
Modelling Without
a Modelling Language

Antti Valmari & Vesa Lappalainen

University of Jyväskylä

1 Introduction

2 Quick Comparison to Promela

3 Demand-Driven Token Ring

4 Simple Transition Classes

5 Faster Transition Classes

6 Demand-Driven Token Ring Measurements

7 Conclusions

AV Modelling Without a Modelling Language 2018-06-22 Table of Contents 0/12

1 Introduction

The starting point was teaching state space methods to students who

• know little theory

• know very little concurrency

• know C++

Pedagogical considerations

• wanted a clear, simple, but powerful enough abstract semantic model of concurrency

⇒ guarded transitions on shared variables

• students tend to incorrectly interpret concurrent code as sequential
– it is hard to start thinking in a new way!
– making concurrency aspects look unfamiliar helps

• outside concurrency, exploit what they already know
– reduces unnecessary burden
⇒ C++ for (atomic) sequential code

The tool had to be

• technically easy to start to use
– download, not install

• not woefully slow

forks[(id + 1)%N] == 0

forks[(id + 1)%N] = 1;
count eating++;

pc = eating;

forks[...]!= 0

forks[id] = 0;
pc = thinking;

thinking

choosing

eating

AV Modelling Without a Modelling Language 2018-06-22 1 Introduction 1/12

First version 2014

• quickly written

• the model is represented as a collection of C++ functions
– bool fire transition(unsigned tr) ❀ may change the global state
– void print state() ❀ readable error traces
– unsigned nr transitions() ❀ also set the initial state
– const char *check state() ❀ the string is the error message
– const char *check deadlock() ❀ illegal vs. legal termination
– bool is may progress() ❀ AG EF progress
– bool is must progress() ❀ AG AF progress

• download the tool, copy the model to simple mc.model, compile, and run

• global state was a single (32-bit) unsigned integer
⇒ models had to contain clumsy bit manipulation

• the transition relation was often a horrible mess of if’s and switch’s

• horrible — but did work pedagogically!

Improvements 2015: “ASSET”

• unrestricted global state size

• state var

i A[] i A[] i A[] i A[] i A[]
· · ·

· · ·

i A[]

state nr

– to the modeller, looks like an ordinary 8-bit unsigned integer
– behind the scenes, accesses the data structure of found global states

AV Modelling Without a Modelling Language 2018-06-22 1 Introduction 2/12

Improvement 2018 (this talk)

• represent guards and bodies as C++ lambda functions

• develop (re-usable) classes for common usage patterns
– client tr: tail state and head state, indexed
– server tr: tail state, guard, body, and head state, indexed

Guard
Body

– cf. algorithms and data structures in libraries
– more in the future?

⇒ rid of the messes of if’s and switch’s

Performance

• dining philosophers in Promela from [5]

• straightforward translation to ASSET

• re-use of server tr

time sec

n states edges ASSET SPIN

10 154 450 1 145 997 0.6 0.3

11 510 116 4 153 629 0.9 1.2

12 1 684 801 14 936 051 2.1 4.7

13 5 564 522 53 351 654 7.2 18.4

14 18 378 370 189 489 700 32.4 80

AV Modelling Without a Modelling Language 2018-06-22 1 Introduction 3/12

2 Quick Comparison to Promela

bit forks[N];

byte count_eating;

proctype reset_phil(byte id) {

thinking: ...

choosing:

if

::atomic {

forks[(id + 1)%N] == 0 ->

forks[(id + 1)%N] = 1;

count_eating++;

};

::atomic {

forks[(id + 1)%N] != 0 ->

forks[id] = 0;

}

goto thinking;

fi;

eating: ...

enum { thinking, choosing, eating, leaving };

state_bit forks[n];

state_var count_eating, S[n];

server_tr phils[] = {

...

server_tr(

choosing,

GUARD(forks[(i + 1)%n] == 0),

BODY(forks[(i+1)%n] = 1; ++count_eating;),

eating

),

server_tr(

choosing,

GUARD(i == n-1 && forks[(i + 1)%n] != 0),

BODY(forks[i] = 0;),

thinking

)

};

AV Modelling Without a Modelling Language 2018-06-22 2 Quick Comparison to Promela 4/12

3 Demand-Driven Token Ring

r0 g0 l0
d1
t1

r1 g1 l1
d2
t2

r2 g2 l2
d3
t3

· · ·

· · ·

dn−1

tn−1

rn−1 ln−1gn−1

d0
t0

C0

S0

C1

S1

C2

S2

Cn−1

Sn−1

State variables: state var C[n], S[n]; state bit T[n];

Clients

client_tr clients[] = {

client_tr(idle, terminated), // termination

client_tr(idle, requested), // request access

client_tr(critical, idle) // leave critical

};

ri gi

li0

1

2

3

Why termination branch?

• light-weight method to easily catch more progress errors

• [Valmari & Setälä 1996], [Valmari & Hansen 2018]

AV Modelling Without a Modelling Language 2018-06-22 3 Demand-Driven Token Ring 5/12

Servers

direct access to C[i] and
S[next(i)] made the
model small enough to be
fully shown in the paper

0: wait until Ci has requested or Si⊕1 needs the token
goto 1

1: wait until I have the token
if Ci has requested then grant it permission; goto 2
else give the token to Si⊕1; goto 0

2: wait until Ci has left its critical section
give the token to Si⊕1; goto 0

server_tr(

wait_token,

GUARD(T[i] && C[i] == requested),

BODY(C[i] = critical;),

wait_client

),

server_tr(

wait_token,

GUARD(T[i] && C[i] != requested && S[next(i)] == wait_token),

BODY(T[i] = false; T[next(i)] = true;),

initial

),

AV Modelling Without a Modelling Language 2018-06-22 3 Demand-Driven Token Ring 6/12

Example of Error Detection

#define chk must progress
bool is must progress(){ return C[0] != requested; }

• seed an error: after serving its client, the server
does not automatically push the token forward print state()

-i*-i -i -i -i -i
-i*Ri -i -i -i -i
-i*Rt -i -i -i -i
-t*Rt -i -i -i -i
-i Rt*-i -i -i -i
==========
Ri Rt*-i -i -i -i
Rt Rt*-i -i -i -i
...
Rt t t -t -t -t*
Rt t t t -t -t*

Rt t t t t -t*
Rt t t t t Rt*
Rt t t t t Cc*
Rt t t t t -c*
Rt t t t t -i*
466560 states, 2954880 edges
!!! Must-type non-progress error

Client 1 requests, so the
token is fetched to Server 1

Client 0 requests in vain

the demand goes round,
Client 1 is served,
Clients 1 to 4 terminate

eternal loop where Client 5
is served again and again
while Client 0 waits in vain

AV Modelling Without a Modelling Language 2018-06-22 3 Demand-Driven Token Ring 7/12

4 Simple Transition Classes

Nicer syntax for C++ lambda functions

typedef bool (*guard_type)(unsigned);

typedef void (*body_type)(unsigned);

#define GUARD(x) { [](unsigned i) {return x;} }

#define BODY(x) { [](unsigned i) {x} }

The essence of the server transition class

class server_tr{

unsigned tail, head; guard_type guard; body_type body;

...

bool operator()(unsigned i) const {

if(S[i] != tail || !guard(i)){ return false; }

body(i); S[i] = head; return true;

}

};

• i is the index of the server

• transition is enabled ⇔ control of the process is at its tail state and its guard holds

• transition fires ⇔ its body is executed and the control moves to its head state

AV Modelling Without a Modelling Language 2018-06-22 4 Simple Transition Classes 8/12

Firing of transitions

• not yet fully automated — this had to be written manually

inline bool fire_transition(unsigned i){

/* Servers */

if(i < nr_server_tr){

return servers[i % server_tr::cnt](i / server_tr::cnt);

}

/* Clients */

i -= nr_server_tr;

return clients[i % client_tr::cnt](i / client_tr::cnt);

}

• the modeller wrote 3 client and 4 server transitions

• there are n clients and servers

⇒ ASSET uses 0, . . . , 7n− 1 as transition numbers

• the number is split to two parts:
– a server or client transition is picked from an array of transitions
– the index of the client or server goes as a parameter to the transition

A (non-)problem

• numerous calls of fire transition with S[i] != tail or C[i] != tail

AV Modelling Without a Modelling Language 2018-06-22 4 Simple Transition Classes 9/12

5 Faster Transition Classes

Transitions that are never simultaneously enabled may share their ASSET number

⇒ each process only needs as many transition numbers as its degree of nondeterminism
– maximum number of simultaneously enabled transitions

• degree of nondeterminism ≤ outdegree of local state

• often << total number of transitions of the process

level

0 sen f0 err d1 . . .

1 ℘ ℘ ā0 ℘

2 ℘ ℘ ā1 ℘

• local state S[i] selects the column

⇒ no need to test S[i] == tail

• ℘ is a transition whose guard is always false

• ā0 and ā1 can be a single transition, saving one level

sen f0

err

ā0ā1

d1

err
senf1

err

ā1
ā0

d0

err
ā0
ā1

ok sen

ā1
ā0

oksen

In the measurements of this model, the manipulation of fifo’s dominated analysis time

⇒ the simple solution was only little slower than the if’s and switch’s

⇒ there was no room for much improvement by the faster classes

AV Modelling Without a Modelling Language 2018-06-22 5 Faster Transition Classes 10/12

6 Demand-Driven Token Ring Measurements

Demand-driven token ring state space size

• edges ≈ 1.04 n states
⇒ most transitions are

disabled in most states

n 7 8 9

states 2 939 328 20 155 392 136 048 896

edges 21 500 640 167 588 352 1 267 270 272

(Relative) running times

Faster trans. classes Old technique

n hash Simple Lambda4 Lambda3 Switch7 Switch3 seconds

7 23 1.38 1.27 1.18 1.22 1.00 3.33

7 24 1.37 1.27 1.19 1.24 1.00 3.28

8 23 1.31 1.23 1.19 1.10 1.00 45.7

8 27 1.44 1.34 1.27 1.15 1.00 29.6

9 27 1.26 1.19 1.17 1.11 1.00 355

9 28 1.30 1.21 1.17 1.13 1.00 321

Old mini-laptop

8 23 1.70 1.48 1.33 1.10 1.00 181

AV Modelling Without a Modelling Language 2018-06-22 6 Demand-Driven Token Ring Measurements 11/12

7 Conclusions

Guarded transition systems on shared variables, including process local
state, can be expressed naturally using C++ lambda functions

The cost of lambda functions

• does not matter much on modern machines
– hash table size matters more!

• is more significant on an old weak machine

Faster classes were indeed faster, but not very much

• they cannot be faster than if’s and switch’s

• simple classes were not much slower than if’s and switch’s

⇒ there was no room for much improvement

The following proved feasible:

• re-using a simple class in another model

• experimenting with a research idea without touching the core tool

Thank you for attention! Questions?

AV Modelling Without a Modelling Language 2018-06-22 7 Conclusions 12/12

