
Stop It, and Be Stubborn!

Antti Valmari

Tampere University of Technology
Department of Mathematics

1 Stubborn Sets

2 Static and Dynamic

3 The Ignoring Problem

4 Method Explosion

5 The Common Cycle Condition

6 Always May-Terminating Models

7 New Results

8 Measurements

9 Discussion

AV Stop It, and Be Stubborn! June 21, 2015 Table of Contents 0/9

1 Stubborn Sets

p1

t1

p2

t2

p3

t5

p4

t3

p5

t4

p6

100100
t3

100010

010010
t4

010001

001001

t1

t2

t5

100001

010100
t3

001100
t3

001010
t4

t4

t1 t1

t2 t2

p1

t1

p2

t2

p3

t5

p4

t3

p5

t4

p6

p1

t1

p2

t2

p3

t5

p4

t3

p5

t4

p6

AV Stop It, and Be Stubborn! June 21, 2015 1 Stubborn Sets 1/9

2 Static and Dynamic

Algorithm
deletion

Algorithm closure

Static def.

∃t : M [t〉 ⇒ ∃t ∈ Stubb(M) : M [t〉
M [t〉 ⇒ (•t)• ⊆ Stubb(M)
¬M [t〉 ⇒ ∃p ∈ •t : M(p) < W (p, t) ∧ •p ⊆ Stubb(M)

Dynamic def.
D0, D1, D2

Static def. . . .
. . . ∀p ∈ •t : ∀t′ /∈ Stubb(M) : min(W (t, p),W (t′, p)) ≥ . . .
. . .W (p, t′) ≥ min(W (t′, p),W (p, t))

Algorithm strong components

Property
deadlocks

better static def.s,
better algorithms
⇒ better reductionD0: if ∃t : s0 −t→, then ∃t ∈ Stubb(s0) : s0−t→

If red, then green → /∈ Stubb(s0) ↓ ∈ Stubb(s0)

D1:
· · ·

· · ·
D2:

· · ·

AV Stop It, and Be Stubborn! June 21, 2015 2 Static and Dynamic 2/9

3 The Ignoring Problem

p1

t1

p2 p4

t2

p3

t3 t4
p5

✷¬t4

t1

t2 t3

10000

01010

00110

t2 t3

t4

t4

01001

00101

p1

t1

p2

t2

p3

t5

p4

t3

p5

t4

✷✸¬p2

t1

t2

t5

t3

t4
10010

01010

00110

10001

t3

t3

t1

t2

t4

t4

01001

00101

AV Stop It, and Be Stubborn! June 21, 2015 3 The Ignoring Problem 3/9

4 Method Explosion

dead- ∃ inf. EF t, LTL−×, determ. CTL∗

−×

locks execu. AG EF t traces Sfail CSP CFFD CTL∗

−×
obs.eq.

D1 • • • • • • • • ◦

D2’ • • • • • • • • ◦

D3 • • • (◦) ◦

V • • • • ◦ ◦

L1 • • • ◦ ◦

S • • • •

L2 • ◦ ◦

B • ◦

NB •

◦ = condition follows from others

D2’ is a variant of D2 that implies D0:

Stubb(s) contains at least one enabled t that satisfies D2.

D3 is only needed when transitions are not deterministic.

More properties ⇒ more and stronger conditions ⇒ worse reduction results

AV Stop It, and Be Stubborn! June 21, 2015 4 Method Explosion 4/9

5 The Common Cycle Condition

If t ∈ Stubb(s) closes a cycle in the reduced state space, then make Stubb(s) = T

Clarke, Grumberg, Peled 1999 Model Checking book and elsewhere

p1

t1

p2

t2

p3

t3 t6

p4

t4

p5

t5

p6

100100

010100

001100

100010

010010

001010

010001

001001

100001

t1

t2

t4
t3

t1

t5

t2 t3

t1
t6

t4

t4

t3
t5

t5

t2
t6

t6

We do not know how common this problem is.

Something is known about how to avoid this, but not much. [Evangelista, Pajault 2010]

⇒ There is still room for better solutions to the ignoring problem.

AV Stop It, and Be Stubborn! June 21, 2015 5 The Common Cycle Condition 5/9

6 Always May-Terminating Models

Typical requirements of a mutual exclusion system:

✷¬(in-cs1 ∧ in-cs2)

✷(requesting
1
⇒ ✸in-cs1) and ✷(requesting

2
⇒ ✸in-cs2)

✷(in-cs1 ⇒ ✸¬in-cs1) and ✷(in-cs2 ⇒ ✸¬in-cs2)

How about the following “solution”?

1: /* not requesting 1 */

2: wait until turn = 1

3: /* critical section 1 */

4: turn := 2; goto 1

1: /* not requesting 2 */

2: wait until turn = 2

3: /* critical section 2 */

4: turn := 1; goto 1

⇒ Must say that moving from 1 to 2 is not obligatory — while other moves are!

LTL solution: idling transitions and weak fairness

Process algebra solution: stable failures

1: goto 2 goto 5
5: stop

Always may-terminating :⇔ ∀ reachable state: a terminal state is reachable

Making models am-t (or something else) is necessary to catch certain liveness errors.

AV Stop It, and Be Stubborn! June 21, 2015 6 Always May-Terminating Models 6/9

7 New Results

With always may-terminating models and many properties,
no condition for the ignoring problem is needed!

Consider also not being am-t as an error that the tool should catch.

Theorem With D0, D1, D2, the model is am-t if and only if the reduced state space is.

Fast algorithms for checking the above condition

• on-the-fly: construct rss depth-first, recognize strong components

• afterwards: reverse the edges, perform any good graph-search

⇒ If the model has errors, at least one is caught. (It may be the not am-t error.)

Theorem With D0, D1, D2, and am-t models, the following are preserved:

• for each transition, the possibility of it occurring
– safety properties

• existence of reachable states with no reachable progress states
– “fairness-insensitive progress” (often used in process algebras)

• tω may occur ∞ times without any of T∗ occurring ∞ times
– e.g., if the channel is strongly fair to success, then the protocol succeeds

Counterexamples are valid even if the model is not am-t.

AV Stop It, and Be Stubborn! June 21, 2015 7 New Results 7/9

8 Measurements

Demand-driven token-ring (times in seconds)

plain stubborn sets symmetries both

n states time states time states time states time

5 17 280 0.1 3 505 0.0 3 456 0.0 701 0.0

6 98 064 0.2 12 540 0.1 16 344 0.1 2 090 0.0

7 541 296 0.8 43 015 0.2 77 328 0.4 6 145 0.1

8 2 927 232 4.5 143 408 0.4 365 904 1.6 17 926 0.2

9 15 583 104 30.0 469 053 1.4 1 731 456 10.0 52 117 0.3

10 81 933 120 262 1 514 900 4.6 8 193 312 59.5 151 490 0.9

11 – 341 4 852 771 16.3 38 771 136 339 441 161 2.6

12 15 464 040 60.1 – 1039 1 288 670 9.1

13 .. 65.0 3 777 949 30.0

14 11 116 762 96.1

15 32 826 001 353

16 .. 131

Symmetric Peterson-n: exponential ❀ quadratic

More realistic Peterson-n: less spectacular, see paper

AV Stop It, and Be Stubborn! June 21, 2015 8 Measurements 8/9

9 Discussion

Too much has been taken for granted in partial order reduction research.

• heuristics preserving various properties were developed

• little has been done to study and improve their reduction power
– e.g., the common cycle condition

• possibilities of widening static definitions are largely unexploited
– e.g., the controlling of currently disabled transitions
– some tricks to that direction were used in my measurements

There has never been a well-working way of dealing with weak fairness.

• it seems that all other essential aspects of linear temporal logic are solved ≈ ok

• with loosely enough coupled systems, weak fairness becomes necessary

• this publication developed further methods that do not need weak fairness

I believe that for new good results, the static–dynamic dichotomy is very useful.

Thank you for attention!
Questions?

AV Stop It, and Be Stubborn! June 21, 2015 9 Discussion 9/9

