
All Linear-Time Congruences

for Familiar Operators

Part I: Finite LTSs ACSD 2012, Hamburg

Part II: Infinite LTSs CONCUR 2012, Newcastle

Antti Valmari
Tampere University of Technology, FINLAND

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 0/10

1 Systems and Congruences

(‖ci w10

w50

q10

q50

y10y50

co

co

g10

g50
done

no

nm

co
τlc

) \
no q50 q10

y10

done

r10

uc

{ q10, q50, y10, y50, no, done }

Systems

• labelled transition systems (LTS): τ , (S,Σ,∆, ŝ)

• operators for composing systems from LTSs: (later)

Notion of “equivalent behaviour”

• numerous in the literature

Congruence

L1
∼= L′

1 ∧ · · · ∧ Ln
∼= L′

n ⇒ f(L1, . . . , Ln) ∼= f(L′
1, . . . , L

′
n)

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 1/10

2 Why All Congruences (in Some Region)?

Equivalences in verification
• let ϕ be deadlock-freedom or guarantee of eventual service or . . .

• “∼=” preserves ϕ if and only if for every L and L′,
L ∼= L′ implies that either none or both of L and L′ satisfy ϕ

• if “∼=” preserves ϕ, L is complicated, L′ is simple, and L ∼= L′, then
it is correct and advantageous to check L |= ϕ by checking L′ |= ϕ

Compositional methods

L = ((L1‖L2)\A12 ‖ (L3‖L4)\A34) \A

L′ = reduce((reduce((L1‖L2)\A12) ‖ reduce((L3‖L4)\A34)) \A)

• reduce preserves “∼=”, “∼=” must be a congruence

• many advanced variants exist

• the weaker (i.e., coarser) “∼=” is, the better are reduction results

So the weakest congruence that preserves ϕ gives best reduction results

But weakest congruences are hard to find!

• what is the weakest congruence that distinguishes a from τ a ?

Another reason: curiousity

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 2/10

3 Which Operators? (1/2)

More operators ⇒ fewer (or the same) congruences
• the fewer operators we use, the stronger are our results . . .

• . . . but we need enough operators for the proofs to go through

• use of common operators is justified

Parallel composition L1‖L2

• Application of Concurrency to System Design, Concurrency Theory

• we use this variant:

L1 −a→M1 ∧ a /∈ Σ2

L1‖L2 −a→M1‖L2
, 1-2-symmetric,

L1 −a→M1 ∧ L2 −a→M2 ∧ a 6= τ

L1‖L2 −a→M1‖M2

• associative and commutative

• allows 3-way synchronization

• simplest in a complexity-theoretic sense (Valmari & Kervinen Concur 2002)

Hiding L\A
L−a→M ∧ a /∈ A

L\A−a→M\A

L−a→M ∧ a ∈ A

L\A−τ→M\A

• important for LTS reduction

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 3/10

3 Which Operators? (2/2)

Relational renaming (multiple renaming) LΦ
• Φ is any set of pairs (a, b) such that a 6= τ 6= b

L−a→M ∧ (a, b) ∈ Φ

LΦ−b→MΦ

L−a→M ∧ ∀b : (a, b) /∈ Φ

LΦ−a→MΦ

• all non-τ actions should be equal ⇒ functional renaming is natural to require

• CSP has relational renaming

• simulation of CCS | uses relational renaming

• proofs of some ACSD results use relational renaming

• the alphabet result provably needs relational renaming

Action prefix a.L
a 6= τ

a.L−a→L

• τ.L is obtained as (a.L) \ {a}, where τ 6= a /∈ Σ(L)

• some results provably need action prefix

No choice, no interrupt

• future work (spoiler: . . .)

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 4/10

4 The Alphabet Result (ACSD)

The dullest congruence is the one that has L ∼= L′ for every L and L′

We only consider congruences that are implied by (strong) bisimilarity “≡”
• very weak and acceptable assumption

• otherwise we would have clearly irrelevant congruences such as
L ∼= L′ if and only if their initial states have the same name

Theorem All other congruences than the dullest preserve Σ.

Proof

• if “∼=” does not preserve Σ, there are M1
∼= M2 and a such that a ∈ Σ1 \Σ2

• let f(Mi) = (c.Mi‖
{c}) \ ({c} ∪ Σ2 ∪ Σ1\{a}), where τ 6= c 6= a

• we have {a} ≡ f(M1) ∼= f(M2) ≡
∅

• Φ = {(a, b) | b ∈ Σ} yields Σ ≡ {a}Φ ∼= ∅Φ ≡ ∅

• for any L, let L′ be τ -part of L and L′′ be L′[a
τ
], then L ≡ L‖ ∅ ∼= L‖ Σ ≡

L′‖ Σ ∼= L′‖ ∅ ≡ L′ = L′′\{a} ≡ (L′′‖ ∅)\{a} ∼= (L′′‖ {a})\{a} ≡ ∅

Without relational renaming, the result would not hold (Concur)

• the following would be a congruence:
L ∼= L′ if and only if both Σ(L) \ Σ(L′) and Σ(L′) \ Σ(L) are finite

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 5/10

5 Linear Time (As We Use the Term)

Stuttering-insensitive linear temporal logic (Manna & Pnueli 1992)

• stuttering-insensitive
⇒ τ is not directly observable

• observations on complete executions

– infinite traces Inf (L) = {ξ ∈ Σω | ŝ=ξ⇒}
– deadlocking and divergence traces D`(L) ∪Div(L)

Div(L) = {σ ∈ Σ∗ | ∃s : ŝ=σ⇒ s ∧ s−τω→}

• we strengthen a bit assuming deadlock can be distinguished from divergence

Congruence w.r.t. ‖ implies that stable failures must be preserved

Sf (L) = {(σ,A) ∈ Σ∗ × 2Σ | ∃s : ŝ=σ⇒ s ∧ ∀a ∈ A ∪ {τ} : ¬(s−a→)}

So we define the strongest abstract linear-time congruence by L
.
= L′ if and only if

Σ(L) = Σ(L′), Sf (L) = Sf (L′), Div(L) = Div(L′), and Inf (L) = Inf (L′)

• also called Chaos-Free Failures Divergences Equivalence or CFFD

• D` is not needed, because D`(L) = {σ | (σ,Σ) ∈ Sf (L)}

• furthermore, Tr(L) = Div(L) ∪ {σ | (σ, ∅) ∈ Sf (L)}

• if L is finite, then Inf (L) = {a1a2 · · · ∈ Σω | ∀i : a1 · · · ai ∈ Tr(L)}

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 6/10

6 The Results

The picture shows all congruences that are
weaker than or the same as “

.
=” (i.e., CFFD)

• path from “∼=1” down to “∼=2” means
that “∼=1” is stronger than “∼=2”

• find Tr , CSP, NDFD, nF

What is the weakest that
distinguishes a from τ a ?

• Σ-Tr -Div -Inf does not

• Σ-Sf does

• Σ-sanF -. . . does

⇒ two solutions

What are minD , anT , and so on?

• minD : minimal divergence traces

• anT : always nondivergent traces

• anI , eanI , aenI : (always | eventually always |
always eventually) nondivergent infinite traces

• [s][a]nF : [strongly][always] nondivergent failures dullest

Σ

Tr

Inf

Sf

minD
anT
anI

Div
eanI

aenI

sanF

CSP, anF

snF

nF

NDFD

CFFD

a ττ

(ε, {a})

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 7/10

7 Proof Technique (ACSD)

Lemma If (for every L)

• “∼=” is an equivalence

• “
.
=” implies “∼=”

• “∼=” preserves Σ and X1, . . . , Xk

• L ∼= f(L)

• Sf (f(L)), Div(f(L)), Inf (f(L)) are functions of Σ(L), X1(L), . . . , Xk(L)

then L ∼= L′ ⇔ Σ(L) = Σ(L′) ∧X1(L) = X1(L
′) ∧ · · · ∧Xk(L) = Xk(L

′).

Proof

⇒: immediate

⇐: L ∼= f(L)
.
= f(L′) ∼= L′, because “

.
=” of f(L) only depends on Σ(L), etc.

Second trick

• if Σ = ∅, there are only three “
.
=”-equivalence classes: , τ, and τ τ

• study in turn each of the cases ∼= τ
∼= τ τ 6∼= τ 6∼= τ 6∼= τ τ 6∼= 6∼= τ ∼= τ τ

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 8/10

8 Example Proof (Concur)

Theorem If

• “∼=” is a congruence

• “
.
=” implies “∼=”

• “∼=” preserves Tr but not Inf

• ∼= τ

then L ∼= L′ ⇔ Σ(L) = Σ(L′) ∧ Tr(L) = Tr(L′).

Proof

• there is ξ ∈ Inf (M1) \ Inf (M2), where M1
∼= M2

• let b1b2 · · · = ξ[1] and {a1, . . . , am} = Σ(L)[2]

• let f ′(L,M) = L ‖ b (Tξ ‖ dMe[1]) \Σ
[1]
M c[2] , where Σ(Tξ) = Σ

[1]
M ∪ Σ(L)[2]

Tξ

τ
b1

a1

am
τ

... τ
b2

a1

am
τ

... τ
b3

a1

am
τ

... · · ·

• Tr(f ′(L,Mi)) = Tr(L), Inf (f ′(L,M1)) = Inf (L), and Inf (f ′(L,M2)) = ∅

• L ≡ L‖ ∼= L‖ τ .
= f ′(L,M1) ∼= f ′(L,M2) = f(L)

• Sf (f(L)) = ∅, Div(f(L)) = Tr(L), and Inf (f(L)) = ∅ — use the lemma

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 9/10

9 Discussion

Also other ideas were used in the proofs

• lemmas like “any congruence that preserves Div also preserves Tr and eanI ”

• any congruence implied by “
.
=” such that τ τ 6∼= τ preserves Sf

• any congruence implied by “
.
=” such that τ τ 6∼= preserves minD

• if ŝ=σ⇒ s, ŝ=ρ⇒ s, and σ and ρ need different processing, use L ‖Det(L)

• composing f from many “∼=”-preserving information-destroying functions

– nF : ν preserves Div and Inf , but Sf (ν(L)) = Sf (L) ∪ (Div(L)× 2Σ(L))

The value of the result is in proving the absence of more congruences

A nontrivial range was covered, without using more exotic operators than Φ

• cf. similar results by Roscoe for CSP

Without a.L, the following (and many similar) would be a congruence

• L ∼= L′ if and only if L
.
= L′ or ε ∈ Div(L) ∩Div(L′)

Future dream: extending results to some — just any — part of branching time

THANK YOU FOR ATTENTION!

AV All Linear-Time Congruences for Familiar Operators 28 June 2012 & 4 Sept. 2012 10/10

