A Completeness Proof for A Predicate Logic with Undefined Truth Value

Antti Valmari \& Esko Turunen
University of Jyväskylä \& Tampere University

1 Motivation of Our Logic
2 Earlier Logics
3 Guiding Principles of Our Logic
4 "Is Defined" -Formulas
5 An Example
6 Sound and Complete Proof System
7 Completeness Proof
8 Extension to Łukasiewicz Logic
9 Conclusions

1 Motivation of Our Logic

All examples are on \mathbb{R}
It seems natural to express case analysis with propositional operators:

$$
\begin{aligned}
& 1+\sqrt{|x|}=|x-1| \\
& \Leftrightarrow \\
& \Leftrightarrow \\
& \left\{\begin{aligned}
(x<0 & \wedge 1+\sqrt{-x}=-x+1) \\
(0 \leq x<1 & \wedge 1+\sqrt{x}=-x+1) \\
(1 \leq x & \wedge 1+\sqrt{x}=x-1)
\end{aligned}\right. \\
& \Leftrightarrow
\end{aligned}
$$

When $x=4$, the first and last lines are clearly true \ldots
... but what does the second line mean?

$$
4<0 \wedge 1+\sqrt{-4}=-4+1
$$

We want to write $\frac{6}{x-1}=x \Leftrightarrow x=-2 \vee x=3$, how to make it okay?

- when $x=1$, it yieds undefined \Leftrightarrow false

2 Earlier Logics

Problem: undefined should sometimes behave like F, but its negation must not yield T Many diverse approaches exist

Example: Formal software development method Z

- each closed formula is either T or F , but we do not always know which one
- $4<0 \wedge 1+\sqrt{-4}=-4+1 \Leftrightarrow \mathrm{~F} \wedge X \Leftrightarrow \mathrm{~F}$
- we do not know if $x=1$ is a root of $\frac{6}{x-1}=x$
- $x \neq 1 \wedge \frac{6}{x-1}=x \Leftrightarrow x=-2 \vee x=3$ is valid in Z , but \ldots
-... I was taught at school $\frac{6}{x-1}=x \Leftrightarrow x \neq 1 \wedge 6=x(x-1) \Leftrightarrow x=-2 \vee x=3$

Example: Formal software development method VDM

- evaluation of an undefined term is never finished
- U denotes that the evaluation of a truth value is never finished
- because $F \wedge F \Leftrightarrow T \wedge F \Leftrightarrow F$, we have $U \wedge F \Leftrightarrow F$
\Rightarrow Kleene's ternary logic

\neg		\wedge	F U T	\checkmark	F U T	\rightarrow	F U T	\leftrightarrow	F U T
F	T	F	F F F	F	F U T	F	T T T	F	TU F
U	U	U	F U U	U	U U T	U	U U T	U	U U U
T	F	T	F U T	T	T T T	T	F U T	T	F U T

- $4<0 \wedge 1+\sqrt{-4}=-4+1 \Leftrightarrow F \wedge U \Leftrightarrow F$
- $x \neq 1 \wedge \frac{6}{x-1}=x \Leftrightarrow x=-2 \vee x=3$ is valid also in VDM
- it is undefined if $x=1$ is a root of $\frac{6}{x-1}=x$

Regularity

- either $\varphi(\ldots, \mathrm{U}, \ldots)$ yields U or $\varphi(\ldots, P, \ldots)$ does not depend on P
\Rightarrow cannot express " P yields U"

3 Guiding Principles of Our Logic

Function symbols are strict

- if t_{i} is undefined, then $f\left(\ldots, t_{i}, \ldots\right)$ is undefined
- e.g., $1+\frac{x}{0}$ is undefined

A relation yields U if and only if at least one argument is undefined

- in particular, $t=t^{\prime}$ yields U if and only if t or t^{\prime} or both are undefined
- "only if"-part is only technical convenience

The negation of any undefined claim is undefined

- if $x=0$, then both $\frac{1}{x} \geq 0$ and $\frac{1}{x}<0$ yield U

Variables are always defined, terms may be undefined

- e.g., $x=x \Leftrightarrow \mathrm{~T}$, but $\frac{1}{x}=\frac{1}{x} \Leftrightarrow x \neq 0$
- e.g., $\exists x: x=0 \Leftrightarrow \mathrm{~T}$, but $\exists x: x=\frac{1}{0} \Leftrightarrow \mathrm{U} \Leftrightarrow \mathrm{F}$

The symbol \Rightarrow is not a propositional operator but a reasoning operator

- $\mathrm{U} \Leftrightarrow \mathrm{F}$, so $\frac{6}{x-1}=x \Leftrightarrow x=-2 \vee x=3$ and $x=1$ is not a root of $\frac{6}{x-1}=x$
- $\neg\left(\frac{1}{x}>0 \Rightarrow x>0\right)$ is a syntax error, so we cannot derive $x \leq 0 \Rightarrow \frac{1}{x} \leq 0$
- we no longer have " $\varphi \Rightarrow \psi$ is valid if and only if $\neg \varphi \vee \psi$ is a tautology"
- actually, it is questionnable whether we ever really had it
- e.g., $x(x-|x|)=18$
case $x<0: x(x--x)=18 \Leftrightarrow 2 x^{2}=18 \Leftrightarrow x=-3$
case $x \geq 0: x(x-x)=18 \Leftrightarrow 0=18 \Leftrightarrow \mathrm{~F}$

\rightarrow	F U T		\Rightarrow
	F U T		
F T T	F	$\sqrt{ } \sqrt{ } \sqrt{ }$	
U	U U T		U
T	F U T $\sqrt{ } \sqrt{ }$		
		T	$--\sqrt{ }$

\leftrightarrow	$F U T$
F	$T \cup U F$
U	$U \cup U$
T	$F \cup T$

- beyond an example later on, \Rightarrow and \Leftrightarrow are not studied in this talk
- their laws are studied elsewhere
- regularity simplifies some of them

To argue that our logic is healthy, we will present a sound and complete proof system

4 "Is Defined" -Formulas

Terms, formulas, etc., are defined as usually, except $\Rightarrow, \Leftrightarrow, \rightarrow$, and \leftrightarrow are left out

- $\varphi \rightarrow \psi$ and $\varphi \leftrightarrow \psi$ may be defined as $\neg \varphi \vee \psi$ and $(\varphi \wedge \psi) \vee \neg(\varphi \vee \psi)$

Every function symbol f has an associated formula $\lfloor f\rceil$ that specifies when f is defined

- e.g., $\lfloor\sqrt{x}\rceil$ is $x \geq 0$ (literally!)
- e.g., $\left\lfloor\frac{x}{y}\right\rceil$ is $\neg(y=0)$ (literally!)
- $\lfloor f\rceil\left(x_{1}, \ldots, x_{n}\right)$ must always be defined (but $\lfloor f\rceil\left(t_{1}, \ldots, t_{n}\right)$ need not)
- e.g., $\lfloor f\rceil$ uses no function symbols (or only total function symbols)

The $\lfloor f\rceil$ are given (i.e., reside in axioms and proof rules)

- e.g., $\forall x: \forall y: \neg(\neg(y=0)) \vee \frac{x}{y} \cdot y=x$
- e.g., $\{\neg(x=0)\} \vdash \frac{x+1}{x}=\frac{x+1}{x}$

The $\lfloor f\rceil$ generate $\lfloor t\rceil$ and $\lfloor\varphi\rceil$ as follows
A function invocation is defined iff every argument is and the function itself is

$$
\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil \text { means }\left\lfloor t_{1}\right\rceil \wedge \cdots \wedge\left\lfloor t_{n}\right\rceil \wedge\lfloor f\rceil\left(t_{1}, \ldots, t_{n}\right)
$$

- constant and variable symbols are always defined; e.g., $\lfloor x\rceil$ is $\lfloor 3\rceil$ is T
- e.g., $\left\lfloor\frac{x}{\sqrt{y}}\right\rceil$ is $\mathrm{T} \wedge(\mathrm{T} \wedge y \geq 0) \wedge \neg(\sqrt{y}=0)$

A relation invocation is defined iff every argument is

$$
\begin{gathered}
\left\lfloor R\left(t_{1}, \ldots, t_{n}\right)\right\rceil \text { means }\left\lfloor t_{1}\right\rceil \wedge \cdots \wedge\left\lfloor t_{n}\right\rceil \\
\left\lfloor t=t^{\prime}\right\rceil \text { means }\lfloor t\rceil \wedge\left\lfloor t^{\prime}\right\rceil
\end{gathered}
$$

Propositional rules

- $\lfloor F\rceil$ is $\lfloor T\rceil$ is T
- $\lfloor\neg \varphi\rceil$ is $\lfloor\varphi\rceil$
- $\lfloor\varphi \wedge \psi\rceil$ is $(\lfloor\varphi\rceil \wedge\lfloor\psi\rceil) \vee(\lfloor\varphi\rceil \wedge \neg \varphi) \vee(\lfloor\psi\rceil \wedge \neg \psi)$
- $\lfloor\varphi \vee \psi\rceil$ is $(\lfloor\varphi\rceil \wedge\lfloor\psi\rceil) \vee(\lfloor\varphi\rceil \wedge \varphi) \vee(\lfloor\psi\rceil \wedge \psi)$

Quantifier rules

- $\lfloor\forall x: \varphi(x)\rceil$ is $(\forall x:\lfloor\varphi(x)\rceil) \vee \exists x:\lfloor\varphi(x)\rceil \wedge \neg \varphi(x)$
- $\lfloor\exists x: \varphi(x)\rceil$ is $(\forall x:\lfloor\varphi(x)\rceil) \vee \exists x:\lfloor\varphi(x)\rceil \wedge \varphi(x)$
$\lfloor\cdots\rceil$ is not an operator in the language, but an abbreviation
- given $t,[t\rceil$ can be constructed automatically
- given $\varphi,[\varphi\rceil$ can be constructed automatically

For each $\varphi: \mathbb{D}^{n} \rightarrow\{\mathrm{~F}, \mathrm{U}, \mathrm{T}\}$ there is $\lfloor\varphi\rceil: \mathbb{D}^{n} \rightarrow\{\mathrm{~F}, \mathrm{~T}\}$ that yields F iff φ yields U , but there is no $\chi:\{\mathrm{F}, \mathrm{U}, \mathrm{T}\} \rightarrow\{\mathrm{F}, \mathrm{T}\}$ such that each $\lfloor\varphi\rceil$ can be expressed as $\chi(\varphi)$

5 An Example

Thanks to regularity, the following is sound:
Assume $\lfloor t\rceil \Rightarrow t=t^{\prime}$ and $\lfloor t\rceil \Rightarrow \chi \Rightarrow\lfloor t\rceil \vee \neg\left\lfloor t^{\prime}\right\rceil$

- if $R(t)$ is in the scope of an even number of negations, then $\varphi(R(t)) \Leftrightarrow \varphi\left(\chi \wedge R\left(t^{\prime}\right)\right)$
- if $R(t)$ is in the scope of an odd number of negations, then $\varphi(R(t)) \Leftrightarrow \varphi\left(\neg \chi \vee R\left(t^{\prime}\right)\right)$

Let

- $t=\frac{6}{x-1}(x-1)$
- $t^{\prime}=6$
- χ be $\lfloor t\rceil$ (which is $x \neq 1$)
- $\varphi(R(t))$ be $R(t)$ be $t=x(x-1)$

We get

$$
\frac{6}{x-1}=x \Leftrightarrow \frac{6}{x-1}(x-1)=x(x-1) \Leftrightarrow x \neq 1 \wedge 6=x(x-1)
$$

6 Sound and Complete Proof System

Notation

- φ, ψ, χ are formulas
- Γ, Δ are sets of formulas
- x, x_{i}, y are variable symbols
- t, t_{i}, t_{i}^{\prime} are terms

Rules about reasoning in general:
P1: $\{\varphi\} \mid-\varphi$
P2: If $\Gamma \mid \varphi$ then $\Gamma \cup \Delta \mid-\varphi$
P3: If $\Gamma \mid-\varphi$ and $\Gamma \cup\{\varphi\} \mid-\psi$, then $\Gamma \mid-\psi$

The Law of the Excluded Fourth and the concept of contradiction:
C1: $\emptyset \mid-\varphi \vee \neg \varphi \vee \neg\lfloor\varphi\rceil$
(this replaces the Law of Excluded Middle)
C2: $\{F\} \mid-\varphi$
C3: $\{\varphi, \neg \varphi\} \mid-\mathrm{F}$
If a formula is true, then it is also defined:
D1: $\{\varphi\} \mid-\lfloor\varphi\rceil$
(this does not exist in classical logic)
For instance

- D1: $\left\{\frac{\sqrt{x}}{x-1}>0\right\} \vdash x \geq 0 \wedge \neg(x-1=0)$
- C1: $\emptyset-\frac{\sqrt{x}}{x-1}>0 \vee \neg\left(\frac{\sqrt{x}}{x-1}>0\right) \vee \neg(x \geq 0 \wedge \neg(x-1=0))$

If the system is not contradictory

- that is, if $\Gamma \nvdash \mathrm{F}$
- please recall that $\lfloor\neg \varphi\rceil$ is $\lfloor\varphi\rceil$
$\Rightarrow \mathrm{C} 1$ and D1 make precisely one of $\varphi, \neg \varphi$, and $\neg\lfloor\varphi\rceil$ hold
\Rightarrow each claim yields precise one of T, F, and U for each binding

Rules for conjunction and disjunction:
$\wedge-\mathbf{I}:\{\varphi, \psi\} \mid-\varphi \wedge \psi$
$\wedge-\mathbf{E 1}:\{\varphi \wedge \psi\} \mid-\varphi$
$\wedge-\mathbf{E 2}:\{\varphi \wedge \psi\} \mid-\psi$
V-II: $\{\varphi\} \mid-\varphi \vee \psi$
V-I2: $\{\psi\} \mid-\varphi \vee \psi$
V-E: If $\Gamma \cup\{\varphi\} \mid-\chi$ and $\Gamma \cup\{\psi\} \mid-\chi$, then $\Gamma \cup\{\varphi \vee \psi\} \mid-\chi$

Rules of equality:

$=-\mathbf{1}:\{\lfloor t\} \mid-t=t$
$=-2$: If f is an n-ary function symbol and $1 \leq i \leq n$, then

$$
\left\{t_{i}=t_{i}^{\prime},\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil\right\} \vdash f\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

=-3: If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula, $1 \leq i \leq n$ and t_{i} and t_{i}^{\prime} are free for x_{i} in φ, then

$$
\left\{t_{i}=t_{i}^{\prime}, \varphi\left(t_{1}, \ldots, t_{n}\right)\right\} \vdash \varphi\left(t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{n}\right)
$$

For instance

- =-1: $\{x \geq 0 \wedge \neg(x-1=0)\} \vdash \frac{\sqrt{x}}{x-1}=\frac{\sqrt{x}}{x-1}$
- =-2: $\{x=z+1, x \geq 0 \wedge \neg(x-1=0)\} \vdash \frac{\sqrt{x}}{x-1}=\frac{\sqrt{x}}{z+1-1}$

Comments

- $=-1$ and $=-2$ were tailored to not prove an undefined term equivalent to something
- by definition, $\left\lfloor f\left(t_{1}, \ldots, t_{n}\right)\right\rceil$ yields $\left\lfloor t_{1}\right\rceil, \ldots,\left\lfloor t_{n}\right\rceil$
- by D1, $t_{i}=t_{i}^{\prime}$ implies $\left\lfloor t_{i}=t_{i}^{\prime}\right\rceil$, which is $\left\lfloor t_{i}\right\rceil \wedge\left\lfloor t_{i}^{\prime}\right\rceil$, so $\left\lfloor t_{i}^{\prime}\right\rceil$
- =-3 need only be assumed for relations, but proving that is too long and dull

Rules for quantifiers:
\forall - \mathbf{E} : If t is free for x in φ, then $\{\lfloor t\rceil, \forall x: \varphi(x)\} \mid-\varphi(t)$
\forall-I: If $\Gamma \vdash \varphi(x)$ and x does not occur free in Γ, then $\Gamma \vdash \forall x: \varphi(x)$
\exists-I: If t is free for x in φ, then $\{\varphi(t)\} \mid-\exists x: \varphi(x)$
\exists-E: If $\Gamma \cup\{\varphi(y)\} \mid-\psi$ and y does not occur in $\Gamma, \exists x: \varphi(x)$, nor in ψ, then $\Gamma \cup\{\exists x: \varphi(x)\} \vdash \psi$
Comments

- \forall - E was tailored to not prove anything about undefined terms
- variable symbols are never undefined, so \forall-I and \exists-E need not be tailored
- $\exists-\mathrm{I}$ need not be $\{\varphi(t),\lfloor t\rceil\} \vdash \exists x: \varphi(x)$
- if t is undefined but $\varphi(t)$ is not, then by regularity $\forall x: \varphi(x)$ holds

Only 5 differences from binary logic!

7 Completeness Proof

We use Henkin's strategy: prove that every consistent theory has a model \Rightarrow if $\Gamma \nvdash \varphi$, then $\Gamma \cup\{\neg \varphi\}$ has a model, so φ is not a semantic consequence of Γ

- therefore, we assume from now on $\Gamma \nvdash \mathrm{F}$

Lemma There is Γ^{\prime} such that

- $\Gamma^{\prime} \nvdash \mathrm{F}$
- both or neither of Γ and Γ^{\prime} have a model
- infinitely many variable symbols are unused in Γ^{\prime}
- for every bound x in Γ^{\prime} there is an x^{\prime} such that its only occurrence in Γ^{\prime} is $x=x^{\prime}$

Proof Replace each v_{i} in Γ by $v_{3 i}$ and add the $v_{3 i}=v_{3 i-1}$.

Choose true formulas, introduce witnesses

- let $\Gamma_{0}:=\Gamma^{\prime}$
- for every formula φ_{i}, construct Γ_{i}

if	φ_{i} form	$\Gamma_{i}:=\Gamma_{i-1} \cup$
$\Gamma_{i-1} \cup\left\{\left\lfloor\varphi_{i}\right\rceil\right\} \vdash \mathrm{F}$		$\left\{\neg\left\lfloor\varphi_{i}\right\rceil\right\}$
$\Gamma_{i-1} \cup\left\{\varphi_{i}\right\}$	F	is $\exists x: \psi(x)$
$\Gamma_{i-1} \cup\left\{\neg \varphi_{i}\right\} \nvdash \mathrm{F}$	is $\forall x: \psi(x)$	$\left\{\neg \varphi_{i}, \psi(y)\right\}$
$\Gamma_{i-1} \cup\left\{\varphi_{i}\right\}$	$\nvdash \mathrm{F}$	not $\exists x: \psi(x)\}$
$\Gamma_{i-1} \cup\left\{\neg \varphi_{i}\right\} \nvdash \mathrm{F}$	not $\forall x: \psi(x)$	$\left\{\varphi_{i}\right\}$
$\left\{\neg \varphi_{i}\right\}$		

- let $\Gamma_{\omega}:=\Gamma_{0} \cup \Gamma_{1} \cup \cdots$

Lemma

- $\Gamma^{\prime}=\Gamma_{0} \subseteq \Gamma_{1} \subseteq \cdots \subseteq \Gamma_{\omega}$
- $\Gamma_{\omega} \nvdash \mathrm{F}$
- for each φ, precisely one of $\varphi, \neg \varphi$ and $\neg\lfloor\varphi\rangle$ is in Γ_{ω}
- for each φ, precisely one of $\lfloor\varphi\rceil$ and $\neg\lfloor\varphi\rangle$ is in Γ_{ω}
- for each t, precisely one of $[t\rceil$ and $\neg[t\rceil$ is in Γ_{ω}
- $\Gamma_{\omega} \mid-\varphi$ if and only if $\varphi \in \Gamma_{\omega}$

Theorem Γ_{ω} has a model

Proof

- elements of the universe are
- equivalence classes of terms for which $\lfloor t\rceil \in \Gamma_{\omega}$, induced by the $t=t^{\prime}$ in Γ_{ω}
$-\perp$ for the remaining terms
- nothing depends on the choice of the representative of each equivalence class
- where necessary, use $v_{3 i-1}$ to make terms free for x

$\in \Gamma_{\omega}$	φ	$\neg \varphi$	$\neg\lfloor\varphi\rceil$
truth value of φ	T	F	U

- some routine arguments
- lots of dull reasoning using the proof system

Corollary Both Γ^{\prime} and Γ have a model

8 Extension to Łukasiewicz Logic

Łukasiewicz: $\mathrm{U} \xrightarrow{\mathrm{L}} \mathrm{U}$ yields T and $\mathrm{U} \stackrel{\bigsqcup}{\leftrightarrows} \mathrm{U}$ yields T

- that P yields U can be expressed as $(P \xrightarrow{\text { Ł }} \neg P) \wedge(\neg P \xrightarrow{\text { Ł }} P)$
- all truth functions $\{\mathrm{F}, \mathrm{U}, \mathrm{T}\}^{n} \rightarrow\{\mathrm{~F}, \mathrm{U}, \mathrm{T}\}$ can be expressed

This reduces to the earlier case by replacing each

$$
\varphi \xrightarrow{ \pm} \psi
$$

by

$$
\neg \varphi \vee \psi \vee \neg(\lfloor\varphi\rceil \vee\lfloor\psi\rceil)
$$

9 Conclusions

Key ideas

- \Rightarrow and \Leftrightarrow are employed to express school reasoning
- cannot be interpreted as propositional operators
- $\frac{1}{0}$, etc., are not treated as values
- variables are never undefined, terms may be
- the intuitive notion "is defined" is encoded as mechanical rules
- "is defined" is itself always defined
- regularity simplifies things
- for each φ, the model contains precisely one of $\varphi, \neg \varphi$ and $\neg\lfloor\varphi\rceil$
- correspondingly φ yields T, F or U

Many practical reasoning laws have been developed

- would be a topic for another talk

Thank you for attention! Questions?

