A Completeness Theorem for Ternary First-Order Logic

Antti Valmari University of Jyväskylä

- 1 Background Concepts
- 2 Modern Version of Gödel's Completeness Theorem
- 3 Our Logic
- 4 Sound and Complete Proof System
- 5 Completeness Proof
- 6 Extension to Łukasiewicz Logic
- 7 Conclusions

AV

1 Background Concepts

Signature

- countable sets of constant, function and relation symbols other than =
- arities for the latter two
- examples (arities shown as subscripts)
 - Presburger arithmetic: $\{0,1\}$ $\{+_2\}$ \emptyset
 - Robinson arithmetic: $\{0,1\}~\{+_2,\cdot_2\}~\emptyset$
 - Peano arithmetic: the same as Robinson arithmetic
 - Peano arithmetic with order: the same as Real closed field
 - Real closed field: $\{0,1\}$ $\{+_2,\cdot_2\}$ $\{\leq_2\}$
 - finite bit strings: $\{\varepsilon\}$ $\{0_1,1_1\}$ Ø

Countably infinite set of variable symbols x, y, x_1, \ldots

Term

- variable symbol
- constant symbol
- $f(t_1, \ldots, t_n)$, where f is a function symbol of arity n and the t_i are terms

Formula

• F, T

we will need these for technical reasons

- $t_1 = t_2$, where t_1 and t_2 are terms
- $R(t_1, \ldots, t_n)$, where R is a relation symbol of arity n and the t_i are terms
- $\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \forall x : \varphi, \exists x : \varphi$, where φ and ψ are formulas
- $\bullet \ \neg$ has highest precedence, then $\land, \lor,$ and quantifiers

We will often use familiar human-friendly shorthands

- e.g., 2x + 5 for $+(\cdot(2, x), 5)$
- $\bullet \ \, {\rm e.g.}, \, x \leq 5 \ \, {\rm for} \, \leq \! (x,5)$
- e.g., $\varphi \to \psi$ for $\neg \varphi \lor \psi$ and $\varphi \leftrightarrow \psi$ for $(\psi \land \varphi) \lor \neg (\psi \lor \varphi)$
- $\bullet\,$ e.g., additional () for clarity

An occurrence of x is bound iff within a sub-formula $\forall x : \ldots$ or $\exists x : \ldots$, otherwise free

- we denote the set of variables that occur free in formula φ with $fv(\varphi)$
- φ is closed iff $fv(\varphi) = \emptyset$

For the purpose of substituting terms for variables, we may write $arphi(x_1,\ldots,x_n)$

- $\varphi(t_1, \ldots, t_n)$ denotes that every free occurrence of each x_i is replaced by t_i
- t_i is free for x_i in $\varphi(t_1, \ldots, t_n)$ iff no variable in t_i becomes bound by the substitution

Each theory has a set of (non-logical) axioms

- Countable set of closed formulas
- Presburger arithmetic
 - $\forall x : \neg (0 = x + 1)$
 - $\forall x : \forall y : (x+1 = y+1 \to x = y)$
 - $\forall x : x + 0 = x$
 - $\ \forall x : \forall y : x + (y+1) = (x+y) + 1$
 - for every formula φ such that $x \notin \mathsf{fv}(\varphi) = \{y_1, \dots, y_k\}$ $\forall y_1 : \dots \forall y_k : ((\varphi(0) \land \forall x : (\varphi(x) \to \varphi(x+1))) \to \forall x : \varphi(x))$
- Robinson arithmetic: same as Presburger, except
 - the induction axioms are replaced by $\forall y : (y = 0 \lor \exists x : y = x + 1)$
 - $\ \forall x : x \cdot 0 = 0$
 - $\ \forall x : \forall y : x(y+1) = xy + x$
- $\bullet\,$ Peano arithmetic: same as Presburger, plus the Robinson axioms on $\cdot\,$
- Peano arithmetic with order: add $\forall x : \forall y : (x \leq y \leftrightarrow \exists z : y = x + z)$
- Real closed field
 - familiar axioms for the real numbers, excluding the completeness axiom(s)
 - $\ \forall x : (0 \le x \to \exists y : y \cdot y = x)$
 - for every single-variable polynomial P(x) of odd degree $\exists x : P(x) = 0$
- finite bit strings: every true closed formula on them
 - it is a recursive set and Gödel's completeness theorem does not need this fact

Structure and interpretation

- assume a signature $\boldsymbol{\Sigma}$ is fixed
- a structure for Σ consists of a set \mathcal{U} and the following
 - for each constant symbol $c_{\text{,}}$ an element \underline{c} of $\mathcal U$
 - for each function symbol f, a function $f: \mathcal{U} \times \ldots \times \mathcal{U} \to \mathcal{U}$ of the same arity
 - for each relation symbol R, a relation $\underline{R} \subseteq \mathcal{U} \times \ldots \times \mathcal{U}$ of the same arity
- a variable assignment assigns, to each variable x, a value $\underline{x} \in \mathcal{U}$
- $\bullet\,$ each term evaluates to an element of ${\cal U}$ as follows
 - x evaluates to \underline{x} and c evaluates to \underline{c} and $f(t_1, \ldots, t_n)$ evaluates to $\underline{f}(\underline{t_1}, \ldots, \underline{t_n})$
 - we also say that each $\underline{u} \in \mathcal{U}$ evaluates to itself
- $\bullet\,$ each formula evaluates to F or T as follows
 - F and T evaluate to themselves
 - $t_1 = t_2$ evaluates to T iff $\underline{t_1} = \underline{t_2}$
 - $R(t_1, \ldots, t_n)$ evaluates to T iff $(\underline{t_1}, \ldots, \underline{t_n}) \in \underline{R}$
 - $\neg\varphi$ evaluates to T iff φ evaluates to F
 - $\varphi \wedge \psi$ evaluates to T iff both φ and ψ do, analogously $\varphi \vee \psi$
 - $\forall x : \varphi(x)$ evaluates to T iff $\varphi(\underline{u})$ evaluates to T for every $\underline{u} \in \mathcal{U}$
 - $\exists x : \varphi(x)$ evaluates to T iff $\varphi(\underline{u})$ evaluates to T for at least one $\underline{u} \in \mathcal{U}$
- a formula holds iff it evaluates to T

Logical consequence

- assume a signature $\boldsymbol{\Sigma}$ is fixed
- let Γ be a set of closed formulas on Σ
- a structure is a model of Γ iff every $\varphi \in \Gamma$ holds on the structure
 - variable assignment does not matter, since Γ consists of closed formulas
- φ is a logical consequence of Γ iff for every model of Γ , and every variable assignment, φ holds
- this is denoted with $\Gamma\models\varphi$

Proof system

- a system that given a signature Σ and a set Γ of closed formulas on Σ , produces (not necessarily closed) formulas on Σ
- we say that the system proves the formula
- a proof system is sound iff every proven formula holds on every model of Γ
- a proof system is consistent iff it does not prove F
- a proof system is complete iff for every φ , it proves φ or $\neg \varphi$

2 Modern Version of Gödel's Completeness Theorem

Some sound proof system is fixed

- the theorem says that for every signature Σ and for every set Γ of closed formulas on Σ, the proof system proves all logical consequences of Γ
 often Σ and Γ are the signature and set of axioms of some theory
- not every sound proof system is okay for the theorem, but many are
- example
 - P1: $\{\varphi\} \models \varphi$

 - $\lor \mathsf{-E:} \ \text{ If } \Gamma \cup \{\varphi\} \models \chi \text{ and } \Gamma \cup \{\psi\} \models \chi \text{, then } \Gamma \cup \{\varphi \lor \psi\} \models \chi$

 - \forall -I: If $\Gamma \models \varphi(x)$ and x does not occur free in Γ , then $\Gamma \models \forall x : \varphi(x)$

Model existence theorem

- Henkin 1949
- if Γ does not prove F, then Γ has a model
- the completeness theorem follows easily from this

Henkin's proof, step 1

• "Hilbert's hotel" the variables so that infinitely many become unused

Henkin's proof, step 2

- go through every formula φ in some order
- add φ or $\neg\varphi$ to Γ so that consistency remains
 - for simplicity, we say "add" also for the original elements of Γ
- when adding $\exists x:\psi(x)$ to Γ , choose an unused variable y and add also $\psi(y)$ to Γ
 - -y is called a Henkin witness
 - it eventually becomes a constant value for which $\psi(y)$ holds
- when adding $\neg orall x: \psi(x)$ to Γ , choose an unused variable y and add also $\neg \psi(y)$ to Γ
- let us denote the result with Γ_ω

Henkin's proof, step 3

- $\bullet\,$ build a model whose ${\cal U}$ is the set of equivalence classes of terms
 - $[t] = \{t' \mid t = t' \in \Gamma_{\omega}\}$
 - $\mathcal{U} = \{ \llbracket t \rrbracket \mid t \text{ is a term} \}$
 - choose the \underline{c} , \underline{f} and \underline{R} as dictated by Γ_ω
- appeal to the proof system to show that it indeed is a model

3 Our Logic

How to add square root to the theory of real closed fields?

- a symbol for it is needed, so add unary $\sqrt{}$ to the signature
- to specify its behaviour when defined, add the axiom $\forall x : (0 \le x \to \sqrt{x} \cdot \sqrt{x} = x \land \sqrt{x} \ge 0)$
- need to specify when it is defined otherwise truth of, e.g., $\sqrt{-1} = 0$ is left open

In addition to the signature Σ and set Γ of closed formulas on Σ , there is a function $\lfloor \ldots \rceil$ that assigns a formula on Σ to each function symbol in Σ

- its purpose is to specify when $f(x_1,\ldots,x_n)$ is defined
- some natural choices on some intended iterpretations
 - real numbers: $\lfloor \frac{x}{y} \rfloor$ is $\neg(y=0)$
 - real numbers: $\lfloor \sqrt{x} \rceil$ is $0 \le x$
 - natural numbers: $\lfloor \sqrt{x} \rceil$ is $\exists y : y \cdot y = x$
 - bit strings: $\lfloor \operatorname{first}(x) \rfloor$ is $\neg(x = \varepsilon)$
- if f represents a total function, then it is natural to choose T as $\lfloor f \rfloor$
- $\lfloor f \rfloor$ may not use function symbols whose $\lfloor f \rceil$ is not T
 - in the examples above, the only used function symbol was \cdot

 \Rightarrow we may declare that $\lfloor f \rfloor$ is evaluated like above (i.e., in two-valued logic)

Signature, term, formula, structure and variable assignment are defined like above

To define how formulas are evaluated, we define an extension of |f| to |t|

- we say that t is defined iff $\lfloor t \rfloor$ yields T
- $\lfloor c \rfloor$ and $\lfloor x \rfloor$ are T
 - constant and variable symbols are always defined - e.g., $\begin{bmatrix} 3 \end{bmatrix}$ is T
- $\lfloor f(t_1, \ldots, t_n) \rfloor$ is $\lfloor t_1 \rfloor \land \cdots \land \lfloor t_n \rceil \land \lfloor f \rceil(t_1, \ldots, t_n)$
 - a function invocation is defined iff every argument is and the function itself is

- e.g.,
$$\left\lfloor \frac{x}{\sqrt{y}} \right\rceil$$
 is $\mathsf{T} \wedge (\mathsf{T} \wedge 0 \le y) \wedge \neg(\sqrt{y} = 0)$

 $\bullet\,$ that is, a term is undefined iff at least one of its sub-terms is

- e.g.,
$$0 \cdot (1 + \frac{x}{0})$$
 is undefined for every x

- e.g.,
$$\left\lfloor \frac{x}{\sqrt{y}} \right\rceil$$
 is undefined iff $y \le 0$

Each formula evaluates to F, U or T as follows

- $t_1 = t_2$ evaluates to U iff $\lfloor t_1 \rfloor$ or $\lfloor t_2 \rfloor$ or both yield F
 - otherwise it evaluates like in two-valued logic
- $R(t_1, \ldots, t_n)$ evaluates to U iff at least one $\lfloor t_i \rceil$ yields F
 - otherwise it evaluates like in two-valued logic
 - so $R(t_1,\ldots,t_n)$ is undefined iff at least one t_i is undefined
- $\neg \varphi, \ \varphi \land \psi$, and $\varphi \lor \psi$ evaluate as Kleene and Łukasiewicz defined

_		_	\wedge	FUT	\lor	FUT
F	Т		F	FFF	F	FUT
U	U		U	FUU	U	UUT
Т	F		Т	FUT	Т	ТТТ

- $\forall x: \varphi(x)$ yields
 - T, iff $\varphi(x)$ yields T for every x
 - F, iff $\varphi(x)$ yields F for at least one x
 - U, otherwise
- $\exists x : \varphi(x) \text{ yields } \dots$
- where the definition overlaps two-valued logic, it yields the same result

We define an extension of $\lfloor f \rfloor$ and $\lfloor t \rceil$ to $\lfloor \varphi \rceil$ so that $\lfloor \varphi \rceil$ yields F iff φ yields U

• a relation invocation is defined iff every argument is

$$\lfloor t = t' \rfloor$$
 is $\lfloor t \rceil \land \lfloor t' \rceil$
 $\lfloor R(t_1, \dots, t_n) \rceil$ is $\lfloor t_1 \rceil \land \dots \land \lfloor t_n \rceil$

• propositional rules

$$- [F] \text{ is } T \qquad \text{and } [U] \text{ would be } F \\ - [\neg \varphi] \text{ is } [\varphi] \qquad \neg U \text{ is } U, \text{ but } \neg T \text{ and } \neg F \text{ are not}$$

- $\begin{array}{l} \left[\varphi \land \psi\right] \text{ is } \left(\left[\varphi\right] \land \left[\psi\right]\right) \lor \left(\left[\varphi\right] \land \neg\varphi\right) \lor \left(\left[\psi\right] \land \neg\psi\right) \\ \left[\varphi \lor \psi\right] \text{ is } \left(\left[\varphi\right] \land \left[\psi\right]\right) \lor \left(\left[\varphi\right] \land\varphi\right) \lor \left(\left[\psi\right] \land\psi\right) \end{array} \right)$
- quantifier rules

$$- \left[\forall x : \varphi(x) \right] \text{ is } \left(\forall x : \left[\varphi(x) \right] \right) \lor \exists x : \left[\varphi(x) \right] \land \neg \varphi(x) \\ - \left[\exists x : \varphi(x) \right] \text{ is } \left(\forall x : \left[\varphi(x) \right] \right) \lor \exists x : \left[\varphi(x) \right] \land \varphi(x) \\ \end{vmatrix}$$

$$- \left[\exists x : \varphi(x) \right| \text{ is } \left(\forall x : \left[\varphi(x) \right] \right) \lor \exists x : \left[\varphi(x) \right] \land \varphi(x)$$

Theorem On any interpretation and assignment to variables, φ yields U if and only if $\lfloor \varphi \rfloor$ yields F.

What are we doing?

- the $\left| f \right|$ come from the user, similarly to Σ and Γ
- the $\lfloor t \rfloor$ and $\lfloor \varphi \rceil$ are obtained algorithmically \Rightarrow they can be used in a proof system without sacrificing effectiveness
- the $\lfloor t \rfloor$ and $\lfloor \varphi \rfloor$ reduce dealing with undefined terms and U to two-valued logic
- $\lfloor \cdots \rceil$ is not an operator in the logic, but in meta-language

- e.g.,
$$\lfloor \frac{x}{y} \rfloor$$
 in an axiom: $\forall x : \forall y : \neg(\neg(y=0)) \lor \frac{x}{y} \cdot y = x$

- e.g.,
$$\lfloor \frac{x}{y} \rfloor$$
 in a proof rule: $\{\neg(x=0)\} \vdash \frac{x+1}{x} = \frac{x+1}{x}$

Logical consequence may now be defined like above

Our theorem says that for every signature Σ , for every $\lfloor f \rfloor$ on Σ , and for every set Γ of closed formulas on Σ , the proof system proves all logical consequences of Γ

• we will soon present our proof system

Kleene defined that a propositional formula is regular iff either $\varphi(\ldots, U, \ldots)$ yields U or $\varphi(\ldots, P, \ldots)$ does not depend on P

 \Rightarrow cannot express "P yields U"

- the notion extends naturally to predicate logic
- we exploit later the fact that our predicate logic is regular (not important)

 φ

 $\mathcal{U}^n \xrightarrow{\varphi} \{\mathsf{F}, \mathsf{U}, \mathsf{T}\} \xrightarrow{\chi} \{\mathsf{F}, \mathsf{T}\}$

3 Our Logic

4 Sound and Complete Proof System

Notation

- φ , ψ , χ are formulas
- Γ , Δ are sets of formulas
- x, x_i , y are variable symbols
- t, t_i , t'_i are terms

Rules about reasoning in general:

```
P1: \{\varphi\} \models \varphi
```

- **P2:** If $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$
- **P3:** If $\Gamma \models \varphi$ and $\Gamma \cup \{\varphi\} \models \psi$, then $\Gamma \models \psi$

The Law of the Excluded Fourth and the concept of contradiction:

 C1: $\emptyset \models \varphi \lor \neg \varphi \lor \neg [\varphi]$ (this replaces the Law of Excluded Middle)

 C2: {F} \models \varphi
 $f \models \varphi$

 C3: { φ , $\neg \varphi$ } \models F
 $f \Rightarrow \varphi$

If a formula is true, then it is also defined:

D1: $\{\varphi\} \vdash \lfloor \varphi \rceil$ (this does not exist in classical logic)

For instance

• D1: $\left\{\frac{\sqrt{x}}{x-1} > 0\right\} \mid -x \ge 0 \land \neg(x-1=0)$

• C1:
$$\emptyset \vdash \frac{\sqrt{x}}{x-1} > 0 \lor \neg \left(\frac{\sqrt{x}}{x-1} > 0\right) \lor \neg (x \ge 0 \land \neg (x-1=0))$$

If the system is not contradictory

- that is, if $\Gamma \not\vdash \mathsf{F}$
- please recall that $\lfloor \neg \varphi \rceil$ is $\lfloor \varphi \rceil$
- \Rightarrow C1 and D1 make precisely one of φ , $\neg \varphi$, and $\neg \lfloor \varphi \rceil$ hold
- \Rightarrow each claim yields precisely one of T, F, and U for each assignment to variables

Rules for conjunction and disjunction:

```
\wedge-I: \{\varphi,\psi\} \models \varphi \land \psi
```

```
\wedge-E1: \{\varphi \land \psi\} \models \varphi
```

```
\wedge-E2: \{\varphi \land \psi\} \models \psi
```

```
\lor-\mathbf{l1:} \ \{\varphi\} \models \varphi \lor \psi
```

```
\lor-l2: \{\psi\} \models \varphi \lor \psi
```

```
\lor \text{-E: If } \Gamma \cup \{\varphi\} \models \chi \text{ and } \Gamma \cup \{\psi\} \models \chi \text{, then } \Gamma \cup \{\varphi \lor \psi\} \models \chi
```

Rules of equality:

=-1: $\{\lfloor t \rceil\} \vdash t = t$ =-2: If f is an n-ary function symbol and $1 \le i \le n$, then $\{t_i = t'_i, \lfloor f(t_1, \dots, t_n) \rceil\} \vdash f(t_1, \dots, t_n) = f(t_1, \dots, t_{i-1}, t'_i, t_{i+1}, \dots, t_n)$ =-3: If $\varphi(x_1, \dots, x_n)$ is a formula, $1 \le i \le n$ and t_i and t'_i are free for x_i in φ , then $\{t_i = t'_i, \varphi(t_1, \dots, t_n)\} \vdash \varphi(t_1, \dots, t_{i-1}, t'_i, t_{i+1}, \dots, t_n)$

For instance

• =-1:
$$\left\{x \ge 0 \land \neg (x - 1 = 0)\right\} \vdash \frac{\sqrt{x}}{x - 1} = \frac{\sqrt{x}}{x - 1}$$

• =-2: $\left\{x = z + 1, \ x \ge 0 \land \neg (x - 1 = 0)\right\} \vdash \frac{\sqrt{x}}{x - 1} = \frac{\sqrt{x}}{z + 1 - 1}$

Comments

- =-1 and =-2 were tailored to not prove an undefined term equivalent to something
- by definition, $\lfloor f(t_1, \ldots, t_n) \rfloor$ yields $\lfloor t_1 \rfloor, \ldots, \lfloor t_n \rfloor$
- by D1, $t_i = t'_i$ implies $\lfloor t_i = t'_i \rfloor$, which is $\lfloor t_i \rceil \land \lfloor t'_i \rceil$, so $\lfloor t'_i \rceil$
- \bullet =-3 need only be assumed for relations, but proving that is too long and dull

Rules for quantifiers:

 \forall -E: If t is free for x in φ , then $\{\lfloor t \rceil, \forall x : \varphi(x)\} \models \varphi(t)$

 \forall -I: If $\Gamma \models \varphi(x)$ and x does not occur free in Γ , then $\Gamma \models \forall x : \varphi(x)$

 \exists -I: If t is free for x in φ , then $\{\varphi(t)\} \models \exists x : \varphi(x)$

 $\exists \text{-E: If } \Gamma \cup \{\varphi(y)\} \models \psi \text{ and } y \text{ does not occur in } \Gamma, \exists x : \varphi(x), \text{ nor in } \psi, \\ \text{then } \Gamma \cup \{\exists x : \varphi(x)\} \models \psi$

Comments

- $\bullet~\forall\text{-}\mathsf{E}$ was tailored to not prove anything about undefined terms
- variable symbols are never undefined, so \forall -I and \exists -E need not be tailored
- \exists -I need not be $\{\varphi(t), \lfloor t \rceil\} \models \exists x : \varphi(x)$
 - if t is undefined but $\varphi(t)$ is not, then by regularity $\forall x : \varphi(x)$ holds

Only 5 differences from two-valued logic!

5 Completeness Proof

We use Henkin's strategy: prove that every consistent theory has a model

 $\Rightarrow \text{ if } \Gamma \not\vdash \varphi \text{, then } \Gamma \cup \{\neg \varphi\} \text{ has a model, so } \varphi \text{ is not a semantic consequence of } \Gamma$

 \bullet therefore, we assume from now on $\Gamma \not \vdash \mathbf{F}$

Lemma There is Γ' such that

- $\Gamma' \not\vdash \mathsf{F}$
- both or neither of Γ and Γ' have a model
- infinitely many variable symbols are unused in Γ'
- for every bound x in Γ' there is an x' such that its only occurrence in Γ' is x = x'

Proof Replace each v_i in Γ by v_{3i} and add the $v_{3i} = v_{3i-1}$.

Choose true formulas, introduce witnesses

- let $\Gamma_0 := \Gamma'$
- for every formula φ_i , construct Γ_i by applying the first that matches

if	$arphi_i$ form	$\Gamma_i := \Gamma_{i-1} \cup$
$\Gamma_{i-1} \cup \{ \lfloor \varphi_i \rceil \} \models F$		$\{\neg \lfloor \varphi_i \rceil\}$
$\Gamma_{i-1} \cup \{\varphi_i\} \not\vdash F$	is $\exists x:\psi(x)$	$\{arphi_i,\ \psi(y)\}$
$\Gamma_{i-1} \cup \{\neg \varphi_i\} \not\vdash F$	is $orall x:\psi(x)$	$\{\neg \varphi_i, \neg \psi(y)\}$
$\Gamma_{i-1} \cup \{\varphi_i\} \not\vdash F$	not $\exists x:\psi(x)$	$\{arphi_i\}$
$\Gamma_{i-1} \cup \{\neg \varphi_i\} \not\vdash F$	not $orall x:\psi(x)$	$\{\neg \varphi_i\}$

• let $\Gamma_{\omega} := \Gamma_0 \cup \Gamma_1 \cup \cdots$

Lemma

- $\Gamma' = \Gamma_0 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma_\omega$
- $\Gamma_{\omega} \not\vdash \mathsf{F}$
- for each φ , precisely one of φ , $\neg \varphi$ and $\neg \lfloor \varphi \rfloor$ is in Γ_{ω}
- for each φ , precisely one of $\lfloor \varphi \rfloor$ and $\neg \lfloor \varphi \rceil$ is in Γ_{ω}
- for each t, precisely one of $\lfloor t \rfloor$ and $\neg \lfloor t \rfloor$ is in Γ_{ω}
- $\Gamma_{\omega} \models \varphi$ if and only if $\varphi \in \Gamma_{\omega}$

Theorem Γ_{ω} has a model

Proof

- elements of the universe are
 - equivalence classes of terms for which $|t| \in \Gamma_{\omega}$, induced by the t = t' in Γ_{ω}
 - a single element for the remaining terms
- nothing depends on the choice of the representative of each equivalence class
 - where necessary, use v_{3i-1} to make terms free for x

$$\begin{array}{c|c} \in \Gamma_{\omega} & \varphi & \neg \varphi & \neg \lfloor \varphi \end{bmatrix} \\ \text{truth value of } \varphi & \mathsf{T} & \mathsf{F} & \mathsf{U} \end{array}$$

- some routine arguments
- lots of dull reasoning using the proof system

Corollary Both Γ' and Γ have a model

6 Extension to Łukasiewicz Logic

Łukasiewicz: U $\xrightarrow{\scriptscriptstyle \mathrm{L}}$ U yields T and U $\xleftarrow{\scriptscriptstyle \mathrm{L}}$ U yields T

- that P yields U can be expressed as $(P \xrightarrow{\mathbf{L}} \neg P) \land (\neg P \xrightarrow{\mathbf{L}} P)$
- all truth functions ${\mathsf{F}},{\mathsf{U}},{\mathsf{T}}{\mathsf{F}}^n \to {\mathsf{F}},{\mathsf{U}},{\mathsf{T}}{\mathsf{F}}$ can be expressed

This reduces to the earlier case by replacing each

 $\varphi \xrightarrow{\mathbf{L}} \psi$

by

 $\neg \varphi \lor \psi \lor \neg (\left\lfloor \varphi \right\rceil \lor \left\lfloor \psi \right\rceil)$

21/22

7 Conclusions

Key ideas

- $\frac{1}{0}$, etc., are not treated as values
 - variables are never undefined, terms may be
 - $\frac{1}{0}=\frac{1}{0},\ \frac{1}{0}\neq\frac{1}{0},$ and $\frac{1}{0}>\frac{1}{0}$ yield U
- the intuitive notion "is defined" is encoded as mechanical rules
 - "is defined" is itself always defined
- for each φ , the model contains precisely one of φ , $\neg \varphi$ and $\neg \lfloor \varphi \rfloor$
 - correspondingly φ yields T, F or U

Many practical reasoning laws have been developed

- were a topic of another talk
- regularity simplifies things

Thank you for attention! Questions?