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Introduction

• Consider representing a value drawn from a set of possible values

• Information theory tells how many bits are needed on the average

– different values may use different numbers of bits
– a white flag contains little information — except at war!

• Classic information theory uses contiguous bit strings

• Data structures are not like that

• Of course, extending classic information

theory to data structures is trivial, isn’t it? 43 18

20

– e.g., list all bits in a sequence — but xor-pointers?

– e.g., list visited bits in a sequence — but does that suffice?
“the value” is the whole phonebook, not an individual name–number pair

– well, can’t do it now but everyone knows that it is trivial

• My claim is that it is not trivial but not very hard either

– it is at the right level for a symposium paper and talk
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Introduction

• Is it really obvious that it should be trivial?

– McMillan’s 1956 extension of the application area of Shannon’s bound:

“. . . for any complex x such that |xa| < 1 the infinite series
1 + N(1)x + N(2)x2 + · · · converges . . . ”

– (the results in my paper are more trivial than that)

• The results in my paper:

– an example demonstrating that the classic proof fails for data structures
⇒ solid (even if simple) theory is needed instead of just handwaving

– a suitable rigorous (and simple) definition of data structures

– a theorem that extends classic theory to all non-weird data structures

– the observation that given the above, the bound for weird d.s. is trivial . . .

– . . . but non-optimality of redundant representations is not:
unlike in classic theory, it need not hold if probabilities may be 0

– a non-optimality theorem for redundant representations if all pi > 0

• To discuss these, first we need to look at classic information theory
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Classic Information Theory

• If all values are equally likely

– 8 bits suffice to represent 28 = 256 different values

– to represent one of N values, ⌈lg N⌉ bits are needed

• If value i has probability pi and representation (= codeword) ri

– short codewords for common and long codewords for rare values

– e.g., Tallinn = 00, Tartu = 01, Pärnu = 1

– average memory usage =
∑

i∈I

pi|ri|

• Unique decodability

– a word in Finnish (water)well otter

K A I V O S A U K K O

(gold-, etc.)mine (entrance)hole

• Self-delimiting bit strings (= prefix codes)

– no codeword is a prefix of another

⇒ codeword can be uniquely decoded immediately after reading its last bit
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Classic Information Theory

• Shannon: with self-delimiting bit strings at least

−
∑

i∈I

pi lg pi

bits are needed on the average

• The only thing the proof assumes of the encoding is Kraft’s inequality
∑

i∈I

2−|ri| ≤ 1

• McMillan: Kraft’s inequality holds for all uniquely decodable bit string sets

⇒ also the −
∑

i∈I
pi lg pi bound holds

– McMillan’s proof is unexpectedly difficult!

• Unlike data structures

– never two codewords for the same value
(would strictly increase memory consumption, even if pi = 0)

– all codewords are contiguous bit strings with clear start and end
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A Weird Data Structure

• A concurrent system

– synchronous communication
(like Ada, Occam, CSP)

– no sub-sub tasks

• Master’s view to activity bits

00 = can switch off

stop

MASTER

SERVER 1

SERVER 2

01, 10, 11 = must still wait

⇒ one bit of information

• A modification saving memory

– when a server is serving a sub-task, the other is serving an original task
⇒ the activity bit of the other is certainly 1
⇒ the master gets the right result independently of the bit of the first server
⇒ the first server can freely use the bit for something else

• When serving a sub-task, a server uses its activity bit for something

else than denoting activity, and this does not fool the master
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A Weird Data Structure

• Let – denote that the activity bit is used for something else

– master does not know that, and may accidentally read it getting 0 or 1
– the other use determines the value absolutely freely as it needs
⇒ the bit must not be counted into the memory consumption of activity info

⇒ Memory consumption

– 00, 01, 10, 11: two bits
– 1–, –1: one bit

• Put these numbers to Kraft’s inequality∑

i∈I

2−|ri| = 2−2 + 2−2 + 2−2 + 2−2 + 2−1 + 2−1 = 2 > 1

• Leave 01, 10, and 11 out, since they are covered by 1– and –1
∑

i∈I

2−|ri| = 2−2 + 2−1 + 2−1 = 1
1

4
> 1

⇒ Kraft’s inequality is violated

• The essence here is that 1– and –1 are two distinct representations of size 1
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Formalization of Data Structures

• What is a data structure?

– uses memory to represent one value from a set of possible values

• What is a representation?

– uses some bits of memory and does not use the remaining bits
– assigns 0 or 1 to each used bit

⇒ can be formalized as r = (B0, B1) such that B0 ∩ B1 = ∅
– the elements of B0 and B1 are, e.g., memory addresses

• The same value may have many representations 43 18

– this happens all the time with data structures

• Representations of different values must

be distinguishable from each other
18 43

– if (B0, B1) and (B′
0, B

′
1) represent different values,

they must have a conflicting bit

⇒ we require B0 ∩ B′
1 6= ∅ or B1 ∩ B′

0 6= ∅
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Theorems in the Paper

• A representation scheme is fully conflicting iff each pair of distinct

representations has a conflicting bit

• Theorem If it is fully conflicting, then Kraft’s inequality holds.

⇒ violating Kraft’s inequality requires two indistinguishable
representations for the same value (like 1– and –1)

– proof of theorem: 1
2 pages on the paper, induction on |R|,

from R to R0, R1, R⊥ to R′
0 ∪ R⊥, R′

1 ∪ R⊥

• All non-weird data structures are now covered

• Trivial observation: leaving out redundant representations does not increase

average memory consumption, if the one that is kept is minimal

– yields a fully conflicting representation scheme
⇒ Shannon’s bound holds

• Also the weird data structures are now covered “bound-wise”

• However, another important classic result deserves new analysis
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Theorems in the Paper

• In classic theory, redundant representations always imply non-optimality

– deepens the significance of the bound

⇒ Of course I wanted to prove the same for data structures

• Observation: it does not hold fully generally

• Theorem If at least one object has two representations, and if the probability

of every representation is > 0, then the scheme is not memory-optimal.

– proof of theorem: 1 page on the paper + 1
2 pages to support intuition,

construct two fully conflicting schemes such that U(R) and R use the

same amount of memory, and 1 ≥
∑

r∈E(R) 2−|r| >
∑

r∈U(R) 2−|r|

• For weird data structures, used redundancy ⇒ non-optimality

• Classic representations qualify as data structures

• An optimal self-delimiting representation exists in classic theory

⇒ The bound is strict also with data structures
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Discussion

• A hole in the proof of a very fundamental result was revealed and fixed

– said like that, it sounds incredible — is the paper really okay?

• Anticipated objection: It must be trivial, the paper just makes it complicated

– I still have not seen a trivial argument

• Let’s try to make it trivial: If the same value has many representations, only a

shortest should be taken, and then Kraft’s inequality holds

– some justification is needed that then Kraft’s inequality holds

– to do that, we need to say what we mean by a data structure

= Definition 5 and Theorem 6 of the paper

⇒ more or less the same reasoning as in the paper

• Furthermore, “redundancy ⇒ non-optimality” was brought to data structures

– had to add the (rather weak) assumption “used redundancy”

• The paper sorts out an unimportant but real pathological case
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Discussion

• Is this a major result? No!

– Shannon’s bound for data structures was not changed, only its proof
⇒ does not affect anyone
– the situation where Kraft’s inequality was violated is unusual
– the redundancy theorem remains impossible to cheat
– although the proofs are not trivial, they are not horribly difficult either

(much of the paper is not proofs but telling why they are needed)

• So, is this a zero result? Not in my opinion.

– faith in the bound and “used redundancy ⇒ non-optimality”
for data structures need not any more be based on handwaving

• Perhaps this is a result that inspires a lively after-talk discussion?

– unless I have overrun my time slot. . .

Thank you for attention!
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