
Stubborn Sets with Frozen Actions

Antti Valmari

Tampere University of Technology
Mathematics

1 Aps Set Methods

2 The Famous Cycle Condition for Liveness

3 The Contribution of This Study

4 Stubborn Set Conditions for This Study

5 Construction of Stubborn Sets

6 With Safety, Solving the Ignoring is Seldom Needed

7 A Problematic Example

8 Frozen Actions – Idea

9 Frozen Actions – Algorithm

10 Frozen Actions – Correctness Proof

11 Restoring Nondeterministic Actions

12 Conclusion

AV Stubborn Sets with Frozen Actions 2017-09-07 Table of Contents 0/12

1 Aps Set Methods

Aps set methods construct reduced state spaces by only
firing a subset of enabled actions in each found state

• ample sets, persistent sets, stubborn sets

• widely but misleadingly called partial order reduction

Methods exist for various classes of properties

‖ =

• deadlocks

• traces = stuttering-insensitive safety
– also preserves fair testing ⇒ may-progress

• CSP failures–divergences semantics

• stuttering-insensitive linear temporal logic

• . . .

• the more properties are preserved, the less reduction is obtained

Aps sets must satisfy certain abstract conditions

• more details on slide 4

• good algorithms for constructing such sets are known: ❀s

The ignoring problem τ || a · · · = τ a · · ·

AV Stubborn Sets with Frozen Actions 2017-09-07 1 Aps Set Methods 1/12

2 The Famous Cycle Condition for Liveness

C3 Every r-cycle must contain a state s such that ample(s) = en(s)

Implementation of C3 [Clarke & al. 1999]

• construct r-states and r-transitions in depth-first order

• if a ∈ ample(s), s −a→ s′, and s′ is in depth-first
stack, choose ample(s) = en(s)

A discouraging example

• try components from left to right

• sticking to a component helps a bit
– [1999] does not tell to do so
– fails badly with 3-dimensional case

This issue has received too little attention!

τ1

τ1
τ1

‖

τ2

τ2
τ2

=

11 12 13

21 22 23

31 32 33

• observed in [Evangelista & Pajault 2010] (using another example)

• nobody knows how serious it really is

• we are not told how to deal with it

AV Stubborn Sets with Frozen Actions 2017-09-07 2 The Famous Cycle Condition for Liveness 2/12

3 The Contribution of This Study

Two recent observations:

When preserving safety properties, solving
the ignoring problem is seldom needed.

When, with safety properties, solving the ignoring problem
is needed, earlier solutions tend to perform badly.

New contribution

We present a freezing technique that solves the above-mentioned
performance problem when actions are deterministic.

We show that in the traditional process-algebraic setting with stubborn
sets, actions can be considered deterministic for this purpose.

Deterministic actions

• for every s, s1, and s2, if s −a→ s1 and s −a→ s2, then s1 = s2
a a

AV Stubborn Sets with Frozen Actions 2017-09-07 3 The Contribution of This Study 3/12

4 Stubborn Set Conditions for This Study

D1

· · ·
⇒

· · ·

· · ·

· · ·

· · · · · ·
• the first action from the stubborn set “moves to the front”

D2

· · ·
⇒

· · ·

· · ·

• outside actions cannot disable an enabled action in the stubborn set

V if stubb(s) contains an enabled visible action, then it contains all visible actions

• preserves the order of occurrences of visible actions, like leave1 and enter2 a crossing

D0V if there are enabled actions, then stubb(s) contains
either an enabled action or all visible actions

• the either-part “keeps the analysis going”

• the or-part implements the idea that if no visible action can be
enabled in the future, then the future need not be investigated

leave1

enter2

S is a complicated condition that solves the ignoring problem but is hard to implement

• its implementation is based on terminal strong components of the reduced state space

AV Stubborn Sets with Frozen Actions 2017-09-07 4 Stubborn Set Conditions for This Study 4/12

5 Construction of Stubborn Sets

❀s ⊆ Acts× Acts

a τ2
v τ1

b u

• if a /∈ en(s), choose i such that L̄i disables a, and make a ❀s b for every b ∈ eni(s)

• if a ∈ en(s), then, for every i such that a ∈ Σ̄i and for every b ∈ eni(s), make a ❀s b

• it does not matter whether a ❀s a

clsr(s, a) = the closure of a w.r.t. “❀s”

• satisfies D1 and D2

• satisfies also V if a ❀s b is added
for every a ∈ Vis ∩ en(s) and b ∈ Vis

gsc(s, a, . . .) = “good strong component”

τ1 v

‖

u τ2

v

b

‖

a

u

a

• finds a ⊆-minimal closed set that contains an enabled action
or replies that such a set does not exist

• additional parameters tune it for future needs
(may be called more than once in the same state)

• O(|❀|)

AV Stubborn Sets with Frozen Actions 2017-09-07 5 Construction of Stubborn Sets 5/12

6 With Safety, Solving the Ignoring is Seldom Needed

A state is only-diverging iff no deadlocks and no
occurrences of visible actions can be reached from it

Theorem If a trace is lost using D1 to D0V, then its prefix
leads to a state that is only-diverging in the reduced state space.

τ τ τ
τ

a
τ τ

ττ

⇒ ignoring a trace leaves an easily detectable symptom in the reduced state space

• however, the symptom does not necessarily imply that a trace was ignored

A state is stable iff it has no τ -transitions
b a τ

Theorem If a trace leads to a stable state, then the trace is not lost using D1 to D0V.

All prefixes of preserved traces are trivially preserved ⇒

• if a system always has the possibility of eventually AG EF

– yielding output with no invisible alternative activity, or
– stopping to wait for new input or for good,

then all traces are preserved

• if not, we either see it from the reduced state space, or no traces are lost

⇒ S is not needed with most practical systems

AV Stubborn Sets with Frozen Actions 2017-09-07 6 With Safety, Solving the Ignoring is Seldom Needed 6/12

7 A Problematic Example

(b

b

||

b

τ

τ u

τ

||

u

||

u

a

a

)

\ {u} =

b

τ
τ

τ

τ

a a

a a

a a

τ

τ

τ τ

τ

τ τ

τ

τ

Initially only b is enabled, then only τ is enabled, and then there are two possibilities

• ττ takes back to an earlier state

• u takes to a state, where aa is concurrent with the τττ -cycle
– u becomes τ by “\{u}”

In each red state s, stubborn set construction goes

• a ❀s b by V

• b ❀s τ (and b ❀s u) by D1

⇒ the useless τττ -cycle is investigated

S forces to investigate a, but then no reduction is obtained

AV Stubborn Sets with Frozen Actions 2017-09-07 7 A Problematic Example 7/12

8 Frozen Actions – Idea

To avoid the performance problem on the previous slide, we
freeze all actions in all stubborn sets of all useless cycles

• frozen actions are treated as if they did not exist
– not fired
– not taken into account in stubborn set construction

τ

a a

a a

a a

τ

τ

τ τ

τ

τ τ

τ

τ

• when a new state is found, it inherits the frozen set of the previous state

Computation of stubb(s)

• in the first time, stubb(s) is computed as usual

• when it is the time to backtrack from s, the algorithm tests whether
– s is a root of a terminal strong component of the reduced state space, and
– that component does not contain an occurrence of a visible action

• if that holds, instead of backtracking, new actions are put to stubb(s)
– also the expanded set must satisfy D0V, D1, D2, and V (excluding the frozen)
– only actions that are relevant for enabling visible actions are considered: ❀s, . . .
– if an enabled action can be added, do so, otherwise backtrack

• this implements S

AV Stubborn Sets with Frozen Actions 2017-09-07 8 Frozen Actions – Idea 8/12

9 Frozen Actions – Algorithm

DFS(s, old frozen)

1 Sr := Sr ∪ {s}
2 new frozen := old frozen

3 done := false
4 while ¬ done do
5 more stubborn := compute or expand stubb(s, new frozen)
6 for a ∈ more stubborn ∩ en(s) do
7 for s′ such that s −a→ s′ do
8 ∆r := ∆r ∪ {(s, a, s′)}
9 if s′ /∈ Sr then DFS(s′, new frozen)
10 if more stubborn ∩ en(s) = ∅
11 ∨ s is not a root of a terminal strong component of (Sr,∆r, ŝ)
12 ∨ ∃s′ ∈ Rr(s) : stubb(s

′) ∩ V ∩ en(s′) 6= ∅
13 then done := true
14 else new frozen := new frozen ∪ stubb(Rr(s))

Depth-first search -based reduced state space construction with additions

Rr(s) = the states that are r-reachable from s

stubb(X) =
⋃

x∈X
stubb(x)

AV Stubborn Sets with Frozen Actions 2017-09-07 9 Frozen Actions – Algorithm 9/12

10 Frozen Actions – Correctness Proof

D1 and D2 are replaced by D1F and D2F with neither
the horizontal nor the vertical actions frozen

· · ·

· · ·

• the proof that D1 to S preserve all traces goes through with them

Invariant property: if s −σ→ in the full state space and σs is obtained from
σ by removing all frozen elements, then s −σs→ in the full state space

• the proof is by induction along the path via which s was first found

• in the initial state nothing is frozen, so the claim holds trivially

• assume that s was first found via z −a→ s
⇒ a was not frozen in z

• if s −σ→, then z −aσ→

• by the induction assumption z −aσz→

• if s has additional frozen actions, they were in the
stubborn sets of a strong component with root z

· · ·

· · ·

· · ·

· · ·

D2F

D1F

D2F

D2F

⇒ they can be removed by traversing in the component, by D1F and D2F

⇒ z −aσs→

• because actions are deterministic, z −a→ s −σs→

AV Stubborn Sets with Frozen Actions 2017-09-07 10 Frozen Actions – Correctness Proof 10/12

11 Restoring Nondeterministic Actions

Stubborn sets for process algebras deal with systems of the form

(L1 || · · · ||LN) \H

• the Li are LTSs, || is parallel composition, H is a set, and \ denotes hiding

Recording the cause of an action makes it deterministic
(

a
a
a ‖ b b ‖ a

b c
a
b
)

\ {b}

(a; 3, 0, 2)

(

a1 a2
a3 ‖ b1 b2 ‖

a1
b1 c1

a2
b2
)

\ {(b; ∗)} [a

(a;∗) ,
c

(c;∗)]

The added information does not affect the construction of stubborn sets

⇒ The freezing algorithm applies to parallel compositions of nondeterministic LTSs

AV Stubborn Sets with Frozen Actions 2017-09-07 11 Restoring Nondeterministic Actions 11/12

12 Conclusion

Good old conditions for safety and liveness are worse than we have thought for 25 years

• this applies to aps sets / partial order reduction in general, not just stubborn sets

With safety

• most of the time the condition is not needed in the end!

• the remaining cases are exceptionally nasty

• we solved them in the present study

• our solution is less elegant than we hoped
– nondeterminism was dealt with by trickery
⇒ smaller application scope, fortunately wide enough
– it would be better to capture the relevant feature similarly to how D1F, etc., do

• implementation and experiments . . .

With liveness, the corresponding work has not yet been done

• fortunately, the safety method applies to fair testing ⇒ many liveness properties

Thank you for attention! Questions?

AV Stubborn Sets with Frozen Actions 2017-09-07 12 Conclusion 12/12

