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1 My Motivation

void nasty(string P){

| if (thalts(P,P)){
Does program P halt on input 17 while(true){}

The classic (and correct!) undecidability proof i

}

e using it, build a program that predicts its own future
behaviour and does precisely the opposite to the prediction

e assume that a exists

= the prediction is incorrect by construction

= halting tester does not exist bool halts(string P, string I){...}

Many people feel this proof is cheating, “a rabbit out of the magician’s hat”
e comp.theory noisemakers — ignore them T,
e Eric C.R. Hehner — serious scientist

e some of my not worst students — [ can't ignore them!

| wanted to write another proof that would not create such feelings
e (Halting tester proof for software engineers ..., comp.theory 2012-06-15)
e got interested in this problem area

= found some new small results in this very classic field
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bool halts2(string P, string I){
2 Incomplete Testers if (P==nasty && I==nasty)

return false;

Fail on some instances (P, ) else return halts(P,I):

e 3-way tester — replies “l don't know” [i§

e generic-case tester — the tester fails to halt

e approximating tester — gives a wrong “yes' or ‘no’ answer
Hard instance = tester fails on it
Examples

e always reply “l don't know” — absolutely useless but meets the definition

e simulate 99" steps, reply "l don't know” if did not halt or ... by then

Any 3-way tester can be trivially converted to a generic or approximating tester
For each incomplete tester, the classic proof constructs a hard instance of it

e the tester can be to handle the instance ...

e ... but an accordingly modified nasty is hard for the modified tester

Every tester has oo many hard instances
No instance is hard for every tester
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3 Proportions of Easy and Hard Instances

Notation for the number of instances of size n (of tester T')
easy hard | altogether
halting hr(n)  hr(n) h(n)
non-halting | dr(n) dr(n) d(n)
altogether | p_(n) DPr(n) p(n)

hr(n) 4+ dr(n)
p(n)

— the proportion of hard instances

Failure rate

The hope

e the failure rate cannot be made 0, but ...

e ... perhaps it can be made small?

ET(n) and ET(n) as n — o0

It proved interesting to investigate separately
p(n) p(n)
Why asymptotic?
e failure rate can be made 0 for any finite set of instances with a look-up table

— absolutely impractical and uninformative, but rules out interesting results
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4 Varied Asymptotics

Most results in the paper are of the following kinds, with varying assumptions
Easiness formulae

e a single ever-improving tester d7T:Ve>0:dn. € N:Vn > n,:
— that is, pp(n)/p(n) — 0 as n — oo

e a family of better and better testers Ve>0:d1T,.:Vn e N:
— no n., because small inputs solved with a look-up table

Hardness formulae

e every tester suffers a lower bound
VT :der >0:dnp € N:Vn > np:

e there is a common lower bound for all testers

EIC>O:VT:EInT€N:VnZnT:pT(n) > c
p(n)

Infinitely often
e the dark blue part is replaced by Vng € N : dn > ng

e important, because — “from some n on” © < “infinitely often” —p
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b Literature Survey

Surprisingly few papers were found!
e and many are surprisingly recent

e many are unaware of most others

Diversity of the problem

e model of computation
— Turing machine — which variant?
— programming language — frequency/density assumption (next slide)
— Godel numbers of recursive functions — = indices of programs

e type of halting problem
(A) T'(P) tells if P halts on the empty input
(B) T'(P) tells if P halts on the input P, i.e., given itself as its input
(C) T(P,I) tells if P halts on the input [
— until now we have discussed (C)
— with (A) and (B), p(n) = number of programs of size n

e failure mode: 3-way, generic-case, approximating
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6 Domain-frequency

It is trivial to make many longer identically behaving copies of a program
e if( 000000000 == 123456789 ){ /* put any code here */ }
e bool b =... something very complicated yielding false ... ; if(b){...}

= we cannot even recognize all the copies nor design a language avoiding them

Many results assume that for any bigger size, many enough copies
can be made, but they need not necessarily be fully identically behaving

Example: domain-frequency 1

Vm € programs : dn, € N : dc; > 0 :
Vn > n, :mw(n)/pn) > cx SR WU Y

here m(n) = # programs of size n that
halt on precisely the same inputs as 7 Ny

the esoteric minimalistic programming language BF is domain-frequent
end-of-program maximum density raw data block implies domain-frequency
— even if inaccessible to the actual code

whether C4++ is domain-frequent has been too difficult to find out!
{char*s="¢o" ~ {charxs="g" ,*t="p"}
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7/ A Typical Hardness Result

It the programming language is domain-frequent, then

VT € three-way(B) : e > 0:3dnp e N:Vn > nyp :
VT € generic(B) : der > 0:3dnp e N:Vn > nyp:

VT € approx(B) : Jer > 0:3dInp e N:Vn > np:

That is, the proportion of hard instances does not vanish as n — oo
The proof is a modification of the classical one
e given T', all copies of nastyr are hard instances
A generic-case tester with Ar(n) = 0 exists
e simulate the instance until it halts
= cannot generalize hr(n)/p(n) > cr to the generic case
A (useless) approximat. tester with hp(n) = 0 exists, and another with dr(n) =0

e always reply “yes’, always reply “no”
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8 A Model-Independent Easiness Result

For each programming model and variant X € {A, B, C} of the halting problem,

h
Ve>0:  dT,. € approx(X) : Vng € N: dn > ng : T(())<c/\dT( ) =20

hr. (n)

Ve > 0: 3T, € three-way(X) : Vng € N: dn > nyg : <c

T € generic(X) : Vn € N : hr(n) =0
In the approximating case, that means it is infinitely often as easy as you want

Proof for approximating testers [Kohler & al. 05]

divide 0 <y <1 to strips 1.0
: .. h(n) 0.8\ — &
there is the lowest strip i that 7y \ [ NN\ A~/ \
visits infinitely many times 0.6 ' T
c L 0.4 \/ \ /
or small n, reply “no 0.2 -

for big n, simulate instances until 0.0
so many have halted that strip 7 is met, reply “yes” iff given instance halted

We already saw the (trivial) proof for generic-case testers
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9 Anomalies Stealing the Results

For Turing machines with one-way infinite tape, it is very easy [Hamkins & al. 06]
e the probability of falling off the left end of the tape — 1, as |Q| — o©

= simulate the machine until it falls off (reply “yes")
or repeats a local state (reply “l don't know" )

h d
= 3T € three-way(X) : Ve > 0:3n. € N:Vn > n,: r(n) + dr(n) <c

p(n)
If compile-time errors are counted, it is very easy [Kohler & al. 05], [this paper]

e the probability of syntax error — 1, as n — o0

= reply “l don’t know" if compilation succeeds, otherwise “no”

By tampering the progr. lang., it can be made very easy and very hard [Lynch 74]
Each one is an anomaly stealing the result

e formally true, but does not tell anything about the interesting programs!

e they seem common in this research field

e make it difficult to formulate interesting results

e make it necessary to be very careful with the details of the language, etc.
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10 A Difference Between A- and B-types

A program may have lots of information that it cannot access

e comments, junk after the end of a self-delimiting program, ...

If the language allows dense junk, an arbitrarily good empty-input tester exists
h d
Ve > 0: dT, € three-way(A) : Vn € N : 7. () ;L) 7. () <c
p(n

® reason: as 1 grows, a growing proportion of
big programs are copies of programs of size < n (yet another anomaly)

e (the claim for B in the paper is wrong, sorry ... )

A modified proof (not in the paper) of Theorem 7 yields

h
dc > 0: VT € three-way(B) : Vng € N: dn > ng : T((T)L)
p(n

e 7' is not in the program, but is obtained from the size of the input
— if |[I| € {0,1,3,6,10,...}, then T is P;

— if |I| € {2,4,7,11,...}, then T is P, and so on (hr(n) of any good

B-tester oscillates)
So with dense junk, A is strictly easier than B

e intuitive reason: with B, the program gets the junk as part of its input
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11 Discussion

There are more theorems in the paper
e even so, the results leave many questions open

= lots of room for future work

Hardness proofs rely on the ability to pack raw data densely

e string constants do not seem dense enough!

= theorems assumed, e.g., any byte string as the input or at the end of program

Many known easiness results arise as anomalies

e uninteresting in themselves, but make it hard to find interesting results

|deas for future work

e perhaps it would be better to study hr(n)/h(n) and dr(n)/d(n)?

e [Lynch 74] gives a very strong result, how do its assumptions relate to ours?
Hr(n) + Dr(n)

dec > 0: VT € three-way(B) : dnpr e N:Vn > np : Pin)
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