
More Stubborn Set Methods
for Process Algebras

Congratulations to Bill !

Antti Valmari
Tampere University of Technology

Department of Mathematics

1 Introduction

2 Intuition of Stubborn Sets

3 Why More Than One Method?

4 Tree Failures and Fair Testing

5 System Model

6 Definition of Stubborn Sets

7 Construction of Stubborn Sets

8 Why Disabled Actions in Stubborn?

9 The Famous Cycle Condition

10 Terminal SC Conditions

11 Automata-Theoretic Visibility

12 Insight on the Ignoring Problem

13 Avoiding Terminal SC Conditions

14 Remembering Divergences

15 Discussion

AV More Stubborn Set Methods for Process Algebras 2017-01-10 Table of Contents 0/15

1 Introduction

Stubborn set methods construct reduced
state spaces preserving certain properties

Abbreviated history

‖ =

• basic stubborn sets, algorithm 1988
deadlocks

∃ inf. execution
• safety properties 1989

• linear temporal logic 1990

• nondeterministic actions 1992

⇒ Stubborn Set Methods for Process Algebras 1996

stable failures

CSP failures divergences

traces

chaos-free failures diverg.s

branching bisimilarity

• persistent sets 1990, ample sets 1993

This talk: new results 2015 – 2017

• fair testing equivalence, tree failures ⇒ ordinary failures

• an improvement to the terminal strong component condition for traces and fair t.
– visibility-driven stubborn sets

• automata-theoretic visibility

• how to avoid the costly cycle / terminal sc conditions in many cases

• “remembering” divergencs instead of re-constructing them in later states

AV More Stubborn Set Methods for Process Algebras 2017-01-10 1 Introduction 1/15

2 Intuition of Stubborn Sets

n dining philosophers
trn

rrn

tl1

rl1
‖ tl1

tr1
rl1

rr1

‖
tr1

rr1

tl2

rl2
‖ tl2

tr2
rl2

rr2

‖
tr2

rr2

tl3

rl3
‖ · · · ‖ tln

trn
rln

rrn

trn

rrn

tl1

rl1
‖ tl1

tr1
rl1

rr1

‖
tr1

rr1

tl2

rl2
‖ tl2

tr2
rl2

rr2

‖
tr2

rr2

tl3

rl3
‖ · · · ‖ tln

trn
rln

rrn

trn

rrn

tl1

rl1
‖ tl1

tr1
rl1

rr1

‖
tr1

rr1

tl2

rl2
‖ tl2

tr2
rl2

rr2

‖
tr2

rr2

tl3

rl3
‖ tl3

tr3
rl3

rr3

‖ · · ·

trn

rrn

tl1

rl1
‖ tl1

tr1
rl1

rr1

‖
tr1

rr1

tl2

rl2
‖ tl2

tr2
rl2

rr2

‖
tr2

rr2

tl3

rl3
‖ · · · ‖ tln

trn
rln

rrn

3n − 1 ❀ 3n2 − 3n+ 2 states ❀ 3n− 1 with also symmetries

AV More Stubborn Set Methods for Process Algebras 2017-01-10 2 Intuition of Stubborn Sets 2/15

3 Why More Than One Method?

The basic method preserves all deadlocks and yes/no to “are there infinite executions?”

Not more because

1. the ordering of concurrent events
may be important to the property

– let ei and li denote entering
and leaving a critical section

e1 l1 ‖ e2 l2 = e2

l2

e1 l1
22

e2

l2e1 l1

11 12

21

– this problem is rather mild

– one of the new results addresses this directly

2. there is the
ignoring
problem τ τ ‖

trn

rrn

tl1

rl1
‖ tl1

tr1
rl1

rr1

‖ · · · ‖ tln
trn

rln

rrn

=

· · ·
...
· · ·

τ τ

11· · ·1

21· · ·1

– the basic method may terminate after investigating just the τ -cycle

– this is a tough and versatile one!

– two of the new results address this directly

AV More Stubborn Set Methods for Process Algebras 2017-01-10 3 Why More Than One Method? 3/15

4 Tree Failures and Fair Testing Equivalence

Fair Testing Equivalence [Vogler 1992, Rensink & Vogler 2007]

• is the weakest congruence that preserves ordinary (i.e., not necessarily stable) failures

• is the weakest congruence that preserves AG EF a
– a canonical example of a branching-time property

• the only congruences below it are the traces, the alphabet, and the dullest

• facilitates checking a useful notion of progress without making fairness assumptions

About its definition

• tree failure: like ordinary, but a set of strings is refused

• tree failure equivalence compares them and the alphabets

• fair testing equivalence allows one system to “enter”
the refusal set of the other system and refuse the suffixes

[Valmari & Vogler 2016]: the traditional method that
preserves the traces also preserves fair testing

• a useful notion of progress for no additional cost

• surprising, because branching-time

[2017]: A small variant preserves also tree failures

AV More Stubborn Set Methods for Process Algebras 2017-01-10 4 Tree Failures and Fair Testing Equivalence 4/15

5 System Model

(L̄1 || · · · || L̄N) \ (H ∪ {τ1, . . . , τN})

where

• L̄i are τ -renamed labelled transitions systems (Si, Σ̄i, ∆̄i, ŝi)
– τi is replaced for τ

⇒ each action belongs to a unique set of components

• Vis = (Σ1 ∪ · · · ∪ ΣN) \H

• Inv = H ∪ {τ1, . . . , τN}

• Acts = Vis ∪ Inv

Additional notation

• s −a1 · · · an→ s′ path from s to s′ with also invisible actions listed

• s =a1 · · · an⇒ s′ path from s to s′ with invisible actions not listed

• s −a1 · · · an→ there is s′ such that s −a1 · · · an→ s′

• s −τω→ s diverges

• en(s) = {a | s −a→ in full system} = enabled actions

• eni(s) = {a | s −a→ in L̄i}

AV More Stubborn Set Methods for Process Algebras 2017-01-10 5 System Model 5/15

6 Definition of Stubborn Sets

Reduced LTS: r-states, r-transitions, r-paths, . . .

• put ŝ in Sr

• for each s ∈ Sr, construct A(s) ⊆ Acts
– stubborn set
– for each a and s′, if a ∈ A(s) and s −a→ s′, put s′ in Sr and (s, a, s′) in ∆̄r

Depending on the method, A(s) must satisfy D1, (variant of) D2, and other conditions

D0 if there are enabled actions, A(s) must contain at least one

D1 a ∈ A(), ai /∈ A() and a

a1 · · ·
an

⇒ there is such that a a

a1 · · ·
an

a1 · · ·
an

D2 a ∈ A(), ai /∈ A() and a

a1 · · ·
an

⇒ there is such that a a

a1 · · ·
an

a1 · · ·
an

V if A(s) contains an enabled visible action, then Vis ⊆ A(s)

I if there are enabled invisible actions, A(s) must contain at least one

some condition for preventing ignoring: Sen, SV, L, C3

AV More Stubborn Set Methods for Process Algebras 2017-01-10 6 Definition of Stubborn Sets 6/15

7 Construction of Stubborn Sets

“❀s” ⊆ Acts× Acts

a τ2
v τ1

b u

• if a /∈ en(s), choose i such that L̄i disables a, and make a ❀s b for every b ∈ eni(s)

• if a ∈ en(s), then, for every i such that a ∈ Σ̄i and for every b ∈ eni(s), make a ❀s b

• it does not matter whether a ❀s a

clsr(s, a) = the closure of a w.r.t. “❀s”

• satisfies D1 and D2

• satisfies also V if a ❀s b is added
for every a ∈ Vis ∩ en(s) and b ∈ Vis

gsc(s, a, . . .) = “good strong component”

τ1 v

‖

u τ2

v

b

‖

a

u

a

• finds a ⊆-minimal closed set that contains an enabled action
or replies that such a set does not exist

• additional parameters tune it for future needs
(may be called more than once in the same state)

• O(|❀|)

AV More Stubborn Set Methods for Process Algebras 2017-01-10 7 Construction of Stubborn Sets 7/15

8 Why Disabled Actions in Stubborn Sets?

Only D0, D1, and D2 are obeyed, starting points from left to right

τ1 v

‖

u τ2

v

b

‖

a

u

a

=

τ2 v b

τ2
a

a a a

a a
u τ2

τ1 τ1

τ1 τ1

a

u τ2 v b

a
τ1 τ1

Also V is obeyed, where V = {a, b}

τ2
a

a

a
u τ2

τ1

τ1 τ1

τ2 v b

u τ2 v b

a a a

a
a

τ1

τ1 τ1

• although initially a ∈ V is taken, τ1 is not

⇒ V is better than C2 in ample set theory
– if ample(s) contains an enabled visible action, then ample(s) = en(s)

⇒ Allowing disabled actions in stubborn sets facilitates formulation of better conditions

• and better algorithms: ❀s, gsc

AV More Stubborn Set Methods for Process Algebras 2017-01-10 8 Why Disabled Actions in Stubborn Sets? 8/15

9 The Famous Cycle Condition for Liveness

L For every a ∈ Vis, every r-cycle must contain a state s such that a ∈ A(s)

C3 Every r-cycle must contain a state s such that ample(s) = en(s)

Implementation of C3 [Clarke & al. 1999]

• construct r-states and r-transitions in depth-first order

• if a ∈ ample(s), s −a→ s′, and s′ is in depth-first
stack, choose ample(s) = en(s)

A discouraging example

• try components from left to right

11 12 13

21 22 23

31 32 33

• sticking to a component helps a bit
– [1999] does not tell to do so
– fails badly with 3-dimensional case

τ1

τ1
τ1

‖

τ2

τ2
τ2

=

We can expand s′ instead (Theorem: DFS), seems better

This issue has received too little attention!

• observed in [Evangelista & Pajault 2010] (another example)

• nobody knows how serious it really is

• we are not told how to deal with it

11 12 13

21 22 23

31 32 33

AV More Stubborn Set Methods for Process Algebras 2017-01-10 9 The Famous Cycle Condition for Liveness 9/15

10 Terminal Strong Component Conditions for Safety

Sen For each r-terminal strong component C and each a ∈ en(r)
where r is the root of C, there is s ∈ C such that a ∈ A(s)

SV For each r-terminal strong component C and each a ∈ Vis,
there is s ∈ C such that a ∈ A(s)

a
v

u τ3

τ4

• implemented efficiently using depth-first order and Tarjan’s algorithm

Each suffers from a problem

• Sen may force to fire irrelevant actions
– e.g., when clsr(Vis) = ∅ when preserving traces

• SV may yield big stubborn sets

τ1 ‖
u v

a

‖
τ3

u

‖
τ4

v

‖
τ5

[Valmari & Hansen 2016]: The advantages of Sen and SV can be combined

• consider extending the root r of a terminal strong component

• compute an “enabling-closed” upper approximation VIS(r) of Vis
– if a ∈ VIS(r) \ en(r), choose i such that L̄i disables a,

and add every b ∈ eni(r) to VIS(r)
– try gsc(r, a, . . .) for each a ∈ en(r) ∩ VIS(r) until

r is no longer a root or VIS(r) is exhausted

τ3

τ4

u v

a a

AVMore Stubborn Set Methods for Process Algebras2017-01-1010 Terminal Strong Component Conditions for Safety10/15

11 Automata-Theoretic Visibility

Assume that bad states are recognized immediately

With the trace-preserving method

• Vis = {e1, e2, l1, l2}

e1 l1 ‖ e2 l2 =
e1 l1

l2

l2

e1 l1

e2

e2

11 12

21 22

• V forces e1 ❀ŝ e2 ❀ŝ e1

Using bad to drive analysis

• e1 6❀ŝ e2 6❀ŝ e1
⇒ smaller reduced LTS

e1 l1

bad ‖

e2 l2

bad = l1 e1 l1

e2

l2

l2

12
e1

e2

11

21 22

⇒ Property- and state-dependent “incomplete” visibility suffices

Finite automata

• sufficiently keep track of the state, catch errors on-the-fly

• block irrelevant branches of the LTS

• problem: “if a ∈ en(s), . . . for every b ∈ eni(s), make a ❀s b” acts like V

[Hansen & Valmari 2016]: the automaton need not cause a ❀s b, if every error-detecting
path starting with b in it remains error-detecting if a is added or moved to its front

• implemented by pre-processing the automaton

AV More Stubborn Set Methods for Process Algebras 2017-01-10 11 Automata-Theoretic Visibility 11/15

12 Insight on the Ignoring Problem

Infinite executions

• if traces are preserved and the reduced LTS is finite, then infinite traces are preserved
– König’s Lemma type of reasoning

• I (with D0, D1, D2b, and V) suffices for preserving minimal divergence traces

⇒ the only problematic infinite executions are non-minimal divergence traces
– nothing better is known than cycle conditions

• nothing is known for fairness assumptions

Finite executions

• D0 or gsc(Vis) (with D1, D2r, and V) suffices for traces that lead to stable states
– gsc(s, a, . . .) for each a ∈ Vis until an enabled action is found or Vis is exhausted

• the only problematic case is permanently diverging states
– s is permanently diverging iff every state reachable from s is diverging
– that is, no stable state is reachable from s

⇒ without S and L,
– either all traces (and fair testing and . . .) are preserved,
– or the method tells that the system may reach a permanently diverging state

⇒ if we want the system not to have such states, S is not needed

AV More Stubborn Set Methods for Process Algebras 2017-01-10 12 Insight on the Ignoring Problem 12/15

13 Avoiding Terminal Strong Component Conditions

So the following works for traces, fair testing equivalence, and so on

• construct a reduced LTS using gsc(Vis)

• if the result contains a terminal strong component that is not a deadlock and
does not contain occurrences of visible actions, fix the system and try again

It seems that the actions in the component could be permanently
frozen and gsc(Vis) executed again, but this is future research

For the time being: Stop It, and Be Stubborn! [Valmari 2015]

• add stop-transitions to terminal states to chosen states of chosen L̄i

– they model clients deciding not to request for service
– often this has to be done anyway, to not lose certain progress errors

• compute the reduced LTS

• if it contains a terminal sc that is not a deadlock, go back to first step
– or of the above kind

• otherwise remove its stop-transitions

Deadlocks automatically guarantee Sen and SV

This trick works also for some liveness properties

AVMore Stubborn Set Methods for Process Algebras2017-01-1013 Avoiding Terminal Strong Component Conditions13/15

14 Remembering Divergences

I may force to construct “the
same” divergence many times

Solution (new):

τ1 τ1 ‖ a b =
a b

a b

τ1 τ1 τ1 τ1 τ1 τ1

• obey D0, D1, D2, V, and L

– D0 and D2 may be weakened a bit

• store the union of A(s) ∩ en(s) of the states of the cycle to each state of the cycle
– a state may have many div-sets
– (or, to simplify implementation, at most one)

• when constructing a new r-state s′ via s −a→ s′, copy from s the div-sets that lack a

• apply I on states where divergence matters that have no div-sets

By D2, each state with div-sets diverges

Example

• assume divergence matters always after a

• it is remembered after b
a b

τ1 τ1 τ1 τ1

a b

τ1 τ1

{τ1} {τ1}

{τ1}

AV More Stubborn Set Methods for Process Algebras 2017-01-10 14 Remembering Divergences 14/15

15 Discussion

The conditions in the present talk have the following roles:

• permutation correctness conditions: D1, V

• idling correctness conditions: variants of D2

• driving force: D0, the new S, I

• useful progress guarantee: variants of S, L

Most results of the talk are about avoiding progressing in a useless direction

• save from some state sub-explosions

The fair testing (and tree failures) result provides a useful
fairness notion with surprisingly little additional cost

• the first realistic ample / persistent / stubborn set method for fairness

• surprising step towards branching time

Thank you for attention!
Questions?

AV More Stubborn Set Methods for Process Algebras 2017-01-10 15 Discussion 15/15

