The Asymptotic Behaviour
of the Proportion of Hard Instances
of the Halting Problem

Antti Valmari
Tampere University of Technology
FINLAND

My Motivation A Typical Hardness Result
Incomplete Testers A Model-Independent Easiness . ..
Proportions of Easy and ... Anomalies Stealing the Results
Varied Asymptotics A Difference Between A- and . ..
Literature Survey Discussion

Domain-frequency

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 0/11

1 My Motivation

void nasty(string P){

| if (thalts(P,P)){
Does program P halt on input 17 while(true){}

The classic (and correct!) undecidability proof i

}

e using it, build a program that predicts its own future
behaviour and does precisely the opposite to the prediction

e assume that a exists

= the prediction is incorrect by construction

= halting tester does not exist bool halts(string P, string I){...}

Many people feel this proof is cheating, “a rabbit out of the magician’s hat”
e comp.theory noisemakers — ignore them T,
e Eric C.R. Hehner — serious scientist

e some of my not worst students — [can't ignore them!

| wanted to write another proof that would not create such feelings
e (Halting tester proof for software engineers ..., comp.theory 2012-06-15)
e got interested in this problem area

= found some new small results in this very classic field

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 1/11

bool halts2(string P, string I){
2 Incomplete Testers if (P==nasty && I==nasty)

return false;

Fail on some instances (P,) else return halts(P,I):

e 3-way tester — replies “l don't know” [i§

e generic-case tester — the tester fails to halt

e approximating tester — gives a wrong “yes' or ‘no’ answer
Hard instance = tester fails on it
Examples

e always reply “l don't know” — absolutely useless but meets the definition

e simulate 99" steps, reply "l don't know” if did not halt or ... by then

Any 3-way tester can be trivially converted to a generic or approximating tester
For each incomplete tester, the classic proof constructs a hard instance of it

e the tester can be to handle the instance ...

e ... but an accordingly modified nasty is hard for the modified tester

Every tester has oo many hard instances
No instance is hard for every tester

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 2/11

3 Proportions of Easy and Hard Instances

Notation for the number of instances of size n (of tester T')
easy hard | altogether
halting hr(n) hr(n) h(n)
non-halting | dr(n) dr(n) d(n)
altogether | p_(n) DPr(n) p(n)

hr(n) 4+ dr(n)
p(n)

— the proportion of hard instances

Failure rate

The hope

e the failure rate cannot be made 0, but ...

e ... perhaps it can be made small?

ET(n) and ET(n) as n — o0

It proved interesting to investigate separately
p(n) p(n)
Why asymptotic?
e failure rate can be made 0 for any finite set of instances with a look-up table

— absolutely impractical and uninformative, but rules out interesting results

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 3/11

4 Varied Asymptotics

Most results in the paper are of the following kinds, with varying assumptions
Easiness formulae

e a single ever-improving tester d7T:Ve>0:dn. € N:Vn > n,:
— that is, pp(n)/p(n) — 0 as n — oo

e a family of better and better testers Ve>0:d1T,.:Vn e N:
— no n., because small inputs solved with a look-up table

Hardness formulae

e every tester suffers a lower bound
VT :der >0:dnp € N:Vn > np:

e there is a common lower bound for all testers

EIC>O:VT:EInT€N:VnZnT:pT(n) > c
p(n)

Infinitely often
e the dark blue part is replaced by Vng € N : dn > ng

e important, because — “from some n on” © < “infinitely often” —p

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 4/11

b Literature Survey

Surprisingly few papers were found!
e and many are surprisingly recent

e many are unaware of most others

Diversity of the problem

e model of computation
— Turing machine — which variant?
— programming language — frequency/density assumption (next slide)
— Godel numbers of recursive functions — = indices of programs

e type of halting problem
(A) T'(P) tells if P halts on the empty input
(B) T'(P) tells if P halts on the input P, i.e., given itself as its input
(C) T(P,I) tells if P halts on the input [
— until now we have discussed (C)
— with (A) and (B), p(n) = number of programs of size n

e failure mode: 3-way, generic-case, approximating

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 5/11

6 Domain-frequency

It is trivial to make many longer identically behaving copies of a program
e if(000000000 == 123456789){ /* put any code here */ }
e bool b =... something very complicated yielding false ... ; if(b){...}

= we cannot even recognize all the copies nor design a language avoiding them

Many results assume that for any bigger size, many enough copies
can be made, but they need not necessarily be fully identically behaving

Example: domain-frequency 1

Vm € programs : dn, € N : dc; > 0 :
Vn > n, :mw(n)/pn) > cx SR WU Y

here m(n) = # programs of size n that
halt on precisely the same inputs as 7 Ny

the esoteric minimalistic programming language BF is domain-frequent
end-of-program maximum density raw data block implies domain-frequency
— even if inaccessible to the actual code

whether C4++ is domain-frequent has been too difficult to find out!
{char*s="¢o" ~ {charxs="g" ,*t="p"}

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 6/11

7/ A Typical Hardness Result

It the programming language is domain-frequent, then

VT € three-way(B) : e > 0:3dnp e N:Vn > nyp :
VT € generic(B) : der > 0:3dnp e N:Vn > nyp:

VT € approx(B) : Jer > 0:3dInp e N:Vn > np:

That is, the proportion of hard instances does not vanish as n — oo
The proof is a modification of the classical one
e given T', all copies of nastyr are hard instances
A generic-case tester with Ar(n) = 0 exists
e simulate the instance until it halts
= cannot generalize hr(n)/p(n) > cr to the generic case
A (useless) approximat. tester with hp(n) = 0 exists, and another with dr(n) =0

e always reply “yes’, always reply “no”

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 7/11

8 A Model-Independent Easiness Result

For each programming model and variant X € {A, B, C} of the halting problem,

h
Ve>0: dT,. € approx(X) : Vng € N: dn > ng : T(())<c/\dT() =20

hr. (n)

Ve > 0: 3T, € three-way(X) : Vng € N: dn > nyg : <c

T € generic(X) : Vn € N : hr(n) =0
In the approximating case, that means it is infinitely often as easy as you want

Proof for approximating testers [Kohler & al. 05]

divide 0 <y <1 to strips 1.0
: .. h(n) 0.8\ — &
there is the lowest strip i that 7y \ [NN\ A~/ \
visits infinitely many times 0.6 ' T
c L 0.4 \/ \ /
or small n, reply “no 0.2 -

for big n, simulate instances until 0.0
so many have halted that strip 7 is met, reply “yes” iff given instance halted

We already saw the (trivial) proof for generic-case testers

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 8/11

9 Anomalies Stealing the Results

For Turing machines with one-way infinite tape, it is very easy [Hamkins & al. 06]
e the probability of falling off the left end of the tape — 1, as |Q| — o©

= simulate the machine until it falls off (reply “yes")
or repeats a local state (reply “l don't know")

h d
= 3T € three-way(X) : Ve > 0:3n. € N:Vn > n,: r(n) + dr(n) <c

p(n)
If compile-time errors are counted, it is very easy [Kohler & al. 05], [this paper]

e the probability of syntax error — 1, as n — o0

= reply “l don’t know" if compilation succeeds, otherwise “no”

By tampering the progr. lang., it can be made very easy and very hard [Lynch 74]
Each one is an anomaly stealing the result

e formally true, but does not tell anything about the interesting programs!

e they seem common in this research field

e make it difficult to formulate interesting results

e make it necessary to be very careful with the details of the language, etc.

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 9/11

10 A Difference Between A- and B-types

A program may have lots of information that it cannot access

e comments, junk after the end of a self-delimiting program, ...

If the language allows dense junk, an arbitrarily good empty-input tester exists
h d
Ve > 0: dT, € three-way(A) : Vn € N : 7. () ;L) 7. () <c
p(n

® reason: as 1 grows, a growing proportion of
big programs are copies of programs of size < n (yet another anomaly)

e (the claim for B in the paper is wrong, sorry ...)

A modified proof (not in the paper) of Theorem 7 yields

h
dc > 0: VT € three-way(B) : Vng € N: dn > ng : T((T)L)
p(n

e 7' is not in the program, but is obtained from the size of the input
— if |[I| € {0,1,3,6,10,...}, then T is P;

— if |I| € {2,4,7,11,...}, then T is P, and so on (hr(n) of any good

B-tester oscillates)
So with dense junk, A is strictly easier than B

e intuitive reason: with B, the program gets the junk as part of its input

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 10/11

11 Discussion

There are more theorems in the paper
e even so, the results leave many questions open

= lots of room for future work

Hardness proofs rely on the ability to pack raw data densely

e string constants do not seem dense enough!

= theorems assumed, e.g., any byte string as the input or at the end of program

Many known easiness results arise as anomalies

e uninteresting in themselves, but make it hard to find interesting results

|deas for future work

e perhaps it would be better to study hr(n)/h(n) and dr(n)/d(n)?

e [Lynch 74] gives a very strong result, how do its assumptions relate to ours?
Hr(n) + Dr(n)

dec > 0: VT € three-way(B) : dnpr e N:Vn > np : Pin)

AV Hard Instances of the Halting Problem SPLST '13 2013-08-27 11/11

