A Completeness Proof for A Predicate Logic with Undefined Truth Value

&

Antti Valmari University of Jyväskylä Esko Turunen Tampere University

- 1 Motivation of Our Logic
- 2 Earlier Logics
- 3 Guiding Principles of Our Logic
- 4 "Is Defined" -Formulas
- 5 An Example
- 6 Sound and Complete Proof System
- 7 Completeness Proof
- 8 Extension to Łukasiewicz Logic
- 9 Conclusions

1 Motivation of Our Logic

All examples are on $\ensuremath{\mathbb{R}}$

It seems natural to express case analysis with propositional operators:

$$1 + \sqrt{|x|} = |x - 1|$$

$$\left\{ \begin{array}{cccc} (x < 0 \land 1 + \sqrt{-x} = -x + 1) & \lor \\ (0 \le x < 1 \land 1 + \sqrt{x} = -x + 1) & \lor \\ (1 \le x \land 1 + \sqrt{x} = x - 1) & \lor \end{array} \right.$$

$$\Leftrightarrow x = -1 \lor x = 0 \lor x = 4$$

When x = 4, the first and last lines are clearly true ...

... but what does the second line mean?

$$4 < 0 \land 1 + \sqrt{-4} = -4 + 1$$

We want to write $\frac{6}{x-1} = x \iff x = -2 \lor x = 3$, how to make it okay?

• when x = 1, it yieds undefined \Leftrightarrow false

2 Earlier Logics

Problem: undefined should sometimes behave like F, but its negation must not yield TMany diverse approaches exist

Example: Formal software development method Z

- each closed formula is either T or F, but we do not always know which one
- $4 < 0 \land 1 + \sqrt{-4} = -4 + 1 \Leftrightarrow \mathsf{F} \land X \Leftrightarrow \mathsf{F}$
- we do not know if x = 1 is a root of $\frac{6}{x-1} = x$

•
$$x \neq 1 \land \frac{6}{x-1} = x \iff x = -2 \lor x = 3$$
 is valid in Z, but ...

• ... I was taught at school $\frac{6}{x-1} = x \iff x \neq 1 \land 6 = x(x-1) \iff x = -2 \lor x = 3$

Example: Formal software development method VDM

- evaluation of an undefined term is never finished
- $\bullet~$ U denotes that the evaluation of a truth value is never finished
- because $\mathsf{F}\wedge\mathsf{F}\Leftrightarrow\mathsf{T}\wedge\mathsf{F}\Leftrightarrow\mathsf{F},$ we have $\mathsf{U}\wedge\mathsf{F}\Leftrightarrow\mathsf{F}$
- \Rightarrow Kleene's ternary logic

		\wedge	FUT	\vee	FUT	_	\rightarrow	FUT	_	\leftrightarrow	FUT
F	Т	F	FFF	F	FUT			ТТТ			TUF
U	U F	U	FUU	U	UUT			UUT			UUU
Т	F	Т	FUT	Т	ттт	٦	-	FUT		Т	FUT

•
$$4 < 0 \land 1 + \sqrt{-4} = -4 + 1 \Leftrightarrow \mathsf{F} \land \mathsf{U} \Leftrightarrow \mathsf{F}$$

• $x \neq 1 \land \frac{6}{x-1} = x \iff x = -2 \lor x = 3$ is valid also in VDM

• it is undefined if
$$x = 1$$
 is a root of $\frac{6}{x-1} = x$

Regularity

AV

• either $\varphi(\dots, \mathbf{U}, \dots)$ yields U or $\varphi(\dots, P, \dots)$ does not depend on P \Rightarrow cannot express "P yields U"

3 Guiding Principles of Our Logic

Function symbols are *strict*

- if t_i is undefined, then $f(\ldots, t_i, \ldots)$ is undefined
- e.g., $1 + \frac{x}{0}$ is undefined

A relation yields ${\sf U}$ if and only if at least one argument is undefined

- in particular, t = t' yields U if and only if t or t' or both are undefined
- "only if"-part is only technical convenience

The negation of any undefined claim is undefined

• if
$$x = 0$$
, then both $\frac{1}{x} \ge 0$ and $\frac{1}{x} < 0$ yield U

Variables are always defined, terms may be undefined

• e.g.,
$$x = x \Leftrightarrow \mathsf{T}$$
, but $\frac{1}{x} = \frac{1}{x} \Leftrightarrow x \neq 0$
• e.g., $\exists x : x = 0 \Leftrightarrow \mathsf{T}$, but $\exists x : x = \frac{1}{0} \Leftrightarrow \mathsf{U} \Leftrightarrow \mathsf{F}$

The symbol \Rightarrow is not a propositional operator but a reasoning operator

•
$$\mathsf{U} \Leftrightarrow \mathsf{F}$$
, so $\frac{6}{x-1} = x \Leftrightarrow x = -2 \lor x = 3$ and $x = 1$ is not a root of $\frac{6}{x-1} = x$

•
$$\neg\left(\frac{1}{x} > 0 \Rightarrow x > 0\right)$$
 is a syntax error, so we cannot derive $x \le 0 \Rightarrow \frac{1}{x} \le 0$

- we no longer have " $\varphi \Rightarrow \psi$ is valid if and only if $\neg \varphi \lor \psi$ is a tautology"

• actually, it is questionnable whether we ever really had it

- e.g.,
$$x(x - |x|) = 18$$

case $x < 0$: $x(x - -x) = 18 \Leftrightarrow 2x^2 = 18 \Leftrightarrow x = -3$

case
$$x \ge 0$$
: $x(x - x) = 18 \Leftrightarrow 0 = 18 \Leftrightarrow \mathsf{F}$

	FUT	\Rightarrow	FUT	\leftrightarrow	FUT	\Leftrightarrow	FUT
F U T	T T T U U T F U T	U	$ \begin{array}{c} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	U	T U F U U U F U T	U	$ \begin{array}{c} \sqrt{\sqrt{-}} \\ \sqrt{\sqrt{-}} \\ \sqrt{-} \end{array} $

- beyond an example later on, \Rightarrow and \Leftrightarrow are not studied in this talk
 - their laws are studied elsewhere
 - regularity simplifies some of them

To argue that our logic is healthy, we will present a sound and complete proof system

4 "Is Defined" -Formulas

Terms, formulas, etc., are defined as usually, except \Rightarrow , \Leftrightarrow , \rightarrow , and \leftrightarrow are left out • $\varphi \rightarrow \psi$ and $\varphi \leftrightarrow \psi$ may be defined as $\neg \varphi \lor \psi$ and $(\varphi \land \psi) \lor \neg (\varphi \lor \psi)$

Every function symbol f has an associated formula |f| that specifies when f is defined

• e.g., $\lfloor \sqrt{x} \rfloor$ is $x \ge 0$ (literally!)

• e.g.,
$$\left\lfloor \frac{x}{y} \right\rceil$$
 is $\neg(y=0)$ (literally!)

• $\lfloor f \rceil(x_1, \ldots, x_n)$ must always be defined (but $\lfloor f \rceil(t_1, \ldots, t_n)$ need not) - e.g., $\lfloor f \rceil$ uses no function symbols (or only total function symbols)

The $\lfloor f \rfloor$ are given (i.e., reside in axioms and proof rules)

• e.g.,
$$\forall x : \forall y : \neg(\neg(y=0)) \lor \frac{x}{y} \cdot y = x$$

• e.g., $\{\neg(x=0)\} \vdash \frac{x+1}{x} = \frac{x+1}{x}$

The $\lfloor f \rfloor$ generate $\lfloor t \rfloor$ and $\lfloor \varphi \rceil$ as follows

A function invocation is defined iff every argument is and the function itself is

$$\lfloor f(t_1,\ldots,t_n) \rceil$$
 means $\lfloor t_1 \rceil \land \cdots \land \lfloor t_n \rceil \land \lfloor f \rceil(t_1,\ldots,t_n)$

• constant and variable symbols are always defined; e.g., $\lfloor x \rfloor$ is $\lfloor 3 \rfloor$ is T

• e.g.,
$$\left\lfloor \frac{x}{\sqrt{y}} \right\rceil$$
 is $\mathsf{T} \land (\mathsf{T} \land y \ge 0) \land \neg(\sqrt{y} = 0)$

A relation invocation is defined iff every argument is

$$\begin{bmatrix} R(t_1, \dots, t_n) \end{bmatrix} \text{ means } \begin{bmatrix} t_1 \end{bmatrix} \land \dots \land \begin{bmatrix} t_n \end{bmatrix} \\ \begin{bmatrix} t = t' \end{bmatrix} \text{ means } \begin{bmatrix} t \end{bmatrix} \land \begin{bmatrix} t' \end{bmatrix}$$

Propositional rules

- $\lfloor F \rfloor$ is $\lfloor T \rfloor$ is T
- $\left[\neg\varphi\right]$ is $\left[\varphi\right]$
- $\left[\varphi \land \psi\right]$ is $\left(\left[\varphi\right] \land \left[\psi\right]\right) \lor \left(\left[\varphi\right] \land \neg\varphi\right) \lor \left(\left[\psi\right] \land \neg\psi\right)$
- $\lfloor \varphi \lor \psi \rfloor$ is $(\lfloor \varphi \rceil \land \lfloor \psi \rceil) \lor (\lfloor \varphi \rceil \land \varphi) \lor (\lfloor \psi \rceil \land \psi)$

Quantifier rules

- $\lfloor \forall x : \varphi(x) \rfloor$ is $(\forall x : \lfloor \varphi(x) \rfloor) \lor \exists x : \lfloor \varphi(x) \rfloor \land \neg \varphi(x)$
- $\lfloor \exists x : \varphi(x) \rfloor$ is $(\forall x : \lfloor \varphi(x) \rfloor) \lor \exists x : \lfloor \varphi(x) \rfloor \land \varphi(x)$

 $\lfloor \cdots \rceil$ is not an operator in the language, but an abbreviation

- given t, $\lfloor t \rceil$ can be constructed automatically
- given φ , $\lfloor \varphi \rceil$ can be constructed automatically

For each $\varphi : \mathbb{D}^n \to \{\mathsf{F}, \mathsf{U}, \mathsf{T}\}$ there is $\lfloor \varphi \rceil : \mathbb{D}^n \to \{\mathsf{F}, \mathsf{T}\}$ that yields F iff φ yields U , but there is no $\chi : \{\mathsf{F}, \mathsf{U}, \mathsf{T}\} \to \{\mathsf{F}, \mathsf{T}\}$ such that each $\lfloor \varphi \rceil$ can be expressed as $\chi(\varphi)$

$$\mathbb{D}^{n} \xrightarrow{\varphi} \{\mathsf{F}, \mathsf{U}, \mathsf{T}\} \xrightarrow{\chi} \{\mathsf{F}, \mathsf{T}\}$$

and $\left\lfloor U\right\rceil$ would be F

5 An Example

Thanks to regularity, the following is sound:

Assume $\lfloor t \rceil \Rightarrow t = t'$ and $\lfloor t \rceil \Rightarrow \chi \Rightarrow \lfloor t \rceil \lor \neg \lfloor t' \rceil$

- if R(t) is in the scope of an even number of negations, then $\varphi(R(t)) \Leftrightarrow \varphi(\chi \wedge R(t'))$
- if R(t) is in the scope of an odd number of negations, then $\varphi(R(t)) \Leftrightarrow \varphi(\neg \chi \lor R(t'))$

Let

- $t = \frac{6}{x-1}(x-1)$
- t' = 6
- χ be $\lfloor t \rceil$ (which is $x \neq 1$)
- $\varphi(R(t))$ be R(t) be t = x(x-1)

We get

AV

$$\frac{6}{x-1} = x \iff \frac{6}{x-1}(x-1) = x(x-1) \iff x \neq 1 \land 6 = x(x-1)$$

6 Sound and Complete Proof System

Notation

- φ , ψ , χ are formulas
- Γ , Δ are sets of formulas
- x, x_i , y are variable symbols
- t, t_i , t'_i are terms

Rules about reasoning in general:

P1: $\{\varphi\} \models \varphi$

- **P2:** If $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$
- **P3:** If $\Gamma \models \varphi$ and $\Gamma \cup \{\varphi\} \models \psi$, then $\Gamma \models \psi$

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 10/19

The Law of the Excluded Fourth and the concept of contradiction:

 C1: $\emptyset \models \varphi \lor \neg \varphi \lor \neg [\varphi]$ (this replaces the Law of Excluded Middle)

 C2: {F} \models \varphi
 $\land (\varphi, \neg \varphi) \models \psi$

 C3: { $\varphi, \neg \varphi$ } \models F
 $\land (\varphi, \neg \varphi) \models \psi$

If a formula is true, then it is also defined:

D1: $\{\varphi\} \vdash \lfloor \varphi \rceil$ (this does not exist in classical logic)

For instance

• D1: $\left\{\frac{\sqrt{x}}{x-1} > 0\right\} \mid -x \ge 0 \land \neg(x-1=0)$

• C1:
$$\emptyset \vdash \frac{\sqrt{x}}{x-1} > 0 \lor \neg \left(\frac{\sqrt{x}}{x-1} > 0\right) \lor \neg (x \ge 0 \land \neg (x-1=0))$$

If the system is not contradictory

- that is, if $\Gamma \not\vdash \mathsf{F}$
- please recall that $\lfloor \neg \varphi \rfloor$ is $\lfloor \varphi \rfloor$
- \Rightarrow C1 and D1 make precisely one of φ , $\neg \varphi$, and $\neg \lfloor \varphi \rfloor$ hold
- \Rightarrow each claim yields precise one of T, F, and U for each binding

Rules for conjunction and disjunction:

```
\wedge-I: \{\varphi,\psi\} \models \varphi \land \psi
```

```
\wedge-E1: \{\varphi \land \psi\} \models \varphi
```

```
\wedge-E2: \{\varphi \land \psi\} \models \psi
```

```
\lor-\mathbf{l1:}\ \{\varphi\}\models\varphi\lor\psi
```

```
\lor-l2: \{\psi\} \models \varphi \lor \psi
```

```
\lor \text{-E: If } \Gamma \cup \{\varphi\} \models \chi \text{ and } \Gamma \cup \{\psi\} \models \chi \text{, then } \Gamma \cup \{\varphi \lor \psi\} \models \chi
```

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 12/19

Rules of equality:

=-1: $\{\lfloor t \rceil\} \vdash t = t$ =-2: If f is an n-ary function symbol and $1 \le i \le n$, then $\{t_i = t'_i, \lfloor f(t_1, \dots, t_n) \rceil\} \vdash f(t_1, \dots, t_n) = f(t_1, \dots, t_{i-1}, t'_i, t_{i+1}, \dots, t_n)$ =-3: If $\varphi(x_1, \dots, x_n)$ is a formula, $1 \le i \le n$ and t_i and t'_i are free for x_i in φ , then $\{t_i = t'_i, \varphi(t_1, \dots, t_n)\} \vdash \varphi(t_1, \dots, t_{i-1}, t'_i, t_{i+1}, \dots, t_n)$

For instance

• =-1:
$$\left\{x \ge 0 \land \neg (x - 1 = 0)\right\} \vdash \frac{\sqrt{x}}{x - 1} = \frac{\sqrt{x}}{x - 1}$$

• =-2: $\left\{x = z + 1, \ x \ge 0 \land \neg (x - 1 = 0)\right\} \vdash \frac{\sqrt{x}}{x - 1} = \frac{\sqrt{x}}{z + 1 - 1}$

Comments

- =-1 and =-2 were tailored to not prove an undefined term equivalent to something
- by definition, $\lfloor f(t_1, \ldots, t_n) \rfloor$ yields $\lfloor t_1 \rfloor, \ldots, \lfloor t_n \rfloor$
- by D1, $t_i = t'_i$ implies $\lfloor t_i = t'_i \rfloor$, which is $\lfloor t_i \rceil \land \lfloor t'_i \rceil$, so $\lfloor t'_i \rceil$
- \bullet =-3 need only be assumed for relations, but proving that is too long and dull

AV A Completeness Proof for A Predicate Logic with Undefined ... 2020-01-03 6 Sound and Complete Proof System 13/19

Rules for quantifiers:

 \forall -E: If t is free for x in φ , then $\{\lfloor t \rceil, \forall x : \varphi(x)\} \models \varphi(t)$

 \forall -I: If $\Gamma \models \varphi(x)$ and x does not occur free in Γ , then $\Gamma \models \forall x : \varphi(x)$

 \exists -I: If t is free for x in φ , then $\{\varphi(t)\} \models \exists x : \varphi(x)$

 $\exists \text{-E: If } \Gamma \cup \{\varphi(y)\} \models \psi \text{ and } y \text{ does not occur in } \Gamma, \exists x : \varphi(x), \text{ nor in } \psi, \\ \text{then } \Gamma \cup \{\exists x : \varphi(x)\} \models \psi$

Comments

- $\bullet \ \forall\text{-}\mathsf{E}$ was tailored to not prove anything about undefined terms
- variable symbols are never undefined, so \forall -I and \exists -E need not be tailored
- \exists -I need not be $\{\varphi(t), \lfloor t \rceil\} \models \exists x : \varphi(x)$
 - if t is undefined but $\varphi(t)$ is not, then by regularity $\forall x : \varphi(x)$ holds

Only 5 differences from binary logic!

7 Completeness Proof

We use Henkin's strategy: prove that every consistent theory has a model

- $\Rightarrow \text{ if } \Gamma \not\vdash \varphi \text{, then } \Gamma \cup \{\neg \varphi\} \text{ has a model, so } \varphi \text{ is not a semantic consequence of } \Gamma$
- therefore, we assume from now on $\Gamma \not\vdash {\sf F}$

Lemma There is Γ' such that

- $\Gamma' \not\vdash \mathsf{F}$
- both or neither of Γ and Γ' have a model
- infinitely many variable symbols are unused in Γ'
- for every bound x in Γ' there is an x' such that its only occurrence in Γ' is x = x'

Proof Replace each v_i in Γ by v_{3i} and add the $v_{3i} = v_{3i-1}$.

Choose true formulas, introduce witnesses

- let $\Gamma_0 := \Gamma'$
- for every formula φ_i , construct Γ_i

if	$arphi_i$ form	$\Gamma_i := \Gamma_{i-1} \cup $
$\Gamma_{i-1} \cup \{ \lfloor \varphi_i \rceil \} \models F$		$\{\neg \lfloor \varphi_i \rceil\}$
$\Gamma_{i-1} \cup \{\varphi_i\} \not\vdash F$	is $\exists x:\psi(x)$	$\{arphi_i,\ \psi(y)\}$
$\Gamma_{i-1} \cup \{\neg \varphi_i\} \not\models F$	is $orall x:\psi(x)$	$\{\neg \varphi_i, \neg \psi(y)\}$
$\Gamma_{i-1} \cup \{\varphi_i\} \not\vdash F$	not $\exists x:\psi(x)$	$\{arphi_i\}$
$\Gamma_{i-1} \cup \{\neg \varphi_i\} \not\models F$	not $\forall x:\psi(x)$	$\{\neg \varphi_i\}$

• let
$$\Gamma_{\omega} := \Gamma_0 \cup \Gamma_1 \cup \cdots$$

Lemma

- $\Gamma' = \Gamma_0 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma_\omega$
- $\Gamma_{\omega} \not\vdash \mathsf{F}$
- for each φ , precisely one of φ , $\neg \varphi$ and $\neg \lfloor \varphi \rfloor$ is in Γ_{ω}
- for each φ , precisely one of $\lfloor \varphi \rfloor$ and $\neg \lfloor \varphi \rfloor$ is in Γ_{ω}
- for each t, precisely one of $\lfloor t \rfloor$ and $\neg \lfloor t \rfloor$ is in Γ_{ω}
- $\Gamma_{\omega} \models \varphi$ if and only if $\varphi \in \Gamma_{\omega}$

Theorem Γ_{ω} has a model

Proof

- elements of the universe are
 - equivalence classes of terms for which $|t| \in \Gamma_{\omega}$, induced by the t = t' in Γ_{ω}
 - \perp for the remaining terms
- nothing depends on the choice of the representative of each equivalence class
 - where necessary, use v_{3i-1} to make terms free for x

$$\begin{array}{c|c} \in \Gamma_{\omega} & \varphi & \neg \varphi & \neg \left\lfloor \varphi \right\rceil \\ \hline \\ \text{truth value of } \varphi & \mathsf{T} & \mathsf{F} & \mathsf{U} \end{array}$$

- some routine arguments
- lots of dull reasoning using the proof system

```
Corollary Both \Gamma' and \Gamma have a model
```

8 Extension to Łukasiewicz Logic

Łukasiewicz: U $\xrightarrow{\scriptscriptstyle \mathrm{L}}$ U yields T and U $\xleftarrow{\scriptscriptstyle \mathrm{L}}$ U yields T

- that P yields U can be expressed as $(P \xrightarrow{\mathbf{L}} \neg P) \land (\neg P \xrightarrow{\mathbf{L}} P)$
- all truth functions ${\mathsf{F}},{\mathsf{U}},{\mathsf{T}}{\mathsf{F}}^n \to {\mathsf{F}},{\mathsf{U}},{\mathsf{T}}{\mathsf{F}}$ can be expressed

This reduces to the earlier case by replacing each

 $\varphi \xrightarrow{\mathbf{L}} \psi$

by

 $\neg \varphi \lor \psi \lor \neg (\left\lfloor \varphi \right\rceil \lor \left\lfloor \psi \right\rceil)$

9 Conclusions

Key ideas

- $\bullet \Rightarrow \mathsf{and} \Leftrightarrow \mathsf{are} \mathsf{ employed} \mathsf{ to} \mathsf{ express} \mathsf{ school} \mathsf{ reasoning}$
 - cannot be interpreted as propositional operators
- $\frac{1}{0}$, etc., are not treated as values
 - variables are never undefined, terms may be
- the intuitive notion "is defined" is encoded as mechanical rules
 - "is defined" is itself always defined
- regularity simplifies things
- for each φ , the model contains precisely one of φ , $\neg \varphi$ and $\neg \lfloor \varphi \rfloor$
 - correspondingly φ yields T, F or U

Many practical reasoning laws have been developed

• would be a topic for another talk

Thank you for attention! Questions?

AV