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1 Minimal Coverability Sets
The set of reachable markings of a Petri net is not necessarily finite

Karp & Miller 1969: Coverability set
• M(p) = ω denotes that the marking of place p may grow without limit

• when M [t1 · · · tn〉M ′ > M and M(p) < M ′(p) < ω, replace M ′(p) by ω

Properties

• for every reachable marking M , the set has an ω-marking M ′ s.t. M ≤ M ′

• for every M ′ in the set and every n ∈ N, there is a reachable M such that
M(p) = M ′(p) < ω or M(p) ≥ n ∧ M ′(p) = ω

• finite, but not unique

Finkel 1993: Minimal Coverability Set

• keep only maximal ω-markings

! do so even if the marking is ordinary

Minimal coverability sets may be very big
· · ·

• n places, n − 1 tokens in the leftmost: ≈ 22n−2/
√

π(n − 1) ω-markings

Geeraerts & Raskin & Van Begin 2010, Reynier & Servais 2011, . . . :
complicated algorithms
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2 Mathematical Properties

Clarified proofs — not yet algorithms or even transitions

All M are ω-markings, unless otherwise stated

Every growing sequence M1 ≤ M2 ≤ . . . has a limit
• for each p, either M(p) = Mi(p) = Mi+1(p) = . . . from some i on,

or M(p) = ω and Mi(p) grows without a limit

We define a limit of a set as any limit of a growing sequence of its elements

• every element of the set is a limit, because M ≤ M ≤ . . .

Lemma The limit of any growing sequence of limits is a limit.

• the lemma can be applied ≤ |P | times in a row

⇒ each set is covered by its maximal limits

Lemma (follows from Dickson’s, easier to prove directly)
Every infinite sequence of ω-markings has an infinite growing subsequence.

• proof: construct one place at a time, by picking from previous sequence

Let [M] be the limits of M and ⌈M⌉ be the maximal elements of [M]

Theorem ⌈M⌉ is finite and the only minimal coverability set.
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3 Overview of New Algorithm

1 F := {M̂}; A := {M̂}; W := {M̂} × T ; M̂.B := nil

2 while W 6= ∅ do

3 (M, t) := any element of W ; W := W \ {(M, t)}
4 if ¬M [t〉 then continue

5 M ′ := the ω-marking such that M [t〉M ′

6 if M ′ ∈ F then continue

7 Add-ω(M, M ′) // the M0 [t1 · · · t〉M ′ > M0 test

8 if ω was added then if M ′ ∈ F then continue

9 Cover-check(M ′) // only keep maximal — may update A and W

10 if M ′ is covered then continue

11 F := F ∪ {M ′}; A := A ∪ {M ′}; W := W ∪ ({M ′} × T ); M ′.B := M

F is a hash table of all constructed ω-markings

• unnecessary for correctness, speeds up the algorithm, cheap

A is all kept ω-markings — expensive, touch as little as you can

W is pending work, simpler than it seems, we come back

Simple and natural — how can this beat others?
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4 Addition of ω-symbols

Rule of thumb: the earlier they are added, the better for speed

Traditional: scan linear history backwards (the M.B)

Repeated scanning of history
2

p1

p2 p3
t2

t1
• (1, 1, 2) [t1〉 (3, 1, 1) [t2〉 (2, 1, 2)

• (3, 1, 1) does not trigger ω-addition to (2, 1, 2)

• (1, 1, 2) triggers: (2, 1, 2) ; (ω, 1, 2)

• history is now fully scanned,
but now (3, 1, 1) triggers (ω, 1, 2) ; (ω, 1, ω)

• cheap enough to be always used

History merging

• both (0,1,0,0) and (0,0,1,0) trigger
ω-addition in (0,1,1,0)

• history becomes a DAG ⇒ expensive

• was not strong in our experiments

• ω in kept may match finite in other (not tried)

Let M
t

−→ M ′ mean M [t〉 and add ω-symbols

t5

t3 t4

t1 t2

0,1,1,0

0,0,0,1

0,1,0,0 0,0,1,0

1,0,0,0

t5

p4

t3 t4

p2 p3

t1 t2

p1
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5 Correctness

Lemma After termination, all reachable markings are covered.

• invariant: for every M ∈ F , there is M ′ ∈ A such that M ≤ M ′

• this issue is hard with some competing algorithms

Lemma Every element of A is a limit of reachable markings.

• M̂ is trivially a limit

• given limits, operations of the algorithm yield limits

• this lemma justifies non-standard addition of ω-symbols, like history merging

Lemma A only contains maximal ω-markings.

• taken care of explicitly

Lemma The algorithm terminates.

• to avoid termination, infinitely many ω-markings must be constructed

⇒ an infinite sequence of distinct ω-markings, because T is finite

⇒ an infinite strictly growing subsequence

⇒Add-ω triggers repeatedly, adding ω-symbols

• but there can be at most |P | ω-symbols in an ω-marking
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6 Construction Order

Necesssary to realize: for almost any algorithm there is a “cheating” easy input

• a transition that adds tokens to every place leads to immediate termination

• an otherwise bad algorithm may hit it much earlier than competing algorithms

Breadth-first

• simple and fast W : queue of ω-markings, scan all transitions in a for-loop

• bad in experiments (big |F |)

Depth-first

• simple and fast W : a stack of ω-markings, and a transition number in each

• Lemma If M
t

−→ M ′ adds an ω-symbol, the algorithm will not

backtrack from M ′ before it has investigated all its descendants.

Most tokens first

• let “≺” sort first by the number of ω-symbols, then by the number of tokens

• try ω-markings in that order

• W is a heap of ω-markings with transition numbers, O(log |W |) operations

• intuitively promising and good in measurements
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7 Pruning 1/2

Idea: when removing M0 from A, also remove (part of) its constructed future

• applied in some competing algorithms

• motivation: if M > M0

t1···tn−→ Mn, then Mn would be

removed eventually anyway, if no
ti−→ added ω-symbols

⇒ improved speed?

Even if the green assumption holds, total pruning of

pumping cycles postpones ω-addition
2p3 t1

p1 p2

t3

t2

• (1, 0, 0)
t2−→ (0, 1, 0)

t3−→ (1, 0, ω)
t1−→ (0, ω, ω)

t3−→ (ω, ω, ω)

• (1, 0, 0)
t2−→ (0, 1, 0)

t3−→ (1, 0, ω)
t1−→ (0, 2, ω)

t3−→ (1, ω, ω)
t3−→ (ω, ω, ω)

Keeping all constructed in F costs little, and protects against re-constructing

• if M [t1t2〉M12 and M [t2t1〉M21, then M21 = M12

⇒ re-constructing would be common

[ReySer] does not totally prune, and cover-checks against F instead of A

• bad for speed, because F is much bigger and cover-checking is expensive
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7 Pruning 2/2

Example violating the green assumption

2

2

2

3

t5 t1

t3

t2

t6

p3

p2

p1

p4

p5

• most tokens first

• transitions t1 first, then t2, then . . .

• pruning algorithm:

10ω00 02ω00 00ω30 00ω03
t2 t1 t6 t6· · ·

t2 t1 t6 t6· · ·

t3

10000 02ω00 00ω30 00ω03
t502000

⇒ lots of re-activation or re-construction

⇒ I do not believe that pruning is a good idea in this context
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8 Good News

Overeager pruning

• assume M0

t1···tn−→ Mn has been constructed and M ′

0 > M0 just been found

• we say that pruning Mn is overeager, if M ′

0 [t1 · · · tn〉Mn

• it is possible, if
t1···tn−→ adds ω-symbols

Theorem and Theorem With depth-first and most tokens first, if history merging

is applied, then the effect of non-overeager pruning occurs automatically.

• that is, if pruning would not be overeager, the algorithm will not any more

fire transitions from Mn (and if it would, there is no reason to not fire)

• “any more”, because it may have fired many of them before finding M ′

0

• proofs are not simple enough for the time that remains (enjoy the paper)

• does not give all possible pruning, but still gives a lot

• (also remember that almost any algorithm has a “cheating” winning example)

So theory suggests that depth-first and most tokens first be better than [ReySer]

• do measurements support this?
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9 Measurements
model |A| most tokens f. depth-first breadth-first [ReySer]

fms 24 63 53 110 56 421 139 809

kanban 1 12 12 12 12 12 12 114

mesh2x2 256 479 465 774 455 10733 2977 6241

mesh3x2 6400 11495 11485 8573 10394

multipoll 220 245 234 244 244 507 507 2004

pncsacover 80 215 246 284 325 7122 5804 1604

• |A|: final number of ω-markings in the coverability set

• other numbers: total numbers of constructed distinct ω-markings

• transitions tried in two orders (numeric and reverse)

• running times cannot be compared to [ReySer]

• ours < 0.1 s except mesh3x2 and some breadth-first, all ≤ 30 s

Observations

• transition order may have dramatic impact (winning “cheating” already here!)

⇒ I wish reviewers in general would be less measurement-oriented

• is most tokens first the best, see the largest case?

• we did not lose
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10 Discussion

It seems that with this problem, a simple algorithm wins complicated ones

However, ours was not the most trivial possible

• hash table for F

• repeated scanning of history (cheap enough to be always on)

• history merging (although it had little effect in measurements)

• some thought given to data structures and other details

Construction order is important both at the overall and transition scanning level

• do not believe too much in measurements, in this paper or elsewhere,

unless there is a huge meticulously chosen amount of them

• we hope to make some more measurements with bigger nets in the future

THANK YOU FOR ATTENTION!
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