
The Asymptotic Behaviour
of the Proportion of Hard Instances

of the Halting Problem

Antti Valmari
Tampere University of Technology

FINLAND

1 My Motivation

2 Incomplete Testers

3 Proportions of Easy and . . .

4 Varied Asymptotics

5 Literature Survey

6 Domain-frequency

7 A Typical Hardness Result

8 A Model-Independent Easiness . . .

9 Anomalies Stealing the Results

10 A Difference Between A- and . . .

11 Discussion

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 0/11

1 My Motivation

Does program P halt on input I?

The classic (and correct!) undecidability proof

• assume that a halting tester exists

void nasty(string P){
if(!halts(P,P)){

while(true){}
}

}

• using it, build a program that predicts its own future
behaviour and does precisely the opposite to the prediction

⇒ the prediction is incorrect by construction

⇒ halting tester does not exist bool halts(string P, string I){. . . }

Many people feel this proof is cheating, “a rabbit out of the magician’s hat”

• comp.theory noisemakers — ignore them
nasty(nasty)

• Eric C.R. Hehner — serious scientist

• some of my not worst students — I can’t ignore them!

I wanted to write another proof that would not create such feelings

• (Halting tester proof for software engineers . . . , comp.theory 2012-06-15)

• got interested in this problem area

⇒ found some new small results in this very classic field

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 1/11

2 Incomplete Testers

Fail on some instances (P, I)

• 3-way tester — replies “I don’t know”

bool halts2(string P, string I){
if(P==nasty && I==nasty)

return false;
else return halts(P,I);

}

• generic-case tester — the tester fails to halt

• approximating tester — gives a wrong “yes” or “no” answer

Hard instance = tester fails on it

Examples

• always reply “I don’t know” — absolutely useless but meets the definition

• simulate 99n

steps, reply “I don’t know” if did not halt or . . . by then

Any 3-way tester can be trivially converted to a generic or approximating tester

For each incomplete tester, the classic proof constructs a hard instance of it

• the tester can be modified to handle the instance . . .

• . . . but an accordingly modified nasty is hard for the modified tester

Every tester has ∞ many hard instances

No instance is hard for every tester

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 2/11

3 Proportions of Easy and Hard Instances

Notation for the number of instances of size n (of tester T)

easy hard altogether

halting hT (n) hT (n) h(n)

non-halting dT (n) dT (n) d(n)

altogether p
T
(n) pT (n) p(n)

Failure rate =
pT (n)

p(n)
=

hT (n) + dT (n)

p(n)
= the proportion of hard instances

The hope

• the failure rate cannot be made 0, but . . .

• . . . perhaps it can be made small?

It proved interesting to investigate separately
hT (n)

p(n)
and

dT (n)

p(n)
as n → ∞

Why asymptotic?

• failure rate can be made 0 for any finite set of instances with a look-up table

– absolutely impractical and uninformative, but rules out interesting results

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 3/11

4 Varied Asymptotics

Most results in the paper are of the following kinds, with varying assumptions

Easiness formulae

• a single ever-improving tester ∃T : ∀c > 0 : ∃nc ∈ N : ∀n ≥ nc :
pT (n)

p(n)
≤ c

– that is, pT (n)/p(n) → 0 as n → ∞

• a family of better and better testers ∀c > 0 : ∃Tc : ∀n ∈ N :
pTc

(n)

p(n)
≤ c

– no nc, because small inputs solved with a look-up table

Hardness formulae

• every tester suffers a lower bound

∀T : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
pT (n)

p(n)
≥ cT

0

1

nT

cT• there is a common lower bound for all testers

∃c > 0 : ∀T : ∃nT ∈ N : ∀n ≥ nT :
pT (n)

p(n)
≥ c

Infinitely often

• the dark blue part is replaced by ∀n0 ∈ N : ∃n ≥ n0

• important, because ¬ “from some n on” ϕ ⇔ “infinitely often” ¬ϕ

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 4/11

5 Literature Survey

Surprisingly few papers were found!

• and many are surprisingly recent

• many are unaware of most others

Diversity of the problem

• model of computation

– Turing machine — which variant?

1 0 0 1 1 · · ·

– programming language — frequency/density assumption (next slide)

– Gödel numbers of recursive functions — ≈ indices of programs

• type of halting problem

(A) T (P) tells if P halts on the empty input

(B) T (P) tells if P halts on the input P , i.e., given itself as its input

(C) T (P, I) tells if P halts on the input I

– until now we have discussed (C)

– with (A) and (B), p(n) = number of programs of size n

• failure mode: 3-way, generic-case, approximating

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 5/11

6 Domain-frequency

It is trivial to make many longer identically behaving copies of a program

• if(000000000 == 123456789){ /* put any code here */ }

• bool b = . . . something very complicated yielding false . . . ; if(b){. . . }

⇒ we cannot even recognize all the copies nor design a language avoiding them

Many results assume that for any bigger size, many enough copies
can be made, but they need not necessarily be fully identically behaving

Example: domain-frequency

∀π ∈ programs : ∃nπ ∈ N : ∃cπ > 0 :
∀n ≥ nπ : π(n)/p(n) ≥ cπ

• here π(n) = # programs of size n that
halt on precisely the same inputs as π

0

1

nπ

cπ

• the esoteric minimalistic programming language BF is domain-frequent

• end-of-program maximum density raw data block implies domain-frequency

– even if inaccessible to the actual code

• whether C++ is domain-frequent has been too difficult to find out!

{char*s="σ"} {char*s="σ",*t="ρ"}

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 6/11

7 A Typical Hardness Result

If the programming language is domain-frequent, then

∀T ∈ three-way(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧

dT (n)

p(n)
≥ cT

∀T ∈ generic(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
dT (n)

p(n)
≥ cT

∀T ∈ approx(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n) + dT (n)

p(n)
≥ cT

That is, the proportion of hard instances does not vanish as n → ∞

The proof is a modification of the classical one

• given T , all copies of nastyT are hard instances

A generic-case tester with hT (n) = 0 exists

• simulate the instance until it halts

⇒ cannot generalize hT (n)/p(n) ≥ cT to the generic case

A (useless) approximat. tester with hT (n) = 0 exists, and another with dT (n) = 0

• always reply “yes”, always reply “no”

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 7/11

8 A Model-Independent Easiness Result

For each programming model and variant X ∈ {A, B, C} of the halting problem,

∀c > 0 : ∃Tc ∈ approx(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hTc

(n)

p(n)
≤ c ∧ dTc

(n) = 0

∀c > 0 : ∃Tc ∈ three-way(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hTc

(n)

p(n)
≤ c

∃T ∈ generic(X) : ∀n ∈ N : hT (n) = 0

In the approximating case, that means it is infinitely often as easy as you want

Proof for approximating testers [Köhler & al. 05]

• divide 0 ≤ y ≤ 1 to strips

• there is the lowest strip i that h(n)
p(n)

visits infinitely many times

• for small n, reply “no”

1.0
0.8
0.6
0.4
0.2
0.0• for big n, simulate instances until

so many have halted that strip i is met, reply “yes” iff given instance halted

We already saw the (trivial) proof for generic-case testers

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 8/11

9 Anomalies Stealing the Results

For Turing machines with one-way infinite tape, it is very easy [Hamkins & al. 06]

• the probability of falling off the left end of the tape → 1, as |Q| → ∞

⇒ simulate the machine until it falls off (reply “yes”)
or repeats a local state (reply “I don’t know”)

⇒ ∃T ∈ three-way(X) : ∀c > 0 : ∃nc ∈ N : ∀n ≥ nc :
hT (n) + dT (n)

p(n)
≤ c

If compile-time errors are counted, it is very easy [Köhler & al. 05], [this paper]

• the probability of syntax error → 1, as n → ∞

⇒ reply “I don’t know” if compilation succeeds, otherwise “no”

By tampering the progr. lang., it can be made very easy and very hard [Lynch 74]

Each one is an anomaly stealing the result

• formally true, but does not tell anything about the interesting programs!

• they seem common in this research field

• make it difficult to formulate interesting results

• make it necessary to be very careful with the details of the language, etc.

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 9/11

10 A Difference Between A- and B-types

A program may have lots of information that it cannot access

• comments, junk after the end of a self-delimiting program, . . .

If the language allows dense junk, an arbitrarily good empty-input tester exists

∀c > 0 : ∃Tc ∈ three-way(A) : ∀n ∈ N :
hTc

(n) + dTc
(n)

p(n)
≤ c

• reason: as n grows, a growing proportion of
big programs are copies of programs of size ≤ n (yet another anomaly)

• (the claim for B in the paper is wrong, sorry . . .)

A modified proof (not in the paper) of Theorem 7 yields

∃c > 0 : ∀T ∈ three-way(B) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≥ c ∧

dT (n)

p(n)
≥ c

• T is not in the program, but is obtained from the size of the input

– if |I| ∈ {0, 1, 3, 6, 10, . . .}, then T is P1

– if |I| ∈ {2, 4, 7, 11, . . .}, then T is P2, and so on
(hT (n) of any good
B-tester oscillates)

So with dense junk, A is strictly easier than B

• intuitive reason: with B, the program gets the junk as part of its input

AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 10/11

11 Discussion

There are more theorems in the paper

• even so, the results leave many questions open

⇒ lots of room for future work

Hardness proofs rely on the ability to pack raw data densely

• string constants do not seem dense enough!

⇒ theorems assumed, e.g., any byte string as the input or at the end of program

Many known easiness results arise as anomalies

• uninteresting in themselves, but make it hard to find interesting results

Ideas for future work

• perhaps it would be better to study hT (n)/h(n) and dT (n)/d(n)?

• [Lynch 74] gives a very strong result, how do its assumptions relate to ours?

∃c > 0 : ∀T ∈ three-way(B) : ∃nT ∈ N : ∀n ≥ nT :
HT (n) + DT (n)

P (n)
≥ c

Thank you for attention!
AV Hard Instances of the Halting Problem SPLST ’13 2013-08-27 11/11

