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1 Background Concepts

Signature

e countable sets of constant, function and relation symbols other than =
e arities for the latter two
e examples (arities shown as subscripts)

Presburger arithmetic: {0,1} {+2} ()

Robinson arithmetic: {0,1} {+2,2} 0

Peano arithmetic: the same as Robinson arithmetic

Peano arithmetic with order: the same as Real closed field

Real closed field: {0,1} {+2,-2} {<2}
finite bit strings: {e} {04,11} 0

Countably infinite set of variable symbols z, y, 1, ...

Term

e variable symbol
e constant symbol
e f(t1,...,t,), where f is a function symbol of arity n and the t; are terms
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Formula
o F T we will need these for technical reasons
e {1 = to, where t; and to are terms
e R(t1,...,t,), where R is a relation symbol of arity n and the ¢; are terms
o ~p, p ANY, oV, VT :p, dx : ©, where ¢ and 1 are formulas
e — has highest precedence, then A, V, and quantifiers

We will often use familiar human-friendly shorthands
e.g., 2x + 5 for +(-(2,2),5)
e.g., v <5 for <(z,5)
e.g., o — Y for = V1) and p < ¢ for (P A )V (Y V @)
e.g., additional () for clarity
An occurrence of x is bound iff within a sub-formula Vz : ... or dx : ..., otherwise free

e we denote the set of variables that occur free in formula ¢ with fv(p)

e ¢ is closed iff fv(p) =10

For the purpose of substituting terms for variables, we may write ¢(x1,...,x,)

e ©(t1,...,t,) denotes that every free occurrence of each x; is replaced by t;
o t; is free for z; in p(t1,...,t,) iff no variable in t; becomes bound by the substitution
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Each theory has a set of (non-logical) axioms

e Countable set of closed formulas

Presburger arithmetic
- Vr:=(0=x+1)
- Ve:Vy:(z+1=y+1—x=y)
- Ve:z4+0==z
- Ve:Vy:z+(y+1)=(x+y)+1
— for every formula ¢ such that = ¢ fv(p) = {y1,..., Y%}
Vyr oYy ((@(0) AVz: (p(z) = x4+ 1)) — Vo : p(z) )

Robinson arithmetic: same as Presburger, except

— the induction axioms are replaced by Vy : (y =0V dx:y=x + 1)
—Vr:z-0=0

-V :Vy:zx(y+1)=zy+x

Peano arithmetic: same as Presburger, plus the Robinson axioms on -
Peano arithmetic with order: add Vo :Vy: (z <y <+~ dz:y=x+ 2)

Real closed field

— familiar axioms for the real numbers, excluding the completeness axiom(s)

- Ver:(0<z—>dy:y-y=u2x)

— for every single-variable polynomial P(x) of odd degree 4z : P(x) =0

finite bit strings: every true closed formula on them

— 1t Is a recursive set and Godel's completeness theorem does not need this fact
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Structure and interpretation

e assume a signature X is fixed

e a structure for X consists of a set I/ and the following
— for each constant symbol ¢, an element ¢ of U/
— for each function symbol f, a function f : U x ... x U — U of the same arity
— for each relation symbol R, a relation E_Q U X ... xU of the same arity

a variable assignment assigns, to each variable z, a value x € U

each term evaluates to an element of U/ as follows
— 1z evaluates to x and c evaluates to c and f(?1,...,t,) evaluates to f(t1,...,t,)

— we also say that each u € U/ evaluates to itself

each formula evaluates to F or T as follows
— F and T evaluate to themselves
t1 = to evaluates to T iff {1 = t»
R(ty,...,t,) evaluates to T iff (t1,...,t,) € R
- evaluates to T iff ¢ evaluates to F
© A 1 evaluates to T iff both ¢ and 1 do, analogously ¢ V ¥
Va : o(x) evaluates to T iff p(u) evaluates to T for every u € U

dz : p(x) evaluates to T iff p(u) evaluates to T for at least one u € U

e a formula holds iff it evaluates to T
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Logical consequence

e assume a signature X is fixed
o let I' be a set of closed formulas on X

e a structure is a model of I' iff every ¢ € 1" holds on the structure
— variable assignment does not matter, since I' consists of closed formulas

e ¢ is a logical consequence of I' iff for every model
of I', and every variable assignment, ¢ holds

e this is denoted with ' = ¢

Proof system

e a system that given a signature > and a set I' of closed formulas
on Y, produces (not necessarily closed) formulas on 3]

we say that the system proves the formula

a proof system is sound iff every proven formula holds on every model of I’
a proof system is consistent iff it does not prove F

a proof system is complete iff for every ¢, it proves ¢ or -
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2 Modern Version of Godel’'s Completeness Theorem

Some sound proof system is fixed

e the theorem says that for every signature > and for every set I' of closed
formulas on 32, the proof system proves all logical consequences of I
— often X and I are the signature and set of axioms of some theory

e not every sound proof system is okay for the theorem, but many are

e example
- PL: {p} |-

\/E fTU{p} - xand TU{Y} | x, thenTU{pV ¢} | x

V— . If ' |- (x) and x does not occur free in I', then ' |- Vz : p(x)

Model existence theorem

e Henkin 1949
e if I' does not prove F, then I' has a model
e the completeness theorem follows easily from this

AV A Completeness Theorem for Ternary ... 2020-10-09 2 Modern Version of Godel's Completeness Theorem 6/22



Henkin's proof, step 1

e "Hilbert's hotel” the variables so that infinitely many become unused

Henkin's proof, step 2

e go through every formula ¢ in some order

e add ¢ or = to I' so that consistency remains
— for simplicity, we say “add” also for the original elements of I

e when adding Jx : ¢ (x) to I', choose an unused variable y and add also ¥ (y) to '

— y Is called a Henkin witness
— it eventually becomes a constant value for which (y) holds

e when adding =Vz : ¢(x) to I', choose an unused variable y and add also —)(y) to T’

e let us denote the result with I',,

Henkin's proof, step 3

e build a model whose U{ is the set of equivalence classes of terms
- [t]={t'||t=t"|eT,}
— U =A][t] | tis aterm}
— choose the ¢, j and R as dictated by I,

e appeal to the proof system to show that it indeed is a model
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3 Our Logic

How to add square root to the theory of real closed fields?

e a symbol for it is needed, so add unary 4/ to the signature
e to specify its behaviour when defined, add the axiom
Ve:(0<x— Vx-/x=xANxr>0)

e need to specify when it is defined otherwise truth of, e.g., v/—1 = 0 is left open

In addition to the signature > and set I' of closed formulas on >, there is a
function L : W that assigns a formula on X to each function symbol in X
e its purpose is to specify when f(x1,...,z,) is defined
e some natural choices on some intended iterpretations
real numbers: L%W is =(y = 0)
real numbers: {\/E] is0<ux
natural numbers: {\/5] isdy:y-y==x
bit strings: |[first(z)] is —(z = ¢)
e if f represents a total function, then it is natural to choose T as m
o m may not use function symbols whose m is not T
— in the examples above, the only used function symbol was -

= we may declare that | f| is evaluated like above (i.e., in two-valued logic)
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Signature, term, formula, structure and variable assignment are defined like above

To define how formulas are evaluated, we define an extension of m to M

we say that ¢ is defined iff M yields T

Lcﬂ and ﬂ are T

— constant and variable symbols are always defined
- e.g., _3} Is T

[Ftr,etn)] is (] A At ALF] (e )

— a function invocation is defined iff every argument is and the function itself is

—eg. {%W s TA(TAO<y)A—=(/7=0)

that is, a term is undefined iff at least one of its sub-terms is

—eg,0-(1+ %) is undefined for every x

- e.g., {%l is undefined iff y <0
Y
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Each formula evaluates to F, U or T as follows

e {1 = to evaluates to U iff Ltﬂ or Ltﬂ or both yield F
— otherwise it evaluates like in two-valued logic
R(ty,...,t,) evaluates to U iff at least one L’ﬂ yields F

— otherwise it evaluates like in two-valued logic
— so R(t1,...,ty) is undefined iff at least one ¢; is undefined

=@, © A1, and ¢ V 1 evaluate as Kleene and tukasiewicz defined
Al FUT V| FUT

T F| FFF FI FUT

U U|FUU UjUuT

F T|IFUT T|TTT

Vx : p(x) yields

— T, iff p(x) yields T for every x

— F, iff o(x) yields F for at least one x
— U, otherwise

dz : p(x) yields ...
where the definition overlaps two-valued logic, it yields the same result
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We define an extension of Lf] and M to Lgp} so that Lgp] yields F iff ¢ yields U

e a relation invocation is defined iff every argument is

t=1t] is [t|A[t]

|R(t1,...,tn)] is [t1| Ao A |tn]

e propositional rules
Flis [T]isT and |U] would be F
__'SDW IS WW ﬂU is U, but =T and —F are not
(5
|

e AP|is (o] A Y]V (Le] Ame) V(]
oV ]is (o] Aw]) Vv (le] A Lw

e quantifier rules
— W:C : gp(xﬂ is (Vo : Lgp(xﬂ) V dz Lgp(azﬂ A ()
— Lﬂx : gp(x)] is (Vo : Lgp(x)]) V 3z Lgp(azﬂ A p(x)

Theorem On any interpretation and assignment to
variables, ¢ yields U if and only if |¢] yields F.

[ A
A1
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What are we doing?

e the m come from the user, similarly to > and I

e the Lt and _gp_ are obtained algorithmically
= they can be used in a proof system without sacrificing effectiveness

e the Lt_ and || reduce dealing with undefined terms and U to two-valued logic

° L : ] is not an operator in the logic, but in meta-language

— eg., [ | inanaxiom: Vz:Vy:—(=(y=0))V g Yy =

—_ 1 1
—eg, |, |ina proof rule: {—(z=0)} |- x;— - m;

Logical consequence may now be defined like above

Our theorem says that for every signature 2, for every m on 2, and for every set
I' of closed formulas on X, the proof system proves all logical consequences of I'

e we will soon present our proof system

Kleene defined that a propositional formula is regular iff either
o(...,U,...) yields U or (..., P,...) does not depend on P Ld

= cannot express “P yields U" ar Y
e the notion extends naturally to predicate logic U {F, U, T}—x—{F, T}
e we exploit later the fact that our predicate logic is regular (not important)
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4 Sound and Complete Proof System

Notation

©, P, x are formulas
', A are sets of formulas
x, r;, y are variable symbols

t, t;, t; are terms
Rules about reasoning in general:
Pl: {o} |- ¢
P2: If ' — pthenTUA |- ¢
P3: f I' - g and T U {p} | ¥, then T" |- ¢
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The Law of the Excluded Fourth and the concept of contradiction:

Cl: 0 - oV -pV -y (this replaces the Law of Excluded Middle)
A } or g, o} |-
C3: {¢, "} -F

If a formula is true, then it is also defined:

D1: {¢} | |p] (this does not exist in classical logic)

For instance

oDL{\ﬁ;>O}FxZOAﬁ@—1:0)

r—1

0C1:(Z)|— VT

x_

>ovﬂ(¢i:u0vﬁ@20Aﬂ@—1:0»

x_

If the system is not contradictory
e thatis, if I' [/~ F
e please recall that L—ugﬂ 5 Lgﬂ
= C1 and D1 make precisely one of ¢, ¢, and ﬁtﬂ hold

= each claim yields precisely one of T, F, and U for each assignment to variables
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Rules for conjunction and disjunction:

A R T ) o WA

A-EL: {o AP} |-

N-B2: {p Ay} |- o

V-11: {p} -V

V-12: {¢} - oV

V-E: fTU{p} | xand TU{¢} |- x, then TU{pV Y} |- x
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Rules of equality:

—1: {1} -t
=-2: If f is an n-ary function symbol and 1 <7 < n, then
{ti=t,, | f(tr,. o t) | P [, tn) = fltr, oo timn, o tiga, . tn)
=-3: If p(z1,...,2,) is a formula, 1 <i < n and t; and t; are free for x; in ¢, then
{ti=1t., p(t1,....tn)} Fo(t1, .. i1t tivt, oo tn)

For instance

Vo Vz

o —1: {CCZO/\ﬁ(x_lz())}‘_x_l:x—l

T — < —

Comments

=-1 and =-2 were tailored to not prove an undefined term equivalent to something

by definition, Lf(tl, .. ,tnﬂ yields Ltﬂ, L [th
by D1, t; =t} implies |t; = t}|, which is |¢;]| A [t]], so [¢]]
—-3 need only be assumed for relations, but proving that is too long and dull
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Rules for quantifiers:

V-E: If t is free for = in ¢, then {|¢],Vz : o(z)} |- ¢(t)

V-I: If I' - ¢(x) and = does not occur free in I', then " |- Vx : p(x)
3-1: If ¢ is free for x in ¢, then {p(t)} |- Jx : p(x)

3-E: If TU{p(y)} |- ¥ and y does not occur in ', 9z : ¢(x), nor in ),
then T U {3z : p(2)} - ¥

Comments

e V-E was tailored to not prove anything about undefined terms
e variable symbols are never undefined, so V-1 and 3-E need not be tailored

e 31 need not be {¢(t), |t|} |- 3z : o(z)
— if t is undefined but (%) is not, then by regularity Vx : ¢(x) holds

Only 5 differences from two-valued logic!
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5 Completeness Proof

We use Henkin's strategy: prove that every consistent theory has a model

= if I' [~ ¢, then T'U {—p} has a model, so ¢ is not a semantic consequence of I'
e therefore, we assume from now on I' [~ F

Lemma There is IV such that
o I"|£F
e both or neither of I" and IV have a model

e infinitely many variable symbols are unused in I"

e for every bound x in IV there is an 2’ such that its only occurrence in IV is x = 2’

Proof Replace each v; in I' by vg; and add the vg; = v3;_1.
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Choose true formulas, introduce witnesses
o let'yg:=1"
e for every formula ;, construct I'; by applying the first that matches
if r,=I1,_1U

Lo U{|wi]} FF {=]wi]}
TioiU{o;t £F : {oi, ¥(y)}
T, U{~¢;} [£F : {—~pi, "(y)}
IicaU{ei} [AF : {i}
LiqU{~pi} [~ F : {—pi}

o letI',  =T'qguUl'tyU---

Lemma
e ["=TqgCTH C---CTy
o I', |~ F
e for each ¢, precisely one of ¢, = and ﬁ[d is in I',,
for each ¢, precisely one of |¢| and —|¢| isin T,

for each ¢, precisely one of M and ﬁM isin I,

', - ¢ if and only if ¢ € T,
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Theorem I', has a model

Proof

e clements of the universe are

— equivalence classes of terms for which M € I',,, induced by the t =¢" in ',
— a single element for the remaining terms

e nothing depends on the choice of the representative of each equivalence class
— where necessary, use v3;_1 to make terms free for x

€T, o e Sl

truth value of ¢ ‘ T F U

e some routine arguments

e |ots of dull reasoning using the proof system

Corollary Both IV and I" have a model
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6 Extension to tukasiewicz Logic

Lukasiewicz: U = U yields T and U < U vyields T

e that P yields U can be expressed as (P = —P) A (=P = P)
e all truth functions {F, U, T}" — {F,U, T} can be expressed

This reduces to the earlier case by replacing each
P =P

by
~o ViV (o] Vv [¢])
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7 Conclusions

Key ideas

1

0

— variables are never undefined, terms may be

— %:%,%#%,and%>%yieldU

e the intuitive notion “is defined” is encoded as mechanical rules
— "Is defined” is itself always defined

° etc., are not treated as values

e for each ¢, the model contains precisely one of ¢, = and ﬂLgp]

— correspondingly ¢ yields T, F or U

Many practical reasoning laws have been developed

e were a topic of another talk
e regularity simplifies things
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