and Dynamic

3 The Ignoring Problem

Method Explosion 4 \exists inf. EF t, $LTL_{-\times}$, determ. $CTL^*_{-\times}$ deadlocks execu. AG EF tCFFD Sfail CSP $CTL_{-\times}^*$ obs.eq. traces D1 0 D2' 0 D3 (\circ) Ο V Ο \cap L1 S L2 Ο \bigcirc \bigcirc \bigcirc В Ο NB

 \circ = condition follows from others

D2' is a variant of D2 that implies D0:

Stubb(s) contains at least one enabled t that satisfies D2.

D3 is only needed when transitions are not deterministic.

More properties \Rightarrow more and stronger conditions \Rightarrow worse reduction results

5 The Common Cycle Condition

If $t \in Stubb(s)$ closes a cycle in the reduced state space, then make Stubb(s) = TClarke, Grumberg, Peled 1999 Model Checking book and elsewhere

We do not know how common this problem is.

Something is known about how to avoid this, but not much. [Evangelista, Pajault 2010]

 \Rightarrow There is still room for better solutions to the ignoring problem.

6 Always May-Terminating Models

Typical requirements of a mutual exclusion system:

```
\label{eq:constraint} \begin{array}{l} \Box \neg (\mathsf{in-cs}_1 \land \mathsf{in-cs}_2) \\ \Box (\mathsf{requesting}_1 \Rightarrow \Diamond \mathsf{in-cs}_1) & \mathsf{and} & \Box (\mathsf{requesting}_2 \Rightarrow \Diamond \mathsf{in-cs}_2) \\ \Box (\mathsf{in-cs}_1 \Rightarrow \Diamond \neg \mathsf{in-cs}_1) & \mathsf{and} & \Box (\mathsf{in-cs}_2 \Rightarrow \Diamond \neg \mathsf{in-cs}_2) \end{array}
```

How about the following "solution"?

1: /* not requesting 1 */	1: /* not requesting 2 */
2: wait until $turn = 1$	2: wait until <i>turn</i> = 2
3: /* critical section 1 */	3: /* critical section 2 */
4: <i>turn</i> := 2; goto 1	4: <i>turn</i> := 1; goto 1

 \Rightarrow Must say that moving from 1 to 2 is not obligatory — while other moves are!

LTL solution: idling transitions and weak fairness

Process algebra solution: stable failures

Always may-terminating : $\Leftrightarrow \forall$ reachable state: a terminal state is reachable

Making models am-t (or something else) is necessary to catch certain liveness errors.

6/9

7 New Results

With always may-terminating models and many properties, no condition for the ignoring problem is needed!

Consider also not being am-t as an error that the tool should catch.

Theorem With D0, D1, D2, the model is am-t if and only if the reduced state space is.

Fast algorithms for checking the above condition

- on-the-fly: construct rss depth-first, recognize strong components
- afterwards: reverse the edges, perform any good graph-search

 \Rightarrow If the model has errors, at least one is caught. (It may be the not am-t error.)

Theorem With D0, D1, D2, and am-t models, the following are preserved:

- for each transition, the possibility of it occurring
 - safety properties
- existence of reachable states with no reachable progress states
 "fairness-insensitive progress" (often used in process algebras)
- t_{ω} may occur ∞ times without any of T_* occurring ∞ times - e.g., if the channel is strongly fair to success, then the protocol succeeds

Counterexamples are valid even if the model is not am-t.

8 **Measurements**

Demand-driven token-ring (times in seconds)									
	plain		stubborn sets		symmetries		both		
n	states	time	states	time	states	time	states	time	
5	17 280	0.1	3 505	0.0	3 456	0.0	701	0.0	
6	98 064	0.2	12 540	0.1	16 344	0.1	2 090	0.0	
7	541 296	0.8	43015	0.2	77 328	0.4	6 145	0.1	
8	2 927 232	4.5	143 408	0.4	365 904	1.6	17 926	0.2	
9	15583104	30.0	469 053	1.4	1731456	10.0	52 117	0.3	
10	81 933 120	262	1514900	4.6	8 193 312	59.5	151 490	0.9	
11	—	341	4 852 771	16.3	38 771 136	339	441 161	2.6	
12			15 464 040	60.1	—	1039	1288670	9.1	
13				65.0			3 777 949	30.0	
14							11116762	96.1	
15							32826001	353	
16								131	

1. . 1 \

Symmetric Peterson-n: exponential \rightsquigarrow quadratic

More realistic Peterson-n: less spectacular, see paper

June 21, 2015

9 Discussion

Too much has been taken for granted in partial order reduction research.

- heuristics preserving various properties were developed
- little has been done to study and improve their reduction power
 - e.g., the common cycle condition
- possibilities of widening static definitions are largely unexploited
 - e.g., the controlling of currently disabled transitions
 - some tricks to that direction were used in my measurements

There has never been a well-working way of dealing with weak fairness.

- it seems that all other essential aspects of linear temporal logic are solved pprox ok
- with loosely enough coupled systems, weak fairness becomes necessary
- this publication developed further methods that do not need weak fairness

I believe that for new good results, the static-dynamic dichotomy is very useful.

Thank you for attention! Questions?