The Congruences Below Fair Testing with Initial Stability

Antti Valmari

Tampere University of Technology
Department of Mathematics

1 Introduction
2 The Fair Testing Congruence
3 Initial Stability
4 The Result
5 An Earlier Result
6 Discussion

1 Introduction

Aloss $\overline{\mathrm{a}}_{1} \subset O{ }^{\circ} \bigcirc \overline{\mathrm{a}}_{0}$

Labelled transition system $(S, \Sigma, \Delta, \hat{s})$

- $\tau \notin \Sigma, \quad \hat{s} \in S, \quad \Delta \subseteq S \times(\Sigma \cup\{\tau\}) \times S$
- both technical and "philosophical" reasons for Σ instead of a common global alphabet

Important operators for the present study

- parallel composition $L_{1} \| L_{2}$
- L_{1} and L_{2} perform a synchronously if and only if $a \in \Sigma_{1} \cap \Sigma_{2}$
- hiding $L \backslash A$
- functional renaming $\phi(L)$
- these suffice for representing architecture drawings

Additional discussed operators

- relational renaming $L \Phi$
- may map a visible action to many visible actions, allows building $\|_{A}, \ldots$
- action prefix $\tau . L$, a.L
- choice $L_{1}+L_{2}$
- . and + are widely used

Congruence

- an equivalence " \cong " such that for every LTS expression f only built from given operators and every $L_{1}, \ldots, L_{n}, L_{1}^{\prime}, \ldots, L_{n}^{\prime}$,

$$
L_{1} \cong L_{1}^{\prime} \wedge \cdots \wedge L_{n} \cong L_{n}^{\prime} \Rightarrow f\left(L_{1}, \ldots, L_{n}\right) \cong f\left(L_{1}^{\prime}, \ldots, L_{n}^{\prime}\right)
$$

- depends on the chosen operators
- facilitates multi-layer compositional analysis and LTS reduction of systems

2 The Fair Testing Congruence

An equivalence preserves property prop if and only if for every L_{1} and L_{2}

$$
L_{1} \cong L_{2} \Rightarrow \operatorname{prop}\left(L_{1}\right)=\operatorname{prop}\left(L_{2}\right)
$$

- e.g., both or neither of L_{1} and L_{2} deadlock
- e.g., both or neither of Protocol1 and Protocol2 may deliver twice a message that has been only sent once

The weakest congruence that preserves prop is optimal for compositional analysis of prop

- widest collection of algorithms
- reduction algorithms for stronger equivalences are valid
\Rightarrow (potentially) best reduction results
Mainstream approach to verifying liveness uses fairness assumptions
- e.g., if infinitely many messages are sent, at least one gets through
- problematic regarding compositionality
- burden for modellers
- with protocols with connection phase and data transfer phase, may be \ldots, then at least once a message and one of the next three messages get through

Three kinds of possible futures

- the desired action eventually occurs

- the desired action does not occur but stays possible
- the desired action does not occur and eventually becomes impossible

Fair testing

- mainstream liveness treats "not occurs but stays possible" as not live
- fair testing treats it as live
\Rightarrow fair testing guarantees liveness in a strictly weaker sense
- the sense is sometimes fully satisfactory and often better than nothing
- no fairness assumptions needed
- compositionality is obtained

The fair testing congruence

- [Brinksma, Rensink, Vogler 1995], [Rensink, Vogler 2007]
- the weakest congruence that preserves AG EF a
- a stubborn set method that preserves it exists [Valmari, Vogler SPIN 2016]
- difficult definition \leadsto next slide

Trace equivalence

$$
L_{1} \cong_{\operatorname{tr}} L_{2} \text { if and only if } \Sigma\left(L_{1}\right)=\Sigma\left(L_{2}\right) \text { and } \operatorname{Tr}\left(L_{1}\right)=\operatorname{Tr}\left(L_{2}\right)
$$

Tree failure

- (σ, K) where $\sigma \in \operatorname{Tr}(L)$ and $K \subseteq \Sigma^{+}$such that there is s such that $\hat{s}=\sigma \Rightarrow s$ and $s=\rho \Rightarrow$ for no $\rho \in K$
- that is, a language is refused instead of a set of actions
- s need not be stable
- that is, $s-\tau \rightarrow$ is allowed
- $\varepsilon \notin K$, because ε cannot be refused and this convention simplifies the math

Fair testing equivalence

- $\pi^{-1} K=\{\rho \mid \pi \rho \in K\}$
- $L_{1} \preceq L_{2}$ if and only if for every $(\sigma, K) \in \operatorname{Tf}\left(L_{1}\right)$
- $(\sigma, K) \in \operatorname{Tf}\left(L_{2}\right)$, or
- there is π such that $\pi^{-1} K \neq \emptyset$ and $\left(\sigma \pi, \pi^{-1} K\right) \in \operatorname{Tf}\left(L_{2}\right)$
- $L_{1} \cong_{\mathrm{ft}} L_{2}$ if and only if $\Sigma_{1}=\Sigma_{2}, L_{1} \preceq L_{2}$, and $L_{2} \preceq L_{1}$
$L_{1} \cong_{\mathrm{ft}} L_{2}$ implies $L_{1} \cong_{\mathrm{tr}} L_{2}$

3 Initial Stability

A congruence problem with $\cong_{f t}$ and +

Widely used solution: initial stability
$L_{1} \cong L_{2}$ if and only if \ldots and either none or both of \hat{s}_{1} and \hat{s}_{2} is stable

- \hat{s}_{1} is stable $\Leftrightarrow \neg\left(\hat{s}_{1}-\tau \rightarrow\right)$

4 The Result

Theorem Only considering countable LTSs, all congruences w.r.t. \|,
, and ϕ that are implied by initial stability -preserving fair testing are in the picture

- \cong_{Σ} only compares the alphabets
- \cong_{\perp} compares nothing (yieds always "true")
- $\cong_{\#}$ will be discussed soon
- \cong_{y}^{x} compares stable LTSs with \cong_{x} and unstable LTSs with \cong_{y}
- \cong_{y}^{x} does and \cong_{y} does not preserve initial stability
- $\cong_{y}^{\text {en }}$ compares of stable LTSs only the alphabets and first actions
- line from \cong_{1} down(-right) to \cong_{2} denotes that \cong_{1} implies \cong_{2}

Only three are really interesting: $\cong_{\mathrm{ft}}, \cong_{\mathrm{ft}}$, and \cong_{tr}
If $\Phi, .$, and + are added, then only $\cong_{\mathrm{ft}}^{\mathrm{ft}}, \cong_{\mathrm{tr}}^{\mathrm{tr}}, \cong_{\mathrm{tr}}, \cong_{\Sigma}^{\mathrm{en}}, \cong_{\Sigma}$, and \cong_{\perp} remain
If you want something towards fair testing, you must take fair testing.
$\cong \sum_{\Sigma}^{\mathrm{en}}\left(\mathrm{or} \cong{ }_{\perp}^{\mathrm{en}}\right)$ is the weakest congruence that preserves initial stability

- may be of some interest

The $\cong{ }_{y}^{x}$ with $x \neq y$ compare stable LTSs with a stronger equivalence than unstable LTSs

- . can yield a stable LTS from an unstable one
\Rightarrow excluding $\cong \sum_{\Sigma}^{\text {en }}$ they go away, when . is present

$$
\begin{array}{r}
\tau . L_{1} \cong_{y} \quad \tau . L_{2} \\
\text { a. } \tau . L_{1} \not \bigoplus_{x} \text { a. } \tau . L_{2}
\end{array}
$$

- $\cong \sum_{\Sigma}^{\text {en }}$ does not go away, because for any L, the first action of $a . L$ is a
$L_{1} \cong_{\#} L_{2} \Leftrightarrow$ the difference of Σ_{1} and Σ_{2} is finite
- Φ makes $\cong_{\#}$ go away, because it can convert a finite difference to infinite
- if uncountable alphabets are allowed, there probably are $\cong_{y}^{\mathrm{ft}} \cong_{y}^{\mathrm{tr}}$, \cong_{y}^{en}, and \cong_{y} for each uncountable cardinality y

So no new interesting congruences found, but

- it is surprising that there are none, because
- \cong_{ft} seems branching-time: preserves the stereotypical AG EF a
- the definition of $\cong_{f t}$ seems quite ad-hoc
- now we will not search in vain for one
- there are remarkable differences to an earlier result
- next slide

5 An Earlier Result

The operators are \|,
, Φ, and .
Theorem \cong_{\perp} is the only congruence that is implied by \equiv and does not preserve Σ

Theorem All congruences that are implied by $\cong_{\text {CFFD }}$ are in the picture

- $L_{1} \cong{ }_{\text {CFFD }} L_{2}$ if and only if
$-\Sigma_{1}=\Sigma_{2}$
$-\operatorname{Sf}\left(L_{1}\right)=\operatorname{Sf}\left(L_{2}\right)$
$-\operatorname{Div}\left(L_{1}\right)=\operatorname{Div}\left(L_{2}\right)$
$-\operatorname{lnf}\left(L_{1}\right)=\operatorname{lnf}\left(L_{2}\right)$
- CSP-equivalence is there
- initial stability would at least add $\cong \sum_{\Sigma}^{\text {en }}$ and duplicate most congruences

The new results

- require significantly fewer operators
- yield significantly fewer new congruences
$\Rightarrow \cong_{\mathrm{ft}}$ induces much fewer congruences than $\cong_{\text {CFFD }}$

6 Discussion

A fairly large region of low-end congruences has now been fully covered

- for completeness, the region below " $\cong_{\text {CFFD }}$ " $\cap \cong_{\mathrm{ft}}^{\mathrm{ft}}$ should be studied
- it would probably be hard and uninteresting
- of course, a lot is still uncovered
- e.g., traces with failures in the middle and at the end
- there are infinitely many weak bisimilarity -like congruences

Despite being branching-time and seemingly ad-hoc, \cong_{ft} has surprisingly simple behaviour Sorry for telling nothing about the proofs...

- a long series of lemmas develops technicalities that facilitate the main proof
- everything is in the paper
- the reviewers checked most or all of it
- thanks for pointing out a small bug and for other good comments!

Thank you for attention!
 Questions?

