The Asymptotic Behaviour of the Proportion of Hard Instances of the Halting Problem

Antti Valmari

Tampere University of Technology **FINLAND**

- My Motivation
- 2 Incomplete Testers
- 3
- 4 Varied Asymptotics
- 5 Literature Survey
- Domain-frequency 6

- 7 A Typical Hardness Result
- 8 A Model-Independent Easiness . . .
- Proportions of Easy and ... 9 Anomalies Stealing the Results
 - 10 A Difference Between A- and ...
 - 11 Discussion

SPLST '13

My Motivation

Does program P halt on input I?

The classic (*and correct!*) undecidability proof

- assume that a halting tester exists
- using it, build a program that predicts its own future behaviour and does precisely the opposite to the prediction
- \Rightarrow the prediction is incorrect by construction
- \Rightarrow halting tester does not exist

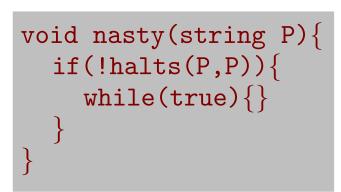
Many people feel this proof is cheating, "a rabbit out of the magician's hat"

- comp.theory noisemakers ignore them
- Eric C.R. Hehner serious scientist
- some of my not worst students *I can't ignore them!*

I wanted to write another proof that would not create such feelings

- (Halting tester proof for software engineers ..., comp.theory 2012-06-15)
- got interested in this problem area
- \Rightarrow found some new small results in this very classic field

nasty(nasty)



bool halts(string P, string I) $\{\ldots\}$

2 Incomplete Testers

Fail on some instances (P, I)

- *3-way tester* replies "I don't know"
- generic-case tester the tester fails to halt
- approximating tester gives a wrong "yes" or "no" answer

Hard instance = tester fails on it

Examples

- always reply "I don't know" absolutely useless but meets the definition
- simulate 9^{9^n} steps, reply "I don't know" if did not halt or ... by then

Any 3-way tester can be trivially converted to a generic or approximating tester For each incomplete tester, the classic proof constructs a hard instance of it

- the tester can be modified to handle the instance ...
- ... but an accordingly modified **nasty** is hard for the modified tester

Every tester has ∞ many hard instances No instance is hard for every tester

3 Proportions of Easy and Hard Instances

Notation for the number of instances of size n (of tester T)

- the failure rate cannot be made 0, but ...
- ... perhaps it can be made small?

It proved interesting to investigate separately $\frac{\overline{h}_T(n)}{p(n)}$ and $\frac{\overline{d}_T(n)}{p(n)}$ as $n \to \infty$

Why asymptotic?

- failure rate can be made 0 for any finite set of instances with a look-up table
 - absolutely impractical and uninformative, but rules out interesting results

Varied Asymptotics

Most results in the paper are of the following kinds, with varying assumptions Easiness formulae

- a single ever-improving tester $\exists T : \forall c > 0 : \exists n_c \in \mathbb{N} : \forall n \ge n_c : \frac{\overline{p}_T(n)}{p(n)} \le c$ - that is, $\overline{p}_T(n)/p(n) \to 0$ as $n \to \infty$
- a family of better and better testers $\forall c > 0 : \exists T_c : \forall n \in \mathbb{N} : \frac{\overline{p}_{T_c}(n)}{p(n)} \leq c$ - no n_c , because small inputs solved with a look-up table

Hardness formulae

- every tester suffers a lower bound every tester suffers a lower bound $\forall T : \exists c_T > 0 : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{p}_T(n)}{p(n)} \ge c_T$
- there is a common lower bound for all testers c_T . $\exists c > 0 : \forall T : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{p}_T(n)}{p(n)} \ge c \qquad 0 c$

Infinitely often

- the dark blue part is replaced by $\forall n_0 \in \mathbb{N} : \exists n \geq n_0$
- important, because \neg "from some *n* on" $\varphi \Leftrightarrow$ "infinitely often" $\neg \varphi$

4/11

 n_T

2013-08-27

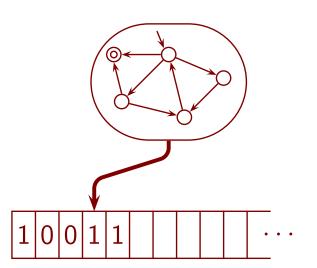
5 Literature Survey

Surprisingly few papers were found!

- and many are surprisingly recent
- many are unaware of most others

Diversity of the problem

- model of computation
 - Turing machine which variant?
 - programming language frequency/density assumption (next slide)
 - Gödel numbers of recursive functions $~~\approx$ indices of programs
- type of halting problem
- (A) T(P) tells if P halts on the empty input
- (B) T(P) tells if P halts on the input P, i.e., given itself as its input
- (C) T(P, I) tells if P halts on the input I
 - until now we have discussed (C)
 - with (A) and (B), p(n) = number of programs of size n
- failure mode: 3-way, generic-case, approximating



6 Domain-frequency

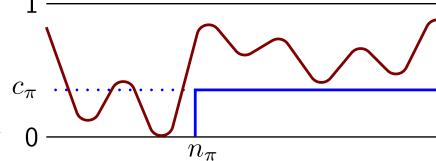
It is trivial to make many longer identically behaving copies of a program

- if(00000000 == 123456789){ /* put any code here */ }
- bool b = ... something very complicated yielding false ... ; if(b){...}
- $\Rightarrow\,$ we cannot even recognize all the copies nor design a language avoiding them

Many results assume that for any bigger size, many enough copies can be made, but they need not necessarily be fully identically behaving

Example: *domain-frequency*

- $\forall \pi \in \text{programs} : \exists n_{\pi} \in \mathbb{N} : \exists c_{\pi} > 0 : \\ \forall n \ge n_{\pi} : \pi(n) / p(n) \ge c_{\pi}$
- here $\pi(n) = \#$ programs of size n that halt on precisely the same inputs as π



- the esoteric minimalistic programming language *BF* is domain-frequent
- end-of-program maximum density raw data block implies domain-frequency
 - even if inaccessible to the actual code
- whether C++ is domain-frequent has been too difficult to find out!

7 A Typical Hardness Result

If the programming language is domain-frequent, then $\forall T \in \mathsf{three-way}(\mathsf{B}) : \exists c_T > 0 : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{h}_T(n)}{p(n)} \ge c_T \land \frac{\overline{d}_T(n)}{p(n)} \ge c_T$ $\forall T \in \mathsf{generic}(\mathsf{B}) : \exists c_T > 0 : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{d}_T(n)}{p(n)} \ge c_T$ $\forall T \in \mathsf{approx}(\mathsf{B}) : \exists c_T > 0 : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{h}_T(n) + \overline{d}_T(n)}{p(n)} \ge c_T$

That is, the proportion of hard instances does not vanish as $n \to \infty$ The proof is a modification of the classical one

• given T, all copies of $nasty_T$ are hard instances

A generic-case tester with $\overline{h}_T(n) = 0$ exists

• simulate the instance until it halts

 \Rightarrow cannot generalize $\overline{h}_T(n)/p(n) \ge c_T$ to the generic case

A (useless) approximat. tester with $\overline{h}_T(n) = 0$ exists, and another with $\overline{d}_T(n) = 0$

• always reply "yes", always reply "no"

8 A Model-Independent Easiness Result

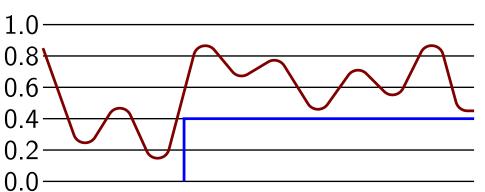
For each programming model and variant $X \in \{A, B, C\}$ of the halting problem, $\forall c > 0: \quad \exists T_c \in \operatorname{approx}(X): \forall n_0 \in \mathbb{N}: \exists n \ge n_0: \frac{\overline{h}_{T_c}(n)}{p(n)} \le c \land \overline{d}_{T_c}(n) = 0$ $\forall c > 0: \exists T_c \in \operatorname{three-way}(X): \forall n_0 \in \mathbb{N}: \exists n \ge n_0: \frac{\overline{h}_{T_c}(n)}{p(n)} \le c$ $\exists T \in \operatorname{generic}(X): \quad \forall n \in \mathbb{N}: \qquad \overline{h}_T(n) = 0$

In the approximating case, that means it is infinitely often as easy as you want

Proof for approximating testers [Köhler & al. 05]

- divide $0 \le y \le 1$ to strips
- there is the lowest strip i that $\frac{h(n)}{p(n)}$ visits infinitely many times
- for small n, reply "no"
- for big n, simulate instances until 0.0 100

We already saw the (trivial) proof for generic-case testers



9 Anomalies Stealing the Results

For Turing machines with one-way infinite tape, it is very easy [Hamkins & al. 06]

- the probability of falling off the left end of the tape $\rightarrow 1$, as $|Q| \rightarrow \infty$
- ⇒ simulate the machine until it falls off (reply "yes") or repeats a local state (reply "I don't know")

$$\Rightarrow \quad \exists T \in \mathsf{three-way}(\mathsf{X}) : \forall c > 0 : \exists n_c \in \mathbb{N} : \forall n \ge n_c : \frac{\overline{h}_T(n) + \overline{d}_T(n)}{p(n)} \le c$$

If compile-time errors are counted, it is very easy [Köhler & al. 05], [this paper]

- the probability of syntax error $\rightarrow 1$, as $n \rightarrow \infty$
- \Rightarrow reply "I don't know" if compilation succeeds, otherwise "no"

By tampering the progr. lang., it can be made very easy and very hard [Lynch 74] Each one is an *anomaly stealing the result*

- formally true, but does not tell anything about the interesting programs!
- they seem common in this research field
- make it difficult to formulate interesting results
- make it necessary to be very careful with the details of the language, etc.

10 A Difference Between A- and B-types

A program may have lots of information that it cannot access

• comments, junk after the end of a self-delimiting program, ...

If the language allows dense junk, an arbitrarily good empty-input tester exists

$$\forall c > 0 : \exists T_c \in \mathsf{three-way}(\mathsf{A}) : \forall n \in \mathbb{N} : \frac{h_{T_c}(n) + d_{T_c}(n)}{p(n)} \le c$$

- reason: as n grows, a growing proportion of big programs are copies of programs of size $\leq n$ (yet another anomaly)
- (the claim for B in the paper is wrong, sorry ...)

A modified proof (not in the paper) of Theorem 7 yields

$$\exists c > 0 : \forall T \in \mathsf{three-way}(\mathsf{B}) : \forall n_0 \in \mathbb{N} : \exists n \ge n_0 : \frac{\overline{h}_T(n)}{p(n)} \ge c \land \frac{\overline{d}_T(n)}{p(n)} \ge c$$

 $\bullet\ T$ is not in the program, but is obtained from the size of the input

- if
$$|I| \in \{0, 1, 3, 6, 10, \ldots\}$$
, then T is P_1

- if
$$|I| \in \{2, 4, 7, 11, \ldots\}$$
, then T is P_2 , and so on

```
(\overline{h}_T(n) \text{ of any good} B-\text{tester oscillates})
```

So with dense junk, A is strictly easier than B

• intuitive reason: with B, the program gets the junk as part of its input

11 Discussion

There are more theorems in the paper

- even so, the results leave many questions open
- $\Rightarrow\,$ lots of room for future work

Hardness proofs rely on the ability to pack raw data densely

- string constants do not seem dense enough!
- $\Rightarrow\,$ theorems assumed, e.g., any byte string as the input or at the end of program

Many known easiness results arise as anomalies

• uninteresting in themselves, but make it hard to find interesting results

Ideas for future work

- perhaps it would be better to study $\overline{h}_T(n)/h(n)$ and $\overline{d}_T(n)/d(n)$?
- [Lynch 74] gives a very strong result, how do its assumptions relate to ours? $\exists c > 0 : \forall T \in \mathsf{three-way}(\mathsf{B}) : \exists n_T \in \mathbb{N} : \forall n \ge n_T : \frac{\overline{H}_T(n) + \overline{D}_T(n)}{P(n)} \ge c$

Thank you for attention!