A Completeness Theorem for Ternary First-Order Logic

Antti Valmari
University of Jyväskylä

1 Background Concepts
2 Modern Version of Gödel's Completeness Theorem
3 Our Logic
4 Sound and Complete Proof System
5 Completeness Proof
6 Extension to Łukasiewicz Logic
7 Conclusions

1 Background Concepts

Signature

- countable sets of constant, function and relation symbols other than $=$
- arities for the latter two
- examples (arities shown as subscripts)
- Presburger arithmetic: $\{0,1\}\{+2\} \emptyset$
- Robinson arithmetic: $\{0,1\}\{+2, \cdot 2\} \emptyset$
- Peano arithmetic: the same as Robinson arithmetic
- Peano arithmetic with order: the same as Real closed field
- Real closed field: $\{0,1\} \quad\left\{+{ }_{2}, \cdot{ }_{2}\right\} \quad\left\{\leq_{2}\right\}$
- finite bit strings: $\{\varepsilon\}\left\{0_{1}, 1_{1}\right\} \emptyset$

Countably infinite set of variable symbols x, y, x_{1}, \ldots
Term

- variable symbol
- constant symbol
- $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function symbol of arity n and the t_{i} are terms

Formula

- F, T
- $t_{1}=t_{2}$, where t_{1} and t_{2} are terms
- $R\left(t_{1}, \ldots, t_{n}\right)$, where R is a relation symbol of arity n and the t_{i} are terms
- $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \forall x: \varphi, \exists x: \varphi$, where φ and ψ are formulas
- \neg has highest precedence, then \wedge, \vee, and quantifiers

We will often use familiar human-friendly shorthands

- e.g., $2 x+5$ for $+(\cdot(2, x), 5)$
- e.g., $x \leq 5$ for $\leq(x, 5)$
- e.g., $\varphi \rightarrow \psi$ for $\neg \varphi \vee \psi$ and $\varphi \leftrightarrow \psi$ for $(\psi \wedge \varphi) \vee \neg(\psi \vee \varphi)$
- e.g., additional () for clarity

An occurrence of x is bound iff within a sub-formula $\forall x: \ldots$ or $\exists x: \ldots$, otherwise free

- we denote the set of variables that occur free in formula φ with $\operatorname{fv}(\varphi)$
- φ is closed iff $\mathrm{fv}(\varphi)=\emptyset$

For the purpose of substituting terms for variables, we may write $\varphi\left(x_{1}, \ldots, x_{n}\right)$

- $\varphi\left(t_{1}, \ldots, t_{n}\right)$ denotes that every free occurrence of each x_{i} is replaced by t_{i}
- t_{i} is free for x_{i} in $\varphi\left(t_{1}, \ldots, t_{n}\right)$ iff no variable in t_{i} becomes bound by the substitution

Each theory has a set of (non-logical) axioms

- Countable set of closed formulas
- Presburger arithmetic
- $\forall x: \neg(0=x+1)$
- $\forall x: \forall y:(x+1=y+1 \rightarrow x=y)$
- $\forall x: x+0=x$
- $\forall x: \forall y: x+(y+1)=(x+y)+1$
- for every formula φ such that $x \notin \mathrm{fv}(\varphi)=\left\{y_{1}, \ldots, y_{k}\right\}$

$$
\forall y_{1}: \cdots \forall y_{k}:((\varphi(0) \wedge \forall x:(\varphi(x) \rightarrow \varphi(x+1))) \rightarrow \forall x: \varphi(x))
$$

- Robinson arithmetic: same as Presburger, except
- the induction axioms are replaced by $\forall y:(y=0 \vee \exists x: y=x+1)$
- $\forall x: x \cdot 0=0$
- $\forall x: \forall y: x(y+1)=x y+x$
- Peano arithmetic: same as Presburger, plus the Robinson axioms on •
- Peano arithmetic with order: add $\forall x: \forall y:(x \leq y \leftrightarrow \exists z: y=x+z)$
- Real closed field
- familiar axioms for the real numbers, excluding the completeness axiom(s)
- $\forall x:(0 \leq x \rightarrow \exists y: y \cdot y=x)$
- for every single-variable polynomial $P(x)$ of odd degree $\exists x: P(x)=0$
- finite bit strings: every true closed formula on them
- it is a recursive set and Gödel's completeness theorem does not need this fact

Structure and interpretation

- assume a signature Σ is fixed
- a structure for Σ consists of a set \mathcal{U} and the following
- for each constant symbol c, an element \underline{c} of \mathcal{U}
- for each function symbol f, a function $\underline{f}: \mathcal{U} \times \ldots \times \mathcal{U} \rightarrow \mathcal{U}$ of the same arity
- for each relation symbol R, a relation $\underline{\underline{R}} \subseteq \mathcal{U} \times \ldots \times \mathcal{U}$ of the same arity
- a variable assignment assigns, to each variable x, a value $\underline{x} \in \mathcal{U}$
- each term evaluates to an element of \mathcal{U} as follows
- x evaluates to \underline{x} and c evaluates to \underline{c} and $f\left(t_{1}, \ldots, t_{n}\right)$ evaluates to $\underline{f}\left(\underline{t_{1}}, \ldots, \underline{t_{n}}\right)$
- we also say that each $\underline{u} \in \mathcal{U}$ evaluates to itself
- each formula evaluates to F or T as follows
- F and T evaluate to themselves
- $t_{1}=t_{2}$ evaluates to T iff $\underline{t_{1}}=\underline{t_{2}}$
- $R\left(t_{1}, \ldots, t_{n}\right)$ evaluates to T iff $\left(\underline{t_{1}}, \ldots, \underline{t_{n}}\right) \in \underline{R}$
$-\neg \varphi$ evaluates to T iff φ evaluates to F
- $\varphi \wedge \psi$ evaluates to T iff both φ and ψ do, analogously $\varphi \vee \psi$
- $\forall x: \varphi(x)$ evaluates to T iff $\varphi(\underline{u})$ evaluates to T for every $\underline{u} \in \mathcal{U}$
- $\exists x: \varphi(x)$ evaluates to T iff $\varphi(\underline{u})$ evaluates to T for at least one $\underline{u} \in \mathcal{U}$
- a formula holds iff it evaluates to T

Logical consequence

- assume a signature Σ is fixed
- let Γ be a set of closed formulas on Σ
- a structure is a model of Γ iff every $\varphi \in \Gamma$ holds on the structure
- variable assignment does not matter, since Γ consists of closed formulas
- φ is a logical consequence of Γ iff for every model of Γ, and every variable assignment, φ holds
- this is denoted with $\Gamma \models \varphi$

Proof system

- a system that given a signature Σ and a set Γ of closed formulas on Σ, produces (not necessarily closed) formulas on Σ
- we say that the system proves the formula
- a proof system is sound iff every proven formula holds on every model of Γ
- a proof system is consistent iff it does not prove F
- a proof system is complete iff for every φ, it proves φ or $\neg \varphi$

2 Modern Version of Gödel's Completeness Theorem

Some sound proof system is fixed

- the theorem says that for every signature Σ and for every set Γ of closed formulas on Σ, the proof system proves all logical consequences of Γ
- often Σ and Γ are the signature and set of axioms of some theory
- not every sound proof system is okay for the theorem, but many are
- example
- P1: $\{\varphi\} \mid-\varphi$
- ...
- \vee-E: If $\Gamma \cup\{\varphi\} \mid-\chi$ and $\Gamma \cup\{\psi\} \mid-\chi$, then $\Gamma \cup\{\varphi \vee \psi\} \mid-\chi$
- ...
- \forall-I: If $\Gamma \mid-\varphi(x)$ and x does not occur free in Γ, then $\Gamma \mid \forall x: \varphi(x)$

Model existence theorem

- Henkin 1949
- if Γ does not prove F, then Γ has a model
- the completeness theorem follows easily from this

Henkin's proof, step 1

- "Hilbert's hotel" the variables so that infinitely many become unused

Henkin's proof, step 2

- go through every formula φ in some order
- add φ or $\neg \varphi$ to Γ so that consistency remains
- for simplicity, we say "add" also for the original elements of Γ
- when adding $\exists x: \psi(x)$ to Γ, choose an unused variable y and add also $\psi(y)$ to Γ
- y is called a Henkin witness
- it eventually becomes a constant value for which $\psi(y)$ holds
- when adding $\neg \forall x: \psi(x)$ to Γ, choose an unused variable y and add also $\neg \psi(y)$ to Γ
- let us denote the result with Γ_{ω}

Henkin's proof, step 3

- build a model whose \mathcal{U} is the set of equivalence classes of terms
$-\llbracket t \rrbracket=\left\{t^{\prime} \mid t=t^{\prime} \in \Gamma_{\omega}\right\}$
- $\mathcal{U}=\{\llbracket t \rrbracket \mid t$ is a term $\}$
- choose the $\underline{c}, \underline{f}$ and \underline{R} as dictated by Γ_{ω}
- appeal to the proof system to show that it indeed is a model

3 Our Logic

How to add square root to the theory of real closed fields?

- a symbol for it is needed, so add unary $\sqrt{ }$ to the signature
- to specify its behaviour when defined, add the axiom $\forall x:(0 \leq x \rightarrow \sqrt{x} \cdot \sqrt{x}=x \wedge \sqrt{x} \geq 0)$
- need to specify when it is defined otherwise truth of, e.g., $\sqrt{-1}=0$ is left open

In addition to the signature Σ and set Γ of closed formulas on Σ, there is a function $\lfloor\ldots\rceil$ that assigns a formula on Σ to each function symbol in Σ

- its purpose is to specify when $f\left(x_{1}, \ldots, x_{n}\right)$ is defined
- some natural choices on some intended iterpretations
- real numbers: $\left\lfloor\frac{x}{y}\right\rceil$ is $\neg(y=0)$
- real numbers: $[\sqrt{x}\rceil$ is $0 \leq x$
- natural numbers: $\lfloor\sqrt{x}\rceil$ is $\exists y: y \cdot y=x$
- bit strings: $\lfloor\operatorname{first}(x)\rceil$ is $\neg(x=\varepsilon)$
- if f represents a total function, then it is natural to choose T as $\lfloor f\rceil$
- $\lfloor f\rceil$ may not use function symbols whose $\lfloor f\rceil$ is not T
- in the examples above, the only used function symbol was -
\Rightarrow we may declare that $\lfloor f\rceil$ is evaluated like above (i.e., in two-valued logic)

Signature, term, formula, structure and variable assignment are defined like above
To define how formulas are evaluated, we define an extension of $\lfloor f\rceil$ to $\lfloor t\rceil$

- we say that t is defined iff $\lfloor t\rceil$ yields T
- $\lfloor c\rceil$ and $\lfloor x\rceil$ are T
- constant and variable symbols are always defined
- e.g., $\lfloor 3\rceil$ is T
- $\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil$ is $\left\lfloor t_{1}\right\rceil \wedge \cdots \wedge\left\lfloor t_{n}\right\rceil \wedge\lfloor f\rceil\left(t_{1}, \ldots, t_{n}\right)$
- a function invocation is defined iff every argument is and the function itself is
- e.g., $\left\lfloor\frac{x}{\sqrt{y}}\right\rceil$ is $\mathrm{T} \wedge(\mathrm{T} \wedge 0 \leq y) \wedge \neg(\sqrt{y}=0)$
- that is, a term is undefined iff at least one of its sub-terms is
- e.g., $0 \cdot\left(1+\frac{x}{0}\right)$ is undefined for every x
- e.g., $\left\lfloor\frac{x}{\sqrt{y}}\right\rceil$ is undefined iff $y \leq 0$

Each formula evaluates to F, U or T as follows

- $t_{1}=t_{2}$ evaluates to U iff $\left\lfloor t_{1}\right\rceil$ or $\left\lfloor t_{2}\right\rceil$ or both yield F
- otherwise it evaluates like in two-valued logic
- $R\left(t_{1}, \ldots, t_{n}\right)$ evaluates to U iff at least one $\left\lfloor t_{i}\right\rceil$ yields F
- otherwise it evaluates like in two-valued logic
- so $R\left(t_{1}, \ldots, t_{n}\right)$ is undefined iff at least one t_{i} is undefined
- $\neg \varphi, \varphi \wedge \psi$, and $\varphi \vee \psi$ evaluate as Kleene and Łukasiewicz defined

\neg	
F	T
U	U
T	F

\wedge	F U T
F	F F F
U	F U U
T	F U T

V	$F U T$	
F	$F U T$	
U	U	U
T	T	T

- $\forall x: \varphi(x)$ yields
- T, iff $\varphi(x)$ yields T for every x
- F , iff $\varphi(x)$ yields F for at least one x
- U, otherwise
- $\exists x: \varphi(x)$ yields...
- where the definition overlaps two-valued logic, it yields the same result

We define an extension of $\lfloor f\rceil$ and $\lfloor t\rceil$ to $\lfloor\varphi\rceil$ so that $\lfloor\varphi\rceil$ yields F iff φ yields U

- a relation invocation is defined iff every argument is

$$
\left.\begin{array}{c}
\left\lfloor t=t^{\prime}\right\rceil \text { is }\lfloor t\rceil \wedge\left\lfloor t^{\prime}\right\rceil \\
\left\lfloor R\left(t_{1}, \ldots, t_{n}\right)\right\rceil
\end{array} \text { is }\left\lfloor t_{1}\right\rceil \wedge \cdots \wedge t_{n}\right\rceil
$$

- propositional rules

```
- \(\lfloor F\rceil\) is \(\lfloor T\rceil\) is \(T\)
\[
\text { - [ } \neg \varphi\rangle \text { is }[\varphi] \quad \neg U \text { is } \mathrm{U} \text {, but } \neg \mathrm{T} \text { and } \neg \mathrm{F} \text { are not }
\]
\[
-\lfloor\varphi \wedge \psi\rceil \text { is }(\lfloor\varphi\rceil \wedge\lfloor\psi\rceil) \vee(\lfloor\varphi\rceil \wedge \neg \varphi) \vee(\lfloor\psi\rceil \wedge \neg \psi)
\]
\[
-\lfloor\varphi \vee \psi\rceil \text { is }(\lfloor\varphi\rceil \wedge[\psi\rceil) \vee(\lfloor\varphi\rceil \wedge \varphi) \vee(\lfloor\psi\rceil \wedge \psi)
\]
```

- quantifier rules

$$
\begin{aligned}
& \text { - }\lfloor\forall x: \varphi(x)\rceil \text { is }(\forall x:\lfloor\varphi(x)\rceil) \vee \exists x:\lfloor\varphi(x)\rceil \wedge \neg \varphi(x) \\
& \text { - }[\exists x: \varphi(x)\rceil \text { is }(\forall x:\lfloor\varphi(x)\rceil) \vee \exists x:\lfloor\varphi(x)\rceil \wedge \varphi(x)
\end{aligned}
$$

Theorem On any interpretation and assignment to variables, φ yields U if and only if $\lfloor\varphi\rceil$ yields F.

What are we doing?

- the $\lfloor f\rceil$ come from the user, similarly to Σ and Γ
- the $[t\rceil$ and $\lfloor\varphi\rceil$ are obtained algorithmically \Rightarrow they can be used in a proof system without sacrificing effectiveness
- the $\lfloor t\rceil$ and $\lfloor\varphi\rceil$ reduce dealing with undefined terms and U to two-valued logic
- $\lfloor\cdots\rceil$ is not an operator in the logic, but in meta-language
- e.g., $\left\lfloor\frac{x}{y}\right\rceil$ in an axiom: $\forall x: \forall y: \neg(\neg(y=0)) \vee \frac{x}{y} \cdot y=x$
- e.g., $\left\lfloor\frac{x}{y}\right\rceil$ in a proof rule: $\{\neg(x=0)\} \vdash \frac{x+1}{x}=\frac{x+1}{x}$

Logical consequence may now be defined like above
Our theorem says that for every signature Σ, for every $\lfloor f\rceil$ on Σ, and for every set Γ of closed formulas on Σ, the proof system proves all logical consequences of Γ

- we will soon present our proof system

Kleene defined that a propositional formula is regular iff either $\varphi(\ldots, \mathrm{U}, \ldots)$ yields U or $\varphi(\ldots, P, \ldots)$ does not depend on P
\Rightarrow cannot express " P yields U"

- the notion extends naturally to predicate logic

- we exploit later the fact that our predicate logic is regular (not important)

4 Sound and Complete Proof System

Notation

- φ, ψ, χ are formulas
- Γ, Δ are sets of formulas
- x, x_{i}, y are variable symbols
- t, t_{i}, t_{i}^{\prime} are terms

Rules about reasoning in general:
P1: $\{\varphi\} \mid-\varphi$
P2: If $\Gamma \mid \varphi$ then $\Gamma \cup \Delta \mid-\varphi$
P3: If $\Gamma \mid-\varphi$ and $\Gamma \cup\{\varphi\} \mid-\psi$, then $\Gamma \mid-\psi$

The Law of the Excluded Fourth and the concept of contradiction:
C1: $\emptyset \mid-\varphi \vee \neg \varphi \vee \neg\lfloor\varphi\rceil$
(this replaces the Law of Excluded Middle)
C2: $\{F\} \mid-\varphi$
C3: $\{\varphi, \neg \varphi\} \mid-\mathrm{F}$
If a formula is true, then it is also defined:
D1: $\{\varphi\} \mid-\lfloor\varphi\rceil$
(this does not exist in classical logic)
For instance

- D1: $\left\{\frac{\sqrt{x}}{x-1}>0\right\} \vdash x \geq 0 \wedge \neg(x-1=0)$
- $\mathrm{C} 1: \emptyset-\frac{\sqrt{x}}{x-1}>0 \vee \neg\left(\frac{\sqrt{x}}{x-1}>0\right) \vee \neg(x \geq 0 \wedge \neg(x-1=0))$

If the system is not contradictory

- that is, if $\Gamma \nvdash \mathrm{F}$
- please recall that $\lfloor\neg \varphi\rceil$ is $\lfloor\varphi\rceil$
\Rightarrow C1 and D1 make precisely one of $\varphi, \neg \varphi$, and $\neg\lfloor\varphi\rceil$ hold
\Rightarrow each claim yields precisely one of T, F, and U for each assignment to variables

Rules for conjunction and disjunction:
$\wedge-\mathbf{I}:\{\varphi, \psi\} \mid-\varphi \wedge \psi$
$\wedge-\mathbf{E 1}:\{\varphi \wedge \psi\} \mid-\varphi$
$\wedge-\mathbf{E 2}:\{\varphi \wedge \psi\} \mid-\psi$
V-II: $\{\varphi\} \mid-\varphi \vee \psi$
V-I2: $\{\psi\} \mid-\varphi \vee \psi$
V-E: If $\Gamma \cup\{\varphi\} \vdash \chi$ and $\Gamma \cup\{\psi\} \vdash \chi$, then $\Gamma \cup\{\varphi \vee \psi\} \vdash \chi$

Rules of equality:

$=-\mathbf{1}:\{\lfloor \rceil\} \mid-t=t$
$=-2$: If f is an n-ary function symbol and $1 \leq i \leq n$, then

$$
\left\{t_{i}=t_{i}^{\prime},\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil\right\} \mid-f\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

=-3: If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula, $1 \leq i \leq n$ and t_{i} and t_{i}^{\prime} are free for x_{i} in φ, then

$$
\left\{t_{i}=t_{i}^{\prime}, \varphi\left(t_{1}, \ldots, t_{n}\right)\right\} \vdash \varphi\left(t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

For instance

- =-1: $\{x \geq 0 \wedge \neg(x-1=0)\} \vdash \frac{\sqrt{x}}{x-1}=\frac{\sqrt{x}}{x-1}$
- =-2: $\{x=z+1, x \geq 0 \wedge \neg(x-1=0)\} \vdash \frac{\sqrt{x}}{x-1}=\frac{\sqrt{x}}{z+1-1}$

Comments
$\bullet=-1$ and $=-2$ were tailored to not prove an undefined term equivalent to something

- by definition, $\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil$ yields $\left\lfloor t_{1}\right\rceil, \ldots,\left\lfloor t_{n}\right\rceil$
- by D1, $t_{i}=t_{i}^{\prime}$ implies $\left\lfloor t_{i}=t_{i}^{\prime}\right\rceil$, which is $\left\lfloor t_{i}\right\rceil \wedge\left\lfloor t_{i}^{\prime}\right\rceil$, so $\left\lfloor t_{i}^{\prime}\right\rceil$
- =-3 need only be assumed for relations, but proving that is too long and dull

Rules for quantifiers:
\forall - \mathbf{E} : If t is free for x in φ, then $\{\lfloor t\rceil, \forall x: \varphi(x)\} \mid-\varphi(t)$
\forall-I: If $\Gamma \vdash \varphi(x)$ and x does not occur free in Γ, then $\Gamma \vdash \forall x: \varphi(x)$
$\exists-\mathbf{I}$: If t is free for x in φ, then $\{\varphi(t)\} \mid-\exists x: \varphi(x)$
\exists-E: If $\Gamma \cup\{\varphi(y)\} \mid-\psi$ and y does not occur in $\Gamma, \exists x: \varphi(x)$, nor in ψ, then $\Gamma \cup\{\exists x: \varphi(x)\} \vdash \psi$
Comments

- \forall - E was tailored to not prove anything about undefined terms
- variable symbols are never undefined, so $\forall-I$ and $\exists-E$ need not be tailored
- $\exists-\mathrm{I}$ need not be $\{\varphi(t),\lfloor t\rceil\} \vdash \exists x: \varphi(x)$
- if t is undefined but $\varphi(t)$ is not, then by regularity $\forall x: \varphi(x)$ holds

Only 5 differences from two-valued logic!

5 Completeness Proof

We use Henkin's strategy: prove that every consistent theory has a model \Rightarrow if $\Gamma \nvdash \varphi$, then $\Gamma \cup\{\neg \varphi\}$ has a model, so φ is not a semantic consequence of Γ

- therefore, we assume from now on $\Gamma \nvdash \mathrm{F}$

Lemma There is Γ^{\prime} such that

- $\Gamma^{\prime} \nvdash \mathrm{F}$
- both or neither of Γ and Γ^{\prime} have a model
- infinitely many variable symbols are unused in Γ^{\prime}
- for every bound x in Γ^{\prime} there is an x^{\prime} such that its only occurrence in Γ^{\prime} is $x=x^{\prime}$

Proof Replace each v_{i} in Γ by $v_{3 i}$ and add the $v_{3 i}=v_{3 i-1}$.

Choose true formulas, introduce witnesses

- let $\Gamma_{0}:=\Gamma^{\prime}$
- for every formula φ_{i}, construct Γ_{i} by applying the first that matches

if	φ_{i} form	$\Gamma_{i}:=\Gamma_{i-1} \cup$
$\Gamma_{i-1} \cup\left\{\left\lfloor\varphi_{i}\right\rceil\right\} \vdash \mathrm{F}$		$\left\{\neg\left\lfloor\varphi_{i}\right\rceil\right\}$
$\Gamma_{i-1} \cup\left\{\varphi_{i}\right\}$	$\not \mathrm{F}$	is $\exists x: \psi(x)$
$\Gamma_{i-1} \cup\left\{\neg \varphi_{i}\right\} \nvdash \mathrm{F}$	is $\forall x: \psi(x)$	$\left\{\neg \varphi_{i}, \psi(y)\right\}$
$\Gamma_{i-1} \cup\left\{\varphi_{i}\right\}$	$\nvdash \mathrm{F}$	not $\exists x: \psi(x)\}$
$\Gamma_{i-1} \cup\left\{\neg \varphi_{i}\right\} \nvdash \mathrm{F}$	not $\forall x: \psi(x)$	$\left\{\varphi_{i}\right\}$
$\left\{\neg \varphi_{i}\right\}$		

- let $\Gamma_{\omega}:=\Gamma_{0} \cup \Gamma_{1} \cup \cdots$

Lemma

- $\Gamma^{\prime}=\Gamma_{0} \subseteq \Gamma_{1} \subseteq \cdots \subseteq \Gamma_{\omega}$
- $\Gamma_{\omega} \nvdash F$
- for each φ, precisely one of $\varphi, \neg \varphi$ and $\neg\lfloor\varphi\rceil$ is in Γ_{ω}
- for each φ, precisely one of $\lfloor\varphi\rceil$ and $\neg\lfloor\varphi\rceil$ is in Γ_{ω}
- for each t, precisely one of $\lfloor t\rceil$ and $\neg\lfloor t\rceil$ is in Γ_{ω}
- $\Gamma_{\omega} \mid-\varphi$ if and only if $\varphi \in \Gamma_{\omega}$

Theorem Γ_{ω} has a model

Proof

- elements of the universe are
- equivalence classes of terms for which $\lfloor t\rceil \in \Gamma_{\omega}$, induced by the $t=t^{\prime}$ in Γ_{ω}
- a single element for the remaining terms
- nothing depends on the choice of the representative of each equivalence class
- where necessary, use $v_{3 i-1}$ to make terms free for x

$\in \Gamma_{\omega}$	φ	$\neg \varphi$	$\neg\lfloor\varphi\rceil$
truth value of φ	T	F	U

- some routine arguments
- lots of dull reasoning using the proof system

Corollary Both Γ^{\prime} and Γ have a model

6 Extension to Łukasiewicz Logic

Łukasiewicz: $\mathrm{U} \xrightarrow{\mathrm{L}} \mathrm{U}$ yields T and $\mathrm{U} \stackrel{\leftrightarrows}{\leftrightarrows} \mathrm{U}$ yields T

- that P yields U can be expressed as $(P \xrightarrow{\text { Ł }} \neg P) \wedge(\neg P \xrightarrow{\text { Ł }} P)$
- all truth functions $\{\mathrm{F}, \mathrm{U}, \mathrm{T}\}^{n} \rightarrow\{\mathrm{~F}, \mathrm{U}, \mathrm{T}\}$ can be expressed

This reduces to the earlier case by replacing each

$$
\varphi \xrightarrow{ \pm} \psi
$$

by

$$
\neg \varphi \vee \psi \vee \neg(\lfloor\varphi\rceil \vee\lfloor\psi\rceil)
$$

7 Conclusions

Key ideas

- $\frac{1}{0}$, etc., are not treated as values
- variables are never undefined, terms may be
$-\frac{1}{0}=\frac{1}{0}, \frac{1}{0} \neq \frac{1}{0}$, and $\frac{1}{0}>\frac{1}{0}$ yield U
- the intuitive notion "is defined" is encoded as mechanical rules
- "is defined" is itself always defined
- for each φ, the model contains precisely one of $\varphi, \neg \varphi$ and $\neg\lfloor\varphi\rceil$
- correspondingly φ yields T, F or U

Many practical reasoning laws have been developed

- were a topic of another talk
- regularity simplifies things

Thank you for attention! Questions?

