Sizes of Up-to-n Halting Testers

Antti Valmari Tampere University of Technology FINLAND

- 1 Motivation
- 2 Up-to-n (3-way) Deciders
- 3 Self-Delimiting Representations
- 4 Upper Bound
- 5 Earlier Upper Bound Results
- 6 Lower Bounds
- 7 Earlier Lower Bound Results

1 Motivation

- Standard proof of undecidability of halting testing is
 - hard for my students: looks like a magician's trick to them
 - common target of objections in net and other discussions (well, nothing changes the minds of some people ...)
- \Rightarrow I have wanted a proof that would raise less objections, would "feel better"
- \Rightarrow Got interested in the "Busy Beaver" proof (discussed later)
 - Triggered by yet another crazy net discussion, this June I tried to write the Busy Beaver proof in a very clear and convincing form
 - Accidentally got an easy but interesting result that I had not known before
 - No one else seemed to have seen it either
- \Rightarrow So here it comes
 - here formulated using Turing machines
 - programming language version (not here) intended for software people
 - the theorems of the two versions have surprising differences!

2 Up-to-*n* (3-way) Deciders 1/2

- Decision problem $\varphi := \{0,1\}^* \rightarrow \{\text{"yes"}, \text{"no"}\}$
- Decider for φ := universal Turing machine program that computes φ

- Up-to-n (n ∈ N) decider for φ := universal Turing machine program that
 if |input| ≤ n, then replies φ(input)
 - if |input| > n, then may do anything: reply wrong, fail to terminate, ...
- Up-to-n 3-way decider for $\varphi :=$ universal Turing machine program that
 - if $|input| \leq n$, then replies $\varphi(input)$
 - if |input| > n, then replies "too big"
- We study families $(D_n)_{n\in\mathbb{N}}$ of up-to-n (3-way) deciders
- For every φ , such a family exists
 - look up the answer in a pre-determined array of $2^0 + 2^1 + \ldots + 2^n$ bits \Rightarrow its size is $2^{n+1} + O(n)$ (Section 3 explains O(n))
- φ is decidable if and only if it has an up-to-n decider of size O(1)

2 Up-to-*n* (3-way) Deciders 2/2

Grey part not in the paper

- Let μ_n be the above-mentioned bit string of answers for $|{\rm input}| \leq n$ $|\mu_n| = 2^{n+1}-1$
- |a smallest up-to-n 3-way decider| \cong the s.d.-Kolmogorov complexity of μ_n - s.d. := self-delimiting (Section 3 discusses)
 - $\geq:$ run D_n for all strings ε , 0, 1, 00, \ldots until it starts saying "too big"
 - \leq : construct μ_n , check "too big" against $|\mu_n|$, pick "yes" / "no" from μ_n

• Let

- e-i := empty input = 0^{ω}
- $\lg := base-2 logarithm$
- previous slide: $O(1) \le |D_n| \le 2^{n+1} + O(n)$
- Our main result: if φ is e-i halting testing, then
 - the size of the smallest up-to-n decider is between $n \lg n 2 \lg \lg n O(1)$ and n + O(1)
 - the size of the smallest up-to-n 3-way decider is between $n\pm O(1)$
 - \Rightarrow for $\mu_n = e-i$ halting testing answers, s.d.-Kolmogorov $(\mu_n) = \lg |\mu_n| \pm O(1)$

3 Self-Delimiting Representations 1/2

- The program must know where it ends and the input begins
 - \Rightarrow it is assumed that programs are **self-delimiting**
 - no proper prefix of a program is a program
- We will need self-delimiting representations for arbitrary $\beta \in \{0,1\}^*$
- $\ell(\beta)$:= the size of the representation of β
- **Theorem** No self-delimiting representation system for all finite bit strings satisfies $\ell(\beta) = |\beta| + \lg |\beta| + O(1)$.
 - if such a system exists, then there is a c such that when $|\beta|\geq 1,$ then $\ell(\beta)\leq |\beta|+\lg |\beta|+c$
 - by Kraft's inequality, for any $m \in \mathbb{N}$,

$$1 \ge \sum_{1 \le |\beta| \le m} 2^{-\ell(\beta)} = \sum_{n=1}^{m} \sum_{|\beta|=n} 2^{-\ell(\beta)} \ge \sum_{n=1}^{m} \sum_{|\beta|=n} 2^{-(n+\lg n+c)}$$
$$= \sum_{n=1}^{m} 2^n 2^{-(n+\lg n+c)} = 2^{-c} \sum_{n=1}^{m} \frac{1}{n}$$

RuFiDiM '12

3 Self-Delimiting Representations 2/2

• Theorem No self-delimiting representation system for all non-negative integers satisfies $\ell(n) = \lg n + \lg \lg n + O(1)$.

– when $\beta \in \{0,1\}^*$ and n>0, let $1\beta \leftrightarrow n,$ then previous theorem

• Actually, for any $k \in \mathbb{N}$, no representation system satisfies $\ell(n) = \lg n + \lg \lg n + \ldots + (\lg)^k n + O(1)$

$$\sum_{i=2^{n-1}+1}^{2^n} \frac{1}{i \lg i \cdots (\lg)^{k+1} i} \ge \frac{2^{n-1}}{2^n \lg 2^n \cdots (\lg)^{k+1} 2^n} = \frac{1}{2} \frac{1}{n \lg n \cdots (\lg)^k n}$$

- So a non-negative integer n needs more than that many bits!
- A self-delimiting representation system with $\ell(\beta) = |\beta| + 2\lfloor \lg(|\beta| + 2) \rfloor$

$$\beta = 1i_n \cdots i_2 i_1 i_0 - 2 \qquad \beta$$

$$\overbrace{i_n \mid 0 \mid \cdots \mid i_2 \mid 0 \mid i_1 \mid 0 \mid i_0 \mid 1 \mid \quad \cdots \mid \quad }$$

- Practical programming languages have $\ell(\beta)=c|\beta|+O(1)$ for some c>1

AV

4 Upper Bound

- If n is so small that no Q with $|Q| \le n$ e-i halts, then H_n is trivial to design - if $|Q| \le n$ then reply "no" else reply "too big"
- $\Rightarrow\,$ From now on we assume that some Q with $|Q|\leq n$ e-i halts
 - Let P_n be a slowest e-i halting program of size at most n bits - exists, because there are $< 2^{n+1}$ programs of size at most n bits
 - H_n and its input Q use the tape like this

- P_n is self-delimiting, because it is a program
- \Rightarrow main program gets n by finding the end of P_n and then a 1
- $\Rightarrow\,$ can check if Q is too big
- then main program e-i executes Q and P_n one step at a time
- Q terminates first: "yes", P_n terminates first: "no"
- main program does not depend on \boldsymbol{n}

 \Rightarrow An n+O(1) family of up-to-n 3-way e-i halting testers exists

5 Earlier Upper Bound Results

- Knowing n first bits of G. Chaitin's Ω facilitates up-to-n e-i halting testing - $\Omega := \sum_{P \text{ e-i halts}} 2^{-|P|}$
 - also his programs are self-delimiting, so $0 < \Omega < 1$
 - simulate all programs (also those > n bits) maintaining a lower approximation of Ω until it matches $\Omega_{1:n}$
- $\Omega_{1:n}$ is not self-delimiting \Rightarrow only the bound $n + \lg n + 2 \lg \lg n + O(1)$ obtained
- It is widely known that knowing (the running time of) a slowest e-i halting program of size $\leq n$ facilitates up-to-n e-i halting testing
 - from this, proof of n + O(1) for up-to-n e-i halting testers is immediate
 - I do not know if anyone has carefully (self-delimiting!) formulated it
- Extending the proof to 3-way testers seems new
 - 3-way is important for the lower bounds, this observation seems new
 - 3-way result yields self-delimiting Kolmogorov complexity result

6 Lower Bounds

• Let H_n be any family of up-to-n 3-way e-i halting testers

print 1 for $\beta := \varepsilon$, 0, 1, 00, 01, 10, 11, 000, ... do if β is a program then $r := H_n(\beta)$ if r = "too big" then halt if r = "yes" then e-i simulate β and print its result

- The above program
 - is of size $O(1) + |H_n|$
 - e-i halts
 - catenates 1 and the outputs of all e-i halting programs $\leq n$ bits
 - \Rightarrow must be of size > n

$\Rightarrow |H_n| > n - O(1)$

• If H_n is not 3-way, the program is modified to test $|\beta| > n$ and halt then – the program needs a representation of n $\Rightarrow \lg n + 2 \lg \lg n + O(1)$ additional bits

 $\Rightarrow |H_n| > n - \lg n - 2\lg \lg n - O(1)$

AV

7 Earlier Lower Bound Results

- For non-3-way testers, the proof is a variant of the Busy Beaver proof of non-existence of halting testers
 - Busy Beaver := n-state TM that prints as many 1's as possible and halts
 - an $O(\log n)$ bit program prints something that a < n bit program cannot /
- G. Chaitin proved in a similar way that to produce
 - $\Omega_{1:n}$, a program of size n O(1) is needed
 - however, $\Omega_{1:n}$ is affected by e-i halting programs >n bits
 - \Rightarrow it is not obvious how H_n would yield $\Omega_{1:n}$
 - \Rightarrow no obvious lower bound for $|H_n|$
- \Rightarrow A gap in my (and others'?) knowledge on the self-delimiting Kolmogorov complexity of $\Omega_{1:n}$

- between n - O(1) and $n + \lg n + 2 \lg \lg n + O(1)$

• Although the lower bound results in this talk are simple, it seems that they have not been formulated precisely before

Thank you for attention!