Old And New Algorithms for Minimal Coverability Sets

Petri Nets 2012, Hamburg

Antti Valmari

Tampere University of Technology, FINLAND

AV

1 Minimal Coverability Sets

The set of reachable markings of a Petri net is not necessarily finite

Karp & Miller 1969: Coverability set

- $M(p) = \omega$ denotes that the marking of place p may grow without limit
- when $M\left[t_1\cdots t_n\right)M' > M$ and $M(p) < M'(p) < \omega$, replace M'(p) by ω

Properties

AV

- for every reachable marking M, the set has an $\omega\text{-marking }M'$ s.t. $M\leq M'$
- for every M' in the set and every $n \in \mathbb{N}$, there is a reachable M such that $M(p) = M'(p) < \omega$ or $M(p) \ge n \land M'(p) = \omega$
- finite, but not unique

Finkel 1993: Minimal Coverability Set

- keep only maximal ω -markings
- ! do so even if the marking is ordinary

Minimal coverability sets may be very big

• n places, n-1 tokens in the leftmost: $\approx 2^{2n-2}/\sqrt{\pi(n-1)} \omega$ -markings

Geeraerts & Raskin & Van Begin 2010, Reynier & Servais 2011, ...: complicated algorithms

2 Mathematical Properties

Clarified proofs — not yet algorithms or even transitions

All M are $\omega\text{-markings},$ unless otherwise stated

Every growing sequence $M_1 \leq M_2 \leq \ldots$ has a limit

• for each p, either $M(p) = M_i(p) = M_{i+1}(p) = \dots$ from some i on, or $M(p) = \omega$ and $M_i(p)$ grows without a limit

We define a limit of a set as any limit of a growing sequence of its elements

• every element of the set is a limit, because $M \leq M \leq \ldots$

Lemma The limit of any growing sequence of limits is a limit.

- the lemma can be applied $\leq |P|$ times in a row
- \Rightarrow each set is covered by its maximal limits

Lemma (follows from Dickson's, easier to prove directly)

Every infinite sequence of ω -markings has an infinite growing subsequence.

• proof: construct one place at a time, by picking from previous sequence

Let $[\mathcal{M}]$ be the limits of \mathcal{M} and $[\mathcal{M}]$ be the maximal elements of $[\mathcal{M}]$

Theorem $\lceil \mathcal{M} \rceil$ is finite and the only minimal coverability set.

3 Overview of New Algorithm

$$\begin{array}{ll} F := \{\hat{M}\}; A := \{\hat{M}\}; W := \{\hat{M}\} \times T; \hat{M}.B := \mathsf{nil} \\ \\ \text{while } W \neq \emptyset \ \mathbf{do} \\ \\ 3 & (M,t) := \mathsf{any element of } W; W := W \setminus \{(M,t)\} \\ \\ 4 & \mathbf{if } \neg M[t\rangle \ \mathbf{then continue} \\ \\ 5 & M' := \mathsf{the } \omega \text{-marking such that } M[t\rangle M' \\ \\ 6 & \mathbf{if } M' \in F \ \mathbf{then continue} \\ \\ 7 & \mathsf{Add-}\omega(M,M') & // \ \mathsf{the } M_0 \ [t_1 \cdots t\rangle M' > M_0 \ \mathsf{test} \\ \\ 8 & \mathbf{if } \omega \ \mathsf{was added \ \mathbf{then if } M' \in F \ \mathbf{then continue} \\ \\ 9 & \mathsf{Cover-check}(M') & // \ \mathsf{only \ keep \ maximal \ -- \ may \ update \ A \ \mathsf{and } W \\ \\ 10 & \mathbf{if } M' \ \mathsf{is \ covered \ \mathbf{then \ continue} \\ \\ 11 & F := F \cup \{M'\}; A := A \cup \{M'\}; W := W \cup (\{M'\} \times T); M'.B := M \\ \\ F \ \mathsf{is \ a \ hash \ table \ of \ all \ constructed \ \omega \text{-markings}} \end{array}$$

• unnecessary for correctness, speeds up the algorithm, cheap

A is all kept ω -markings — expensive, touch as little as you can W is pending work, simpler than it seems, we come back Simple and natural — how can this beat others?

4 Addition of ω -symbols

Rule of thumb: the earlier they are added, the better for speed Traditional: scan linear history backwards (the M.B)

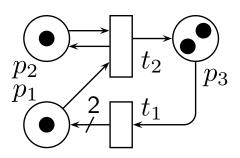
Repeated scanning of history

- (1,1,2) $[t_1\rangle$ (3,1,1) $[t_2\rangle$ (2,1,2)
- (3,1,1) does not trigger $\omega\text{-addition}$ to (2,1,2)
- (1,1,2) triggers: $(2,1,2) \rightsquigarrow (\omega,1,2)$
- history is now fully scanned, but now (3,1,1) triggers $(\omega,1,2) \rightsquigarrow (\omega,1,\omega)$
- cheap enough to be always used

History merging

- both (0,1,0,0) and (0,0,1,0) trigger
 ω-addition in (0,1,1,0)
- history becomes a DAG \Rightarrow expensive
- was not strong in our experiments
- ω in kept may match finite in other (not tried)

Let $M \xrightarrow{t} M'$ mean $M[t\rangle$ and add ω -symbols



1,0,0,0

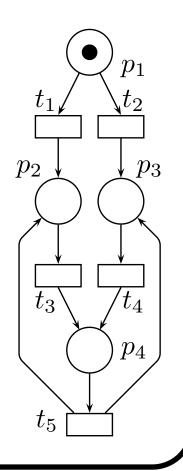
0,0,0,1

0.1.1.0

 t_5

((0,0,1,0))

 $(\hat{0}, 1, 0, \hat{0})$



5 Correctness

Lemma After termination, all reachable markings are covered.

- invariant: for every $M \in F$, there is $M' \in A$ such that $M \leq M'$
- this issue is hard with some competing algorithms

Lemma Every element of A is a limit of reachable markings.

- \hat{M} is trivially a limit
- given limits, operations of the algorithm yield limits
- this lemma justifies non-standard addition of ω -symbols, like history merging

Lemma A only contains maximal ω -markings.

• taken care of explicitly

Lemma The algorithm terminates.

- to avoid termination, infinitely many ω -markings must be constructed
- \Rightarrow an infinite sequence of distinct $\omega\text{-markings},$ because T is finite
- \Rightarrow an infinite strictly growing subsequence
- $\Rightarrow \mathsf{Add}\text{-}\omega$ triggers repeatedly, adding $\omega\text{-symbols}$
- but there can be at most |P| $\omega\text{-symbols}$ in an $\omega\text{-marking}$

6 Construction Order

Necesssary to realize: for almost any algorithm there is a "cheating" easy input

- a transition that adds tokens to every place leads to immediate termination
- an otherwise bad algorithm may hit it much earlier than competing algorithms

Breadth-first

- simple and fast W: queue of ω -markings, scan all transitions in a **for**-loop
- bad in experiments (big |F|)

Depth-first

- simple and fast W: a stack of $\omega\text{-markings,}$ and a transition number in each
- Lemma If $M \xrightarrow{t} M'$ adds an ω -symbol, the algorithm will not backtrack from M' before it has investigated all its descendants.

Most tokens first

- let " \prec " sort first by the number of ω -symbols, then by the number of tokens
- try ω -markings in that order
- W is a heap of ω -markings with transition numbers, $O(\log |W|)$ operations
- intuitively promising and good in measurements

7 Pruning 1/2

Idea: when removing M_0 from A, also remove (part of) its constructed future

 t_2

 t_3

 t_1

 p_2

7/11

 p_1

 p_3

- applied in some competing algorithms
- motivation: if M > M₀ ^{t₁···t_n} M_n, then M_n would be removed eventually anyway, if no ^{t_i}→ added ω-symbols
 ⇒ improved speed?

Even if the green assumption holds, total pruning of pumping cycles postpones ω -addition

- $(1,0,0) \xrightarrow{t_2} (0,1,0) \xrightarrow{t_3} (1,0,\omega) \xrightarrow{t_1} (0,\omega,\omega) \xrightarrow{t_3} (\omega,\omega,\omega)$
- $(1,0,0) \xrightarrow{t_2} (0,1,0) \xrightarrow{t_3} (1,0,\omega) \xrightarrow{t_1} (0,2,\omega) \xrightarrow{t_3} (1,\omega,\omega) \xrightarrow{t_3} (\omega,\omega,\omega)$

Keeping all constructed in F costs little, and protects against re-constructing

- if $M[t_1t_2\rangle M_{12}$ and $M[t_2t_1\rangle M_{21}$, then $M_{21} = M_{12}$
- \Rightarrow re-constructing would be common

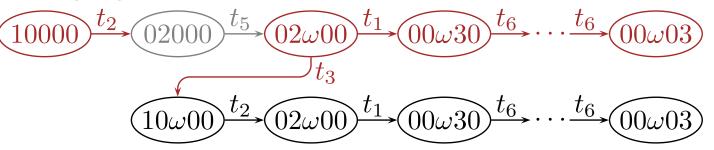
[ReySer] does not totally prune, and cover-checks against F instead of A

• bad for speed, because F is much bigger and cover-checking is expensive

7 Pruning 2/2

Example violating the green assumption

- most tokens first
- transitions t_1 first, then t_2 , then ...
- pruning algorithm:



 p_5

 t_6

 p_4

 t_2

 t_3

 t_5

 p_2

 p_3

 \Rightarrow lots of re-activation or re-construction

 \Rightarrow I do not believe that pruning is a good idea in this context

8 Good News

Overeager pruning

- assume $M_0 \stackrel{t_1 \cdots t_n}{\longrightarrow} M_n$ has been constructed and $M'_0 > M_0$ just been found
- we say that pruning M_n is *overeager*, if $M'_0[t_1\cdots t_n\rangle M_n$
- it is possible, if $\stackrel{t_1 \cdots t_n}{\longrightarrow}$ adds ω -symbols

Theorem and **Theorem** With depth-first and most tokens first, if history merging is applied, then the effect of non-overeager pruning occurs automatically.

- that is, if pruning would not be overeager, the algorithm will not any more fire transitions from M_n (and if it would, there is no reason to not fire)
- "any more", because it may have fired many of them before finding M_0^\prime
- proofs are not simple enough for the time that remains (enjoy the paper)
- does not give all possible pruning, but still gives a lot
- (also remember that almost any algorithm has a "cheating" winning example)

So theory suggests that depth-first and most tokens first be better than [ReySer]

• do measurements support this?

9 Measurements

model	A	most tokens f.		depth-first		breadth-first		[ReySer]
fms	24	63	53	110	56	421	139	809
kanban	1	12	12	12	12	12	12	114
mesh2x2	256	479	465	774	455	10733	2977	6241
mesh3x2	6400	11495	11485	8573	10394			
multipoll	220	245	234	244	244	507	507	2004
pncsacover	80	215	246	284	325	7122	5804	1604

- |A|: final number of ω -markings in the coverability set
- other numbers: total numbers of constructed distinct ω -markings
- transitions tried in two orders (numeric and reverse)
- running times cannot be compared to [ReySer]
- ours < 0.1s except mesh3x2 and some breadth-first, all \leq 30s

Observations

AV

- transition order may have dramatic impact (winning "cheating" already here!)
- \Rightarrow I wish reviewers in general would be less measurement-oriented
- is most tokens first the best, see the largest case?
- we did not lose

10 Discussion

It seems that with this problem, a simple algorithm wins complicated ones

However, ours was not the most trivial possible

- hash table for F
- repeated scanning of history (cheap enough to be always on)
- history merging (although it had little effect in measurements)
- some thought given to data structures and other details

Construction order is important both at the overall and transition scanning level

- do not believe too much in measurements, in this paper or elsewhere, unless there is a huge meticulously chosen amount of them
- we hope to make some more measurements with bigger nets in the future

THANK YOU FOR ATTENTION!