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1 Background Concepts

Signature

• countable sets of constant, function and relation symbols other than =

• arities for the latter two

• examples (arities shown as subscripts)

– Presburger arithmetic: {0, 1} {+2} ∅
– Robinson arithmetic: {0, 1} {+2, ·2} ∅
– Peano arithmetic: the same as Robinson arithmetic

– Peano arithmetic with order: the same as Real closed field

– Real closed field: {0, 1} {+2, ·2} {≤2}
– finite bit strings: {ε} {01, 11} ∅

Countably infinite set of variable symbols x, y, x1, . . .

Term

• variable symbol

• constant symbol

• f(t1, . . . , tn), where f is a function symbol of arity n and the ti are terms
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Formula

• F, T we will need these for technical reasons

• t1 = t2, where t1 and t2 are terms

• R(t1, . . . , tn), where R is a relation symbol of arity n and the ti are terms

• ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∀x : ϕ, ∃x : ϕ, where ϕ and ψ are formulas

• ¬ has highest precedence, then ∧, ∨, and quantifiers

We will often use familiar human-friendly shorthands

• e.g., 2x+ 5 for +(·(2, x), 5)
• e.g., x ≤ 5 for ≤(x, 5)

• e.g., ϕ→ ψ for ¬ϕ ∨ ψ and ϕ↔ ψ for (ψ ∧ ϕ) ∨ ¬(ψ ∨ ϕ)
• e.g., additional ( ) for clarity

An occurrence of x is bound iff within a sub-formula ∀x : . . . or ∃x : . . ., otherwise free

• we denote the set of variables that occur free in formula ϕ with fv(ϕ)

• ϕ is closed iff fv(ϕ) = ∅
For the purpose of substituting terms for variables, we may write ϕ(x1, . . . , xn)

• ϕ(t1, . . . , tn) denotes that every free occurrence of each xi is replaced by ti
• ti is free for xi in ϕ(t1, . . . , tn) iff no variable in ti becomes bound by the substitution
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Each theory has a set of (non-logical) axioms

• Countable set of closed formulas

• Presburger arithmetic
– ∀x : ¬(0 = x+ 1)
– ∀x : ∀y : (x+ 1 = y + 1 → x = y)
– ∀x : x+ 0 = x
– ∀x : ∀y : x+ (y + 1) = (x+ y) + 1
– for every formula ϕ such that x /∈ fv(ϕ) = {y1, . . . , yk}

∀y1 : · · · ∀yk :
( (

ϕ(0) ∧ ∀x : (ϕ(x) → ϕ(x+ 1))
)

→ ∀x : ϕ(x)
)

• Robinson arithmetic: same as Presburger, except
– the induction axioms are replaced by ∀y : (y = 0 ∨ ∃x : y = x+ 1)
– ∀x : x · 0 = 0
– ∀x : ∀y : x(y + 1) = xy + x

• Peano arithmetic: same as Presburger, plus the Robinson axioms on ·
• Peano arithmetic with order: add ∀x : ∀y : (x ≤ y ↔ ∃z : y = x+ z)

• Real closed field
– familiar axioms for the real numbers, excluding the completeness axiom(s)
– ∀x : (0 ≤ x→ ∃y : y · y = x)
– for every single-variable polynomial P (x) of odd degree ∃x : P (x) = 0

• finite bit strings: every true closed formula on them
– it is a recursive set and Gödel’s completeness theorem does not need this fact
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Structure and interpretation

• assume a signature Σ is fixed

• a structure for Σ consists of a set U and the following

– for each constant symbol c, an element c of U
– for each function symbol f , a function f : U × . . .× U → U of the same arity

– for each relation symbol R, a relation R ⊆ U × . . .× U of the same arity

• a variable assignment assigns, to each variable x, a value x ∈ U
• each term evaluates to an element of U as follows

– x evaluates to x and c evaluates to c and f(t1, . . . , tn) evaluates to f(t1, . . . , tn)

– we also say that each u ∈ U evaluates to itself

• each formula evaluates to F or T as follows

– F and T evaluate to themselves

– t1 = t2 evaluates to T iff t1 = t2
– R(t1, . . . , tn) evaluates to T iff (t1, . . . , tn) ∈ R

– ¬ϕ evaluates to T iff ϕ evaluates to F

– ϕ ∧ ψ evaluates to T iff both ϕ and ψ do, analogously ϕ ∨ ψ
– ∀x : ϕ(x) evaluates to T iff ϕ(u) evaluates to T for every u ∈ U
– ∃x : ϕ(x) evaluates to T iff ϕ(u) evaluates to T for at least one u ∈ U

• a formula holds iff it evaluates to T
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Logical consequence

• assume a signature Σ is fixed

• let Γ be a set of closed formulas on Σ

• a structure is a model of Γ iff every ϕ ∈ Γ holds on the structure
– variable assignment does not matter, since Γ consists of closed formulas

• ϕ is a logical consequence of Γ iff for every model
of Γ, and every variable assignment, ϕ holds

• this is denoted with Γ |= ϕ

Proof system

• a system that given a signature Σ and a set Γ of closed formulas
on Σ, produces (not necessarily closed) formulas on Σ

• we say that the system proves the formula

• a proof system is sound iff every proven formula holds on every model of Γ

• a proof system is consistent iff it does not prove F

• a proof system is complete iff for every ϕ, it proves ϕ or ¬ϕ
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2 Modern Version of Gödel’s Completeness Theorem

Some sound proof system is fixed

• the theorem says that for every signature Σ and for every set Γ of closed
formulas on Σ, the proof system proves all logical consequences of Γ
– often Σ and Γ are the signature and set of axioms of some theory

• not every sound proof system is okay for the theorem, but many are

• example
– P1: {ϕ} |− ϕ
– · · ·
– ∨-E: If Γ ∪ {ϕ} |− χ and Γ ∪ {ψ} |− χ, then Γ ∪ {ϕ ∨ ψ} |− χ
– · · ·
– ∀-I: If Γ |− ϕ(x) and x does not occur free in Γ, then Γ |− ∀x : ϕ(x)

Model existence theorem

• Henkin 1949

• if Γ does not prove F, then Γ has a model

• the completeness theorem follows easily from this
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Henkin’s proof, step 1

• “Hilbert’s hotel” the variables so that infinitely many become unused

Henkin’s proof, step 2

• go through every formula ϕ in some order

• add ϕ or ¬ϕ to Γ so that consistency remains
– for simplicity, we say “add” also for the original elements of Γ

• when adding ∃x : ψ(x) to Γ, choose an unused variable y and add also ψ(y) to Γ
– y is called a Henkin witness
– it eventually becomes a constant value for which ψ(y) holds

• when adding ¬∀x : ψ(x) to Γ, choose an unused variable y and add also ¬ψ(y) to Γ

• let us denote the result with Γω

Henkin’s proof, step 3

• build a model whose U is the set of equivalence classes of terms

– [[t]] = {t′ | t = t′ ∈ Γω}
– U = {[[t]] | t is a term}
– choose the c, f and R as dictated by Γω

• appeal to the proof system to show that it indeed is a model
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3 Our Logic

How to add square root to the theory of real closed fields?

• a symbol for it is needed, so add unary
√

to the signature

• to specify its behaviour when defined, add the axiom
∀x : (0 ≤ x→ √

x · √x = x ∧√
x ≥ 0)

• need to specify when it is defined otherwise truth of, e.g.,
√
−1 = 0 is left open

In addition to the signature Σ and set Γ of closed formulas on Σ, there is a
function

⌊

. . .
⌉

that assigns a formula on Σ to each function symbol in Σ

• its purpose is to specify when f(x1, . . . , xn) is defined

• some natural choices on some intended iterpretations

– real numbers:
⌊

x
y

⌉

is ¬(y = 0)

– real numbers:
⌊√
x
⌉

is 0 ≤ x

– natural numbers:
⌊√

x
⌉

is ∃y : y · y = x

– bit strings:
⌊

first(x)
⌉

is ¬(x = ε)

• if f represents a total function, then it is natural to choose T as
⌊

f
⌉

•
⌊

f
⌉

may not use function symbols whose
⌊

f
⌉

is not T

– in the examples above, the only used function symbol was ·
⇒ we may declare that

⌊

f
⌉

is evaluated like above (i.e., in two-valued logic)
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Signature, term, formula, structure and variable assignment are defined like above

To define how formulas are evaluated, we define an extension of
⌊

f
⌉

to
⌊

t
⌉

• we say that t is defined iff
⌊

t
⌉

yields T

•
⌊

c
⌉

and
⌊

x
⌉

are T
– constant and variable symbols are always defined
– e.g.,

⌊

3
⌉

is T

•
⌊

f(t1, . . . , tn)
⌉

is
⌊

t1
⌉

∧ · · · ∧
⌊

tn
⌉

∧
⌊

f
⌉

(t1, . . . , tn)
– a function invocation is defined iff every argument is and the function itself is

– e.g.,
⌊ x√

y

⌉

is T ∧ (T ∧ 0 ≤ y) ∧ ¬(√y = 0)

• that is, a term is undefined iff at least one of its sub-terms is

– e.g., 0 · (1 + x

0
) is undefined for every x

– e.g.,
⌊ x√

y

⌉

is undefined iff y ≤ 0
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Each formula evaluates to F, U or T as follows

• t1 = t2 evaluates to U iff
⌊

t1
⌉

or
⌊

t2
⌉

or both yield F

– otherwise it evaluates like in two-valued logic

• R(t1, . . . , tn) evaluates to U iff at least one
⌊

ti
⌉

yields F

– otherwise it evaluates like in two-valued logic

– so R(t1, . . . , tn) is undefined iff at least one ti is undefined

• ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ evaluate as Kleene and  Lukasiewicz defined

¬
F T

U U

T F

∧ F U T

F F F F

U F U U

T F U T

∨ F U T

F F U T

U U U T

T T T T

• ∀x : ϕ(x) yields

– T, iff ϕ(x) yields T for every x

– F, iff ϕ(x) yields F for at least one x

– U, otherwise

• ∃x : ϕ(x) yields . . .

• where the definition overlaps two-valued logic, it yields the same result
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We define an extension of
⌊

f
⌉

and
⌊

t
⌉

to
⌊

ϕ
⌉

so that
⌊

ϕ
⌉

yields F iff ϕ yields U

• a relation invocation is defined iff every argument is
⌊

t = t′
⌉

is
⌊

t
⌉

∧
⌊

t′
⌉

⌊

R(t1, . . . , tn)
⌉

is
⌊

t1
⌉

∧ · · · ∧
⌊

tn
⌉

• propositional rules

–
⌊

F
⌉

is
⌊

T
⌉

is T and
⌊

U
⌉

would be F

–
⌊

¬ϕ
⌉

is
⌊

ϕ
⌉

¬U is U, but ¬T and ¬F are not

–
⌊

ϕ ∧ ψ
⌉

is (
⌊

ϕ
⌉

∧
⌊

ψ
⌉

) ∨ (
⌊

ϕ
⌉

∧ ¬ϕ) ∨ (
⌊

ψ
⌉

∧ ¬ψ)
–

⌊

ϕ ∨ ψ
⌉

is (
⌊

ϕ
⌉

∧
⌊

ψ
⌉

) ∨ (
⌊

ϕ
⌉

∧ ϕ) ∨ (
⌊

ψ
⌉

∧ ψ)
• quantifier rules

–
⌊

∀x : ϕ(x)
⌉

is (∀x :
⌊

ϕ(x)
⌉

) ∨ ∃x :
⌊

ϕ(x)
⌉

∧ ¬ϕ(x)
–

⌊

∃x : ϕ(x)
⌉

is (∀x :
⌊

ϕ(x)
⌉

) ∨ ∃x :
⌊

ϕ(x)
⌉

∧ ϕ(x)

Theorem On any interpretation and assignment to
variables, ϕ yields U if and only if

⌊

ϕ
⌉

yields F.
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What are we doing?

• the
⌊

f
⌉

come from the user, similarly to Σ and Γ

• the
⌊

t
⌉

and
⌊

ϕ
⌉

are obtained algorithmically
⇒ they can be used in a proof system without sacrificing effectiveness

• the
⌊

t
⌉

and
⌊

ϕ
⌉

reduce dealing with undefined terms and U to two-valued logic

•
⌊

· · ·
⌉

is not an operator in the logic, but in meta-language

– e.g.,
⌊

x
y

⌉

in an axiom: ∀x : ∀y : ¬(¬(y = 0)) ∨ x

y
· y = x

– e.g.,
⌊

x
y

⌉

in a proof rule: {¬(x = 0)} |− x+ 1

x
=
x+ 1

x
Logical consequence may now be defined like above

Our theorem says that for every signature Σ, for every
⌊

f
⌉

on Σ, and for every set
Γ of closed formulas on Σ, the proof system proves all logical consequences of Γ

• we will soon present our proof system

Kleene defined that a propositional formula is regular iff either
ϕ(. . . ,U, . . .) yields U or ϕ(. . . , P, . . .) does not depend on P

⇒ cannot express “P yields U”

• the notion extends naturally to predicate logic

⌊

ϕ
⌉

Un
ϕ {F,U,T} χ {F,T}

• we exploit later the fact that our predicate logic is regular (not important)
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4 Sound and Complete Proof System

Notation

• ϕ, ψ, χ are formulas

• Γ, ∆ are sets of formulas

• x, xi, y are variable symbols

• t, ti, t
′

i are terms

Rules about reasoning in general:

P1: {ϕ} |− ϕ

P2: If Γ |− ϕ then Γ ∪∆ |− ϕ

P3: If Γ |− ϕ and Γ ∪ {ϕ} |− ψ, then Γ |− ψ
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The Law of the Excluded Fourth and the concept of contradiction:

C1: ∅ |− ϕ ∨ ¬ϕ ∨ ¬
⌊

ϕ
⌉

(this replaces the Law of Excluded Middle)

C2: {F} |− ϕ

C3: {ϕ, ¬ϕ} |− F
or {ϕ, ¬ϕ} |− ψ

If a formula is true, then it is also defined:

D1: {ϕ} |−
⌊

ϕ
⌉

(this does not exist in classical logic)

For instance

• D1:
{

√
x

x− 1
> 0

}

|− x ≥ 0 ∧ ¬(x− 1 = 0)

• C1: ∅ |−
√
x

x− 1
> 0 ∨ ¬

(

√
x

x− 1
> 0

)

∨ ¬(x ≥ 0 ∧ ¬(x− 1 = 0))

If the system is not contradictory

• that is, if Γ 6|− F

• please recall that
⌊

¬ϕ
⌉

is
⌊

ϕ
⌉

⇒ C1 and D1 make precisely one of ϕ, ¬ϕ, and ¬
⌊

ϕ
⌉

hold

⇒ each claim yields precisely one of T, F, and U for each assignment to variables
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Rules for conjunction and disjunction:

∧-I: {ϕ, ψ} |− ϕ ∧ ψ

∧-E1: {ϕ ∧ ψ} |− ϕ

∧-E2: {ϕ ∧ ψ} |− ψ

∨-I1: {ϕ} |− ϕ ∨ ψ

∨-I2: {ψ} |− ϕ ∨ ψ

∨-E: If Γ ∪ {ϕ} |− χ and Γ ∪ {ψ} |− χ, then Γ ∪ {ϕ ∨ ψ} |− χ
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Rules of equality:

=-1: {
⌊

t
⌉

} |− t = t

=-2: If f is an n-ary function symbol and 1 ≤ i ≤ n, then

{ti = t′i,
⌊

f(t1, . . . , tn)
⌉

} |− f(t1, . . . , tn) = f(t1, . . . , ti−1, t
′

i, ti+1, . . . , tn)

=-3: If ϕ(x1, . . . , xn) is a formula, 1 ≤ i ≤ n and ti and t′i are free for xi in ϕ, then

{ti = t′i, ϕ(t1, . . . , tn)} |− ϕ(t1, . . . , ti−1, t
′

i, ti+1, . . . , tn)

For instance

• =-1:
{

x ≥ 0 ∧ ¬(x− 1 = 0)
}

|−
√
x

x− 1
=

√
x

x− 1

• =-2:
{

x = z + 1, x ≥ 0 ∧ ¬(x− 1 = 0)
}

|−
√
x

x− 1
=

√
x

z + 1− 1

Comments

• =-1 and =-2 were tailored to not prove an undefined term equivalent to something

• by definition,
⌊

f(t1, . . . , tn)
⌉

yields
⌊

t1
⌉

, . . . ,
⌊

tn
⌉

• by D1, ti = t′i implies
⌊

ti = t′i
⌉

, which is
⌊

ti
⌉

∧
⌊

t′i
⌉

, so
⌊

t′i
⌉

• =-3 need only be assumed for relations, but proving that is too long and dull
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Rules for quantifiers:

∀-E: If t is free for x in ϕ, then {
⌊

t
⌉

, ∀x : ϕ(x)} |− ϕ(t)

∀-I: If Γ |− ϕ(x) and x does not occur free in Γ, then Γ |− ∀x : ϕ(x)

∃-I: If t is free for x in ϕ, then {ϕ(t)} |− ∃x : ϕ(x)

∃-E: If Γ ∪ {ϕ(y)} |− ψ and y does not occur in Γ, ∃x : ϕ(x), nor in ψ,

then Γ ∪ {∃x : ϕ(x)} |− ψ

Comments

• ∀-E was tailored to not prove anything about undefined terms

• variable symbols are never undefined, so ∀-I and ∃-E need not be tailored

• ∃-I need not be {ϕ(t),
⌊

t
⌉

} |− ∃x : ϕ(x)
– if t is undefined but ϕ(t) is not, then by regularity ∀x : ϕ(x) holds

Only 5 differences from two-valued logic!
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5 Completeness Proof

We use Henkin’s strategy: prove that every consistent theory has a model

⇒ if Γ 6|− ϕ, then Γ ∪ {¬ϕ} has a model, so ϕ is not a semantic consequence of Γ

• therefore, we assume from now on Γ 6|− F

Lemma There is Γ′ such that

• Γ′ 6|− F

• both or neither of Γ and Γ′ have a model

• infinitely many variable symbols are unused in Γ′

• for every bound x in Γ′ there is an x′ such that its only occurrence in Γ′ is x = x′

Proof Replace each vi in Γ by v3i and add the v3i = v3i−1. ✷
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Choose true formulas, introduce witnesses

• let Γ0 := Γ′

• for every formula ϕi, construct Γi by applying the first that matches

if ϕi form Γi := Γi−1 ∪
Γi−1 ∪ {

⌊

ϕi

⌉

} |− F {¬
⌊

ϕi

⌉

}
Γi−1 ∪ {ϕi} 6|− F is ∃x : ψ(x) {ϕi, ψ(y)}
Γi−1 ∪ {¬ϕi} 6|− F is ∀x : ψ(x) {¬ϕi,¬ψ(y)}
Γi−1 ∪ {ϕi} 6|− F not ∃x : ψ(x) {ϕi}
Γi−1 ∪ {¬ϕi} 6|− F not ∀x : ψ(x) {¬ϕi}

• let Γω := Γ0 ∪ Γ1 ∪ · · ·
Lemma

• Γ′ = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γω

• Γω 6|− F

• for each ϕ, precisely one of ϕ, ¬ϕ and ¬
⌊

ϕ
⌉

is in Γω

• for each ϕ, precisely one of
⌊

ϕ
⌉

and ¬
⌊

ϕ
⌉

is in Γω

• for each t, precisely one of
⌊

t
⌉

and ¬
⌊

t
⌉

is in Γω

• Γω |− ϕ if and only if ϕ ∈ Γω
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Theorem Γω has a model

Proof

• elements of the universe are
– equivalence classes of terms for which

⌊

t
⌉

∈ Γω, induced by the t = t′ in Γω

– a single element for the remaining terms

• nothing depends on the choice of the representative of each equivalence class
– where necessary, use v3i−1 to make terms free for x

∈ Γω ϕ ¬ϕ ¬
⌊

ϕ
⌉

truth value of ϕ T F U

• some routine arguments

• lots of dull reasoning using the proof system ✷

Corollary Both Γ′ and Γ have a model

AV A Completeness Theorem for Ternary . . . 2020-10-09 5 Completeness Proof 20/22



6 Extension to  Lukasiewicz Logic

 Lukasiewicz: U  L→ U yields T and U  L↔ U yields T

• that P yields U can be expressed as (P  L→ ¬P ) ∧ (¬P  L→ P )

• all truth functions {F,U,T}n → {F,U,T} can be expressed

This reduces to the earlier case by replacing each

ϕ  L→ ψ

by

¬ϕ ∨ ψ ∨ ¬(
⌊

ϕ
⌉

∨
⌊

ψ
⌉

)
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7 Conclusions

Key ideas

• 1

0
, etc., are not treated as values

– variables are never undefined, terms may be

– 1

0
= 1

0
, 1

0
6= 1

0
, and 1

0
> 1

0
yield U

• the intuitive notion “is defined” is encoded as mechanical rules
– “is defined” is itself always defined

• for each ϕ, the model contains precisely one of ϕ, ¬ϕ and ¬
⌊

ϕ
⌉

– correspondingly ϕ yields T, F or U

Many practical reasoning laws have been developed

• were a topic of another talk

• regularity simplifies things

Thank you for attention! Questions?
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