
A Completeness Proof for A Predicate
Logic with Undefined Truth Value

Antti Valmari
University of Jyväskylä

& Esko Turunen
Tampere University

1 Motivation of Our Logic

2 Earlier Logics

3 Guiding Principles of Our Logic

4 “Is Defined” -Formulas

5 An Example

6 Sound and Complete Proof System

7 Completeness Proof

8 Extension to Lukasiewicz Logic

9 Conclusions

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 Table of Contents 0/19

1 Motivation of Our Logic

All examples are on R

It seems natural to express case analysis with propositional operators:

1 +
√

|x| = |x− 1|

⇔











(x < 0 ∧ 1 +
√−x = −x+ 1) ∨

(0 ≤ x < 1 ∧ 1 +
√
x = −x+ 1) ∨

(1 ≤ x ∧ 1 +
√
x = x− 1)

⇔ x = −1 ∨ x = 0 ∨ x = 4

When x = 4, the first and last lines are clearly true . . .

. . . but what does the second line mean?

4 < 0 ∧ 1 +
√
−4 = −4 + 1

We want to write
6

x− 1
= x ⇔ x = −2 ∨ x = 3 , how to make it okay?

• when x = 1, it yieds undefined ⇔ false

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 1 Motivation of Our Logic 1/19

2 Earlier Logics

Problem: undefined should sometimes behave like F, but its negation must not yield T

Many diverse approaches exist

Example: Formal software development method Z

• each closed formula is either T or F, but we do not always know which one

• 4 < 0 ∧ 1 +
√
−4 = −4 + 1 ⇔ F ∧X ⇔ F

• we do not know if x = 1 is a root of
6

x− 1
= x

• x 6= 1 ∧ 6

x− 1
= x ⇔ x = −2 ∨ x = 3 is valid in Z, but . . .

• . . . I was taught at school
6

x− 1
= x ⇔ x 6= 1∧ 6 = x(x− 1) ⇔ x = −2∨x = 3

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 2 Earlier Logics 2/19

Example: Formal software development method VDM

• evaluation of an undefined term is never finished

• U denotes that the evaluation of a truth value is never finished

• because F ∧ F ⇔ T ∧ F ⇔ F, we have U ∧ F ⇔ F

⇒ Kleene’s ternary logic

¬
F T

U U

T F

∧ F U T

F F F F

U F U U

T F U T

∨ F U T

F F U T

U U U T

T T T T

→ F U T

F T T T

U U U T

T F U T

↔ F U T

F T U F

U U U U

T F U T

• 4 < 0 ∧ 1 +
√
−4 = −4 + 1 ⇔ F ∧ U ⇔ F

• x 6= 1 ∧ 6

x− 1
= x ⇔ x = −2 ∨ x = 3 is valid also in VDM

• it is undefined if x = 1 is a root of
6

x− 1
= x

Regularity

• either ϕ(. . . ,U, . . .) yields U or ϕ(. . . , P, . . .) does not depend on P

⇒ cannot express “P yields U”

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 2 Earlier Logics 3/19

3 Guiding Principles of Our Logic

Function symbols are strict

• if ti is undefined, then f(. . . , ti, . . .) is undefined

• e.g., 1 +
x

0
is undefined

A relation yields U if and only if at least one argument is undefined

• in particular, t = t′ yields U if and only if t or t′ or both are undefined

• “only if”-part is only technical convenience

The negation of any undefined claim is undefined

• if x = 0, then both
1

x
≥ 0 and

1

x
< 0 yield U

Variables are always defined, terms may be undefined

• e.g., x = x⇔ T, but
1

x
=

1

x
⇔ x 6= 0

• e.g., ∃x : x = 0 ⇔ T, but ∃x : x =
1

0
⇔ U ⇔ F

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 3 Guiding Principles of Our Logic 4/19

The symbol ⇒ is not a propositional operator but a reasoning operator

• U ⇔ F, so
6

x− 1
= x ⇔ x = −2 ∨ x = 3 and x = 1 is not a root of

6

x− 1
= x

• ¬
(1

x
> 0 ⇒ x > 0

)

is a syntax error, so we cannot derive x ≤ 0 ⇒ 1

x
≤ 0

• we no longer have “ϕ⇒ ψ is valid if and only if ¬ϕ ∨ ψ is a tautology”

• actually, it is questionnable whether we ever really had it
– e.g., x(x− |x|) = 18

case x < 0: x(x−−x) = 18 ⇔ 2x2 = 18 ⇔ x = −3

case x ≥ 0: x(x− x) = 18 ⇔ 0 = 18 ⇔ F

→ F U T

F T T T

U U U T

T F U T

⇒ F U T

F
√ √ √

U
√ √ √

T − − √

↔ F U T

F T U F

U U U U

T F U T

⇔ F U T

F
√ √ −

U
√ √ −

T − − √

• beyond an example later on, ⇒ and ⇔ are not studied in this talk
– their laws are studied elsewhere
– regularity simplifies some of them

To argue that our logic is healthy, we will present a sound and complete proof system

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 3 Guiding Principles of Our Logic 5/19

4 “Is Defined” -Formulas

Terms, formulas, etc., are defined as usually, except ⇒, ⇔, →, and ↔ are left out

• ϕ→ ψ and ϕ↔ ψ may be defined as ¬ϕ ∨ ψ and (ϕ ∧ ψ) ∨ ¬(ϕ ∨ ψ)

Every function symbol f has an associated formula
⌊

f
⌉

that specifies when f is defined

• e.g.,
⌊√

x
⌉

is x ≥ 0 (literally!)

• e.g.,
⌊x

y

⌉

is ¬(y = 0) (literally!)

•
⌊

f
⌉

(x1, . . . , xn) must always be defined (but
⌊

f
⌉

(t1, . . . , tn) need not)
– e.g.,

⌊

f
⌉

uses no function symbols (or only total function symbols)

The
⌊

f
⌉

are given (i.e., reside in axioms and proof rules)

• e.g., ∀x : ∀y : ¬(¬(y = 0)) ∨ x

y
· y = x

• e.g., {¬(x = 0)} |− x+ 1

x
=
x+ 1

x

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 4 “Is Defined” -Formulas 6/19

The
⌊

f
⌉

generate
⌊

t
⌉

and
⌊

ϕ
⌉

as follows

A function invocation is defined iff every argument is and the function itself is
⌊

f(t1, . . . , tn)
⌉

means
⌊

t1
⌉

∧ · · · ∧
⌊

tn
⌉

∧
⌊

f
⌉

(t1, . . . , tn)

• constant and variable symbols are always defined; e.g.,
⌊

x
⌉

is
⌊

3
⌉

is T

• e.g.,
⌊ x√

y

⌉

is T ∧ (T ∧ y ≥ 0) ∧ ¬(√y = 0)

A relation invocation is defined iff every argument is
⌊

R(t1, . . . , tn)
⌉

means
⌊

t1
⌉

∧ · · · ∧
⌊

tn
⌉

⌊

t = t′
⌉

means
⌊

t
⌉

∧
⌊

t′
⌉

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 4 “Is Defined” -Formulas 7/19

Propositional rules

•
⌊

F
⌉

is
⌊

T
⌉

is T and
⌊

U
⌉

would be F

•
⌊

¬ϕ
⌉

is
⌊

ϕ
⌉

•
⌊

ϕ ∧ ψ
⌉

is (
⌊

ϕ
⌉

∧
⌊

ψ
⌉

) ∨ (
⌊

ϕ
⌉

∧ ¬ϕ) ∨ (
⌊

ψ
⌉

∧ ¬ψ)
•

⌊

ϕ ∨ ψ
⌉

is (
⌊

ϕ
⌉

∧
⌊

ψ
⌉

) ∨ (
⌊

ϕ
⌉

∧ ϕ) ∨ (
⌊

ψ
⌉

∧ ψ)
Quantifier rules

•
⌊

∀x : ϕ(x)
⌉

is (∀x :
⌊

ϕ(x)
⌉

) ∨ ∃x :
⌊

ϕ(x)
⌉

∧ ¬ϕ(x)
•

⌊

∃x : ϕ(x)
⌉

is (∀x :
⌊

ϕ(x)
⌉

) ∨ ∃x :
⌊

ϕ(x)
⌉

∧ ϕ(x)

⌊

· · ·
⌉

is not an operator in the language, but an abbreviation

• given t,
⌊

t
⌉

can be constructed automatically

• given ϕ,
⌊

ϕ
⌉

can be constructed automatically

For each ϕ : Dn → {F,U,T} there is
⌊

ϕ
⌉

: Dn → {F,T} that yields F iff ϕ yields U,

but there is no χ : {F,U,T} → {F,T} such that each
⌊

ϕ
⌉

can be expressed as χ(ϕ)
⌊

ϕ
⌉

D
n

ϕ {F,U,T} χ {F,T}

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 4 “Is Defined” -Formulas 8/19

5 An Example

Thanks to regularity, the following is sound:

Assume
⌊

t
⌉

⇒ t = t′ and
⌊

t
⌉

⇒ χ⇒
⌊

t
⌉

∨ ¬
⌊

t′
⌉

• if R(t) is in the scope of an even number of negations, then ϕ(R(t)) ⇔ ϕ(χ ∧R(t′))
• if R(t) is in the scope of an odd number of negations, then ϕ(R(t)) ⇔ ϕ(¬χ∨R(t′))

Let

• t = 6

x−1
(x− 1)

• t′ = 6

• χ be
⌊

t
⌉

(which is x 6= 1)

• ϕ(R(t)) be R(t) be t = x(x− 1)

We get

6

x− 1
= x ⇔ 6

x− 1
(x− 1) = x(x− 1) ⇔ x 6= 1 ∧ 6 = x(x− 1)

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 5 An Example 9/19

6 Sound and Complete Proof System

Notation

• ϕ, ψ, χ are formulas

• Γ, ∆ are sets of formulas

• x, xi, y are variable symbols

• t, ti, t
′

i
are terms

Rules about reasoning in general:

P1: {ϕ} |− ϕ

P2: If Γ |− ϕ then Γ ∪∆ |− ϕ

P3: If Γ |− ϕ and Γ ∪ {ϕ} |− ψ, then Γ |− ψ

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 10/19

The Law of the Excluded Fourth and the concept of contradiction:

C1: ∅ |− ϕ ∨ ¬ϕ ∨ ¬
⌊

ϕ
⌉

(this replaces the Law of Excluded Middle)

C2: {F} |− ϕ

C3: {ϕ, ¬ϕ} |− F
or {ϕ, ¬ϕ} |− ψ

If a formula is true, then it is also defined:

D1: {ϕ} |−
⌊

ϕ
⌉

(this does not exist in classical logic)

For instance

• D1:
{

√
x

x− 1
> 0

}

|− x ≥ 0 ∧ ¬(x− 1 = 0)

• C1: ∅ |−
√
x

x− 1
> 0 ∨ ¬

(

√
x

x− 1
> 0

)

∨ ¬(x ≥ 0 ∧ ¬(x− 1 = 0))

If the system is not contradictory

• that is, if Γ 6|− F

• please recall that
⌊

¬ϕ
⌉

is
⌊

ϕ
⌉

⇒ C1 and D1 make precisely one of ϕ, ¬ϕ, and ¬
⌊

ϕ
⌉

hold

⇒ each claim yields precise one of T, F, and U for each binding

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 11/19

Rules for conjunction and disjunction:

∧-I: {ϕ, ψ} |− ϕ ∧ ψ

∧-E1: {ϕ ∧ ψ} |− ϕ

∧-E2: {ϕ ∧ ψ} |− ψ

∨-I1: {ϕ} |− ϕ ∨ ψ

∨-I2: {ψ} |− ϕ ∨ ψ

∨-E: If Γ ∪ {ϕ} |− χ and Γ ∪ {ψ} |− χ, then Γ ∪ {ϕ ∨ ψ} |− χ

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 12/19

Rules of equality:

=-1: {
⌊

t
⌉

} |− t = t

=-2: If f is an n-ary function symbol and 1 ≤ i ≤ n, then

{ti = t′
i
,
⌊

f(t1, . . . , tn)
⌉

} |− f(t1, . . . , tn) = f(t1, . . . , ti−1, t
′

i
, ti+1, . . . , tn)

=-3: If ϕ(x1, . . . , xn) is a formula, 1 ≤ i ≤ n and ti and t′
i

are free for xi in ϕ, then

{ti = t′
i
, ϕ(t1, . . . , tn)} |− ϕ(t1, . . . , ti−1, t

′

i
, ti+1, . . . , tn)

For instance

• =-1:
{

x ≥ 0 ∧ ¬(x− 1 = 0)
}

|−
√
x

x− 1
=

√
x

x− 1

• =-2:
{

x = z + 1, x ≥ 0 ∧ ¬(x− 1 = 0)
}

|−
√
x

x− 1
=

√
x

z + 1− 1

Comments

• =-1 and =-2 were tailored to not prove an undefined term equivalent to something

• by definition,
⌊

f(t1, . . . , tn)
⌉

yields
⌊

t1
⌉

, . . . ,
⌊

tn
⌉

• by D1, ti = t′
i

implies
⌊

ti = t′
i

⌉

, which is
⌊

ti
⌉

∧
⌊

t′
i

⌉

, so
⌊

t′
i

⌉

• =-3 need only be assumed for relations, but proving that is too long and dull

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 13/19

Rules for quantifiers:

∀-E: If t is free for x in ϕ, then {
⌊

t
⌉

, ∀x : ϕ(x)} |− ϕ(t)

∀-I: If Γ |− ϕ(x) and x does not occur free in Γ, then Γ |− ∀x : ϕ(x)

∃-I: If t is free for x in ϕ, then {ϕ(t)} |− ∃x : ϕ(x)

∃-E: If Γ ∪ {ϕ(y)} |− ψ and y does not occur in Γ, ∃x : ϕ(x), nor in ψ,

then Γ ∪ {∃x : ϕ(x)} |− ψ

Comments

• ∀-E was tailored to not prove anything about undefined terms

• variable symbols are never undefined, so ∀-I and ∃-E need not be tailored

• ∃-I need not be {ϕ(t),
⌊

t
⌉

} |− ∃x : ϕ(x)
– if t is undefined but ϕ(t) is not, then by regularity ∀x : ϕ(x) holds

Only 5 differences from binary logic!

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 6 Sound and Complete Proof System 14/19

7 Completeness Proof

We use Henkin’s strategy: prove that every consistent theory has a model

⇒ if Γ 6|− ϕ, then Γ ∪ {¬ϕ} has a model, so ϕ is not a semantic consequence of Γ

• therefore, we assume from now on Γ 6|− F

Lemma There is Γ′ such that

• Γ′ 6|− F

• both or neither of Γ and Γ′ have a model

• infinitely many variable symbols are unused in Γ′

• for every bound x in Γ′ there is an x′ such that its only occurrence in Γ′ is x = x′

Proof Replace each vi in Γ by v3i and add the v3i = v3i−1. ✷

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 7 Completeness Proof 15/19

Choose true formulas, introduce witnesses

• let Γ0 := Γ′

• for every formula ϕi, construct Γi

if ϕi form Γi := Γi−1 ∪
Γi−1 ∪ {

⌊

ϕi

⌉

} |− F {¬
⌊

ϕi

⌉

}
Γi−1 ∪ {ϕi} 6|− F is ∃x : ψ(x) {ϕi, ψ(y)}
Γi−1 ∪ {¬ϕi} 6|− F is ∀x : ψ(x) {¬ϕi,¬ψ(y)}
Γi−1 ∪ {ϕi} 6|− F not ∃x : ψ(x) {ϕi}
Γi−1 ∪ {¬ϕi} 6|− F not ∀x : ψ(x) {¬ϕi}

• let Γω := Γ0 ∪ Γ1 ∪ · · ·
Lemma

• Γ′ = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γω

• Γω 6|− F

• for each ϕ, precisely one of ϕ, ¬ϕ and ¬
⌊

ϕ
⌉

is in Γω

• for each ϕ, precisely one of
⌊

ϕ
⌉

and ¬
⌊

ϕ
⌉

is in Γω

• for each t, precisely one of
⌊

t
⌉

and ¬
⌊

t
⌉

is in Γω

• Γω |− ϕ if and only if ϕ ∈ Γω

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 7 Completeness Proof 16/19

Theorem Γω has a model

Proof

• elements of the universe are
– equivalence classes of terms for which

⌊

t
⌉

∈ Γω, induced by the t = t′ in Γω

– ⊥ for the remaining terms

• nothing depends on the choice of the representative of each equivalence class
– where necessary, use v3i−1 to make terms free for x

∈ Γω ϕ ¬ϕ ¬
⌊

ϕ
⌉

truth value of ϕ T F U

• some routine arguments

• lots of dull reasoning using the proof system ✷

Corollary Both Γ′ and Γ have a model

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 7 Completeness Proof 17/19

8 Extension to Lukasiewicz Logic

 Lukasiewicz: U L→ U yields T and U L↔ U yields T

• that P yields U can be expressed as (P L→ ¬P) ∧ (¬P L→ P)

• all truth functions {F,U,T}n → {F,U,T} can be expressed

This reduces to the earlier case by replacing each

ϕ
 L→ ψ

by

¬ϕ ∨ ψ ∨ ¬(
⌊

ϕ
⌉

∨
⌊

ψ
⌉

)

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 8 Extension to Lukasiewicz Logic 18/19

9 Conclusions

Key ideas

• ⇒ and ⇔ are employed to express school reasoning
– cannot be interpreted as propositional operators

• 1

0
, etc., are not treated as values

– variables are never undefined, terms may be

• the intuitive notion “is defined” is encoded as mechanical rules
– “is defined” is itself always defined

• regularity simplifies things

• for each ϕ, the model contains precisely one of ϕ, ¬ϕ and ¬
⌊

ϕ
⌉

– correspondingly ϕ yields T, F or U

Many practical reasoning laws have been developed

• would be a topic for another talk

Thank you for attention! Questions?

AV A Completeness Proof for A Predicate Logic with Undefined . . . 2020-01-03 9 Conclusions 19/19

