## The Congruences Below Fair Testing with Initial Stability

Antti Valmari

Tampere University of Technology Department of Mathematics

- 1 Introduction
- 2 The Fair Testing Congruence
- 3 Initial Stability
- 4 The Result
- 5 An Earlier Result
- 6 Discussion

AV



instead of a common global alphabet

2016

1 Introduction

Important operators for the present study

- parallel composition  $L_1 \mid\mid L_2$ 
  - $L_1$  and  $L_2$  perform a synchronously if and only if  $a \in \Sigma_1 \cap \Sigma_2$
- hiding  $L \setminus A$
- functional renaming  $\phi(L)$
- these suffice for representing architecture drawings

#### Additional discussed operators

- relational renaming  $L\Phi$ 
  - may map a visible action to many visible actions, allows building  $||_A$ , ...
- action prefix  $\tau.L$ , a.L
- choice  $L_1 + L_2$
- $\bullet$  . and + are widely used

#### Congruence

• an equivalence " $\cong$ " such that for every LTS expression f only built from given operators and every  $L_1, \ldots, L_n, L'_1, \ldots, L'_n$ ,

 $L_1 \cong L'_1 \land \dots \land L_n \cong L'_n \Rightarrow f(L_1, \dots, L_n) \cong f(L'_1, \dots, L'_n)$ 

- depends on the chosen operators
- facilitates multi-layer compositional analysis and LTS reduction of systems

## 2 The Fair Testing Congruence

An equivalence *preserves property* prop if and only if for every  $L_1$  and  $L_2$ 

 $L_1 \cong L_2 \Rightarrow \operatorname{prop}(L_1) = \operatorname{prop}(L_2)$ 

- e.g., both or neither of  $L_1$  and  $L_2$  deadlock
- e.g., both or neither of Protocol1 and Protocol2 may deliver twice a message that has been only sent once

The weakest congruence that preserves prop is optimal for compositional analysis of prop

- widest collection of algorithms
  - reduction algorithms for stronger equivalences are valid
- $\Rightarrow$  (potentially) best reduction results

Mainstream approach to verifying liveness uses *fairness assumptions* 

- e.g., if infinitely many messages are sent, at least one gets through
- problematic regarding compositionality
- burden for modellers
- with protocols with connection phase and data transfer phase, may be ..., then at least once a message and one of the next three messages get through

Three kinds of possible futures

- the desired action eventually occurs
- the desired action does not occur but stays possible
- the desired action does not occur and eventually becomes impossible

Fair testing

- mainstream liveness treats "not occurs but stays possible" as not live
- fair testing treats it as live
- $\Rightarrow$  fair testing guarantees liveness in a strictly weaker sense
- the sense is sometimes fully satisfactory and often better than nothing
- no fairness assumptions needed
- compositionality is obtained

The fair testing congruence

- [Brinksma, Rensink, Vogler 1995], [Rensink, Vogler 2007]
- $\bullet\,$  the weakest congruence that preserves AG EF a
- a stubborn set method that preserves it exists [Valmari, Vogler SPIN 2016]
- difficult definition  $\rightsquigarrow$  next slide



Trace equivalence

$$L_1 \cong_{\mathsf{tr}} L_2$$
 if and only if  $\Sigma(L_1) = \Sigma(L_2)$  and  $\mathsf{Tr}(L_1) = \mathsf{Tr}(L_2)$ 

Tree failure

- $(\sigma, K)$  where  $\sigma \in Tr(L)$  and  $K \subseteq \Sigma^+$  such that there is s such that  $\hat{s} = \sigma \Rightarrow s$  and  $s = \rho \Rightarrow$  for **no**  $\rho \in K$
- that is, a *language* is refused instead of a set of actions
- *s* need not be *stable* 
  - that is,  $s \ -\tau \rightarrow$  is allowed
- $\varepsilon \notin K$ , because  $\varepsilon$  cannot be refused and this convention simplifies the math

#### Fair testing equivalence

- $\pi^{-1}K = \{ \rho \mid \pi \rho \in K \}$
- $L_1 \leq L_2$  if and only if for every  $(\sigma, K) \in \mathsf{Tf}(L_1)$ -  $(\sigma, K) \in \mathsf{Tf}(L_2)$ , or - there is  $\pi$  such that  $\pi^{-1}K \neq \emptyset$  and  $(\sigma\pi, \pi^{-1}K) \in \mathsf{Tf}(L_2)$
- $L_1 \cong_{\mathsf{ft}} L_2$  if and only if  $\Sigma_1 = \Sigma_2$ ,  $L_1 \preceq L_2$ , and  $L_2 \preceq L_1$

 $L_1 \cong_{\mathsf{ft}} L_2$  implies  $L_1 \cong_{\mathsf{tr}} L_2$ 

#### 3 Initial Stability

A congruence problem with  $\cong_{\rm ft}$  and +

•  $\overset{\circ}{\circ}$   $\overset{$ 

Widely used solution: *initial stability* 

AV

 $L_1 \cong L_2$  if and only if ... and either none or both of  $\hat{s}_1$  and  $\hat{s}_2$  is stable •  $\hat{s}_1$  is stable  $\Leftrightarrow \neg(\hat{s}_1 - \tau \rightarrow)$ 

## 4 The Result

**Theorem** Only considering countable LTSs, all congruences w.r.t. ||,  $\setminus$ , and  $\phi$  that are implied by initial stability -preserving fair testing are in the picture

- $\bullet \ \cong_{\Sigma}$  only compares the alphabets
- $\cong_{\perp}$  compares nothing (yieds always "true")
- $\cong_{\#}$  will be discussed soon
- $\cong_y^x$  compares stable LTSs with  $\cong_x$ and unstable LTSs with  $\cong_y$
- $\cong_y^x$  does and  $\cong_y$  does not preserve initial stability
- $\cong_{y}^{en}$  compares of stable LTSs only the alphabets and first actions
- line from  $\cong_1$  down(-right) to  $\cong_2$ denotes that  $\cong_1$  implies  $\cong_2$

Only three are really interesting:  $\cong_{ft}^{ft}$ ,  $\cong_{ft}$ , and  $\cong_{tr}$ 

If  $\Phi$ , ., and + are added, then only  $\cong_{ft}^{ft}$ ,  $\cong_{tr}^{tr}$ ,  $\cong_{\Sigma}^{en}$ ,  $\cong_{\Sigma}^{en}$ , and  $\cong_{\perp}$  remain

If you want something towards fair testing, you must take fair testing.



June 17, 2016

4 The Result

 $\cong_{\Sigma}^{en}$  (or  $\cong_{\perp}^{en}$ ) is the weakest congruence that preserves initial stability

• may be of some interest

The  $\cong_y^x$  with  $x \neq y$  compare stable LTSs with a stronger equivalence than unstable LTSs

- $\bullet\,$  . can yield a stable LTS from an unstable one
- $\Rightarrow$  excluding  $\cong^{en}_{\Sigma}$  they go away, when . is present
- $\cong_{\Sigma}^{en}$  does not go away, because for any L, the first action of a.L is a

 $L_1 \cong_{\#} L_2 \iff$  the difference of  $\Sigma_1$  and  $\Sigma_2$  is finite

- $\Phi$  makes  $\cong_{\#}$  go away, because it can convert a finite difference to infinite
- if uncountable alphabets are allowed, there probably are  $\cong_y^{\text{ft}}, \cong_y^{\text{tr}}, \cong_y^{\text{en}}$ , and  $\cong_y$  for each uncountable cardinality y

So no new interesting congruences found, but

- it is surprising that there are none, because
  - $\cong_{\rm ft}$  seems branching-time: preserves the stereotypical AG EF a
  - the definition of  $\cong_{ft}$  seems quite ad-hoc
- now we will not search in vain for one
- there are remarkable differences to an earlier result
  - next slide

 $\tau.L_1 \cong_y \quad \tau.L_2$ 

 $a.\tau.L_1 \not\cong_r a.\tau.L_2$ 

## 5 An Earlier Result

The operators are  $||,\, \backslash,\, \Phi,\, {\rm and}$  .

**Theorem**  $\cong_{\perp}$  is the only congruence that is implied by  $\equiv$  and does not preserve  $\Sigma$ 

**Theorem** All congruences that are implied by  $\cong_{CFFD}$  are in the picture

- $L_1 \cong_{\mathsf{CFFD}} L_2$  if and only if -  $\Sigma_1 = \Sigma_2$ 
  - $\operatorname{Sf}(L_1) \stackrel{\sim}{=} \operatorname{Sf}(L_2)$
  - $-\operatorname{Div}(\tilde{L}_1) = \operatorname{Div}(\tilde{L}_2)$
  - $\ln f(L_1) = \ln f(L_2)$
- CSP-equivalence is there
- initial stability would at least add  $\cong^{en}_{\Sigma}$  and duplicate most congruences

The new results

- require significantly fewer operators
- yield significantly fewer new congruences
- $\Rightarrow \cong_{\mathsf{ft}} \mathsf{induces} \mathsf{much} \mathsf{fewer} \mathsf{ congruences} \mathsf{ than} \cong_{\mathsf{CFFD}}$



## 6 Discussion

A fairly large region of low-end congruences has now been fully covered

- for completeness, the region below " $\cong_{CFFD}$ "  $\cap$  " $\cong_{ft}^{ft}$ " should be studied
  - it would probably be hard and uninteresting
- of course, a lot is still uncovered
  - e.g., traces with failures in the middle and at the end
  - there are infinitely many weak bisimilarity -like congruences

Despite being branching-time and seemingly ad-hoc,  $\cong_{ft}$  has surprisingly simple behaviour

Sorry for telling nothing about the proofs ...

- a long series of lemmas develops technicalities that facilitate the main proof
- everything is in the paper
- the reviewers checked most or all of it
  - thanks for pointing out a small bug and for other good comments!

# Thank you for attention! Questions?