
FYSS5120

Efficient Numerical Programming

Department of Physics

Vesa Apaja

October 16, 2023

Contents

1 Course itinerary 12
1.1 Relation to other courses in JYU . 13
1.2 Popularity of programming languages . 14

2 Version control using git 15
A simple do - undo test . 17

3 Python 21
3.1 About Python . 21
3.2 Installation . 21

3.2.1 Linux . 21
3.2.2 Windows 10 . 22
3.2.3 Python 3 vs. Python 2 . 23

3.3 Python package managers . 24
3.3.1 pip package manager . 25
3.3.2 Conda and Anaconda . 27

Conda channels . 28
3.4 Spyder, the scientific Python IDE . 29

3.4.1 Where does Python search for modules? . 30
How to exclude packages under .local . 31

3.4.2 Python (virtual) environments . 32
Basic Python virtual environment . 32
pip freeze . 33
Conda environments . 33

3.4.3 Spyder, iPython, Jupyter Notebook, and Jupyter Lab . 35
Jupyter Lab . 36

3.5 Updating Python packages . 38

2

3.5.1 Updating Python packages using pip package manager . 38
3.5.2 Updating Python packages using conda package manager . 39

Troubleshooting . 40
3.6 Python file extentions . 41
3.7 Timing and watching memory usage . 42

3.7.1 Timing with the timeit module . 42
Detailed profiling of short-running Python codes . 42
Detailed profiling of long-running Python codes . 43

3.7.2 Timing and watching memory usage in iPython . 44
3.8 General advice to speed up Python . 46
3.9 List comprehensions . 47

How fast is list comprehension? . 49
Nitpicking: What makes list comprehension sometimes faster than for-loops? 50

3.10 String concatenation . 51
3.11 Counting hashable objects . 52
3.12 Sorting . 54

3.12.1 Sorting by a key . 54
3.12.2 Sorting by a key in a given element . 55
3.12.3 NumPy Sorting . 56

3.13 Arbitrary precision calculations . 59
3.13.1 Large integers . 59
3.13.2 Long floats with mpmath . 60

3.14 Advanced unpacking . 62
3.14.1 A word about function arguments . 62
3.14.2 The beauty of the extended call syntax: *args and **kwargs . 62

Using *args to absord extra arguments . 64
3.15 Decorators . 66

3.15.1 Python preprocessing and adding code for debugging . 67
3.15.2 Turning a decorator on/off using python -O . 69

3

Decorator classes . 73
3.15.3 dataclass decorator . 74
3.15.4 Cache decorator . 75
3.15.5 Decorators with arguments . 79

3.16 Iterables, generators and yield . 80
3.16.1 Generator for watching a file . 84
3.16.2 Generator pipelines . 85

3.17 The versatile underscore . 87
3.18 Underscores in Python names . 88

3.18.1 Magic methods . 89
3.18.2 Context managers . 93

Generators in context managers . 94
Example of a context manager . 96

3.19 Coroutines . 98
3.20 Delegating work to subgenerators with yield from . 102
3.21 Changing behaviour of a library class method . 102

Curiosity: Poking a method to a class . 103
Curiosity: Poking an attribute to an object . 104

3.22 Curiosity: Making sure only one class instance can be created: Singleton . 105
3.23 NumPy random numbers and seeds . 109

Sequential code . 111
Parallel code . 112

3.24 Debugging Python segmentation fault . 118
3.25 Pattern matching with match-case in Python version 3.10 - and a warning . 119
3.26 The Property decorator . 121

4 Simulation and Measurements in Python 125

5 Python Serialization 130

4

6 Matplotlib 133
6.0.1 Updating a plot by clicking it . 135
6.0.2 Matplotlib backends and how plots are viewed . 136

7 NumPy 137
7.1 Matrix product and elementwise product . 137
7.2 Dot product calculated three ways . 139
7.3 NumPy BLAS . 142

FlexiBLAS . 143
Intel OneAPI and MKL . 145
Conda Intel Python environment . 147

7.4 BLAS and speed . 148
Intel and AMD Zen Architecture . 149
Where did Cholesky decomposition spend time? . 149

7.4.1 Blis BLAS library . 152
7.5 View, and deep or shallow copy . 154

7.5.1 Copying Python lists . 154
7.5.2 Converting 2D data: numpy.matrix ↔ numpy.array without copying . 157
7.5.3 NumPy arrays: Copying data or Changing View? . 158
7.5.4 NumPy: ndarray.resize() or numpy.resize()? . 160

NumPy method .resize() . 160
NumPy function resize() . 161

7.5.5 More array slicing . 162
7.5.6 Curiosity: How to set temporary NumPy print options . 163

7.6 NumPy matrix operations . 166
Linear regression . 169

7.7 NumPy broadcasting instead of for-loops . 170
Adding a dimension to an array . 174

7.8 NumPy einsum tensor operations . 178
7.8.1 Computing Di =

∑
j AiBij . 178

5

Using NumPy broadcasting and sum . 178
Using NumPy einsum . 179

7.8.2 Potential energy calculation with NumPy einsum . 180
7.8.3 einsum optimization . 181

NumPy einsum promotion problem . 183

8 SciPy 184
8.1 SciPy robust regression . 184

8.1.1 Simplified Function Interface with functools.partial . 188

9 Pandas 188

10 NumExrp 190

11 Numba 191
11.1 Numba jit options . 192
11.2 About NumPy, Numba, and NumExpr . 192

12 Machine learning with Python 196
12.1 Fully connected, dense neural network . 198
12.2 Training a neural network . 203

12.2.1 Math details for one-hidden layer network forward and backward propagation 204
12.2.2 Gradient descent . 207
12.2.3 Automatic Differentiation (AD) . 208

12.3 Batches, epochs, and overfitting . 213
12.4 Learning diabetes factors among Pima indians . 215
12.5 US Space Shuttle Data . 219
12.6 Gaussian process regression . 226
12.7 JAX . 231

6

13 Parallel Python 234
13.1 Python Threads . 234

13.1.1 PyPy - a user-friendly no-GIL interpreter . 235
13.2 Python Multiprocessing . 236

13.2.1 How and what not to parallelize . 238
13.2.2 Examples of concurrent.futures . 240

13.3 Multiprocessing and Pool . 246
13.3.1 Safe locking with a context . 247
13.3.2 Bohrium . 250

13.4 Subprocess: easy parallelism . 250
13.5 MPI Parallelism with mpi4py (MPI for Python) . 254

Send ’Hello World’ to all processes . 259
Parallel Monte Carlo estimate of π . 261
Collective calls . 262

13.5.1 send/recv or Send/Recv . 263
Broadcasting a NumPy array . 267

13.5.2 Shutting down MPI jobs after an exception . 267
Aborting mpi4py . 268

13.5.3 Non-blocking communication . 269

14 Python as a glue language 271
14.1 Python extensions and embedding Python . 271
14.2 SWIG (Simplified Wrapper and Interface Generator) . 273

14.2.1 SWIG examples . 273
14.3 Cython . 276

14.3.1 Creating a standalone executable with Cython . 277
Cython and C++ . 279

7

15 Julia 280
15.1 Julia IDEs . 281

15.1.1 Julia for Visual Studio Code . 281
15.1.2 Adding Julia to Jupyter notebook or Jupyter lab . 281

15.2 Calling Julia from Python . 282
15.3 Julia: language highlights . 283
15.4 Julia command prompt . 285
15.5 Julia arrays, matrices, references, and copies . 286
15.6 Julia broadcasting . 287
15.7 Julia array loop . 288
15.8 Julia Automatic Differentiation (AD) . 290
15.9 Julia Differential Equations . 292
15.10Julia StaticArrays . 293
15.11Julia Macros . 293
15.12Julia Metaprogramming . 294
15.13Multiple dispatch . 300

The Expression Problem . 306
Adding a type and a method in Python . 307
Adding a type and a method in C++ . 308
Adding a type and a method in Julia . 309

16 C++ 310
16.1 A brief history of C++ . 310
16.2 About these C++ lectures . 311
16.3 Easy tasks . 312
16.4 Online sources for C++ programmers . 313
16.5 C++ in Matlab or Octave . 313
16.6 C or C++ in Python 3 . 314

8

17 A really brief introduction to C++ 314
17.1 The meaning of #include <iostream> . 315
17.2 Scope . 319
17.3 Simple file operations . 320

18 C++ Classes 321
18.1 Private and public data, methods . 321
18.2 Member function qualifiers const and noexcept . 327
18.3 Example of a data structure . 328

19 Templates - Generic instructions and algorithms 330
19.1 Variadic functions and templates . 331

20 C++ Standard Library 333

21 C++ References 334
21.1 Why would a reference be safer than a pointer? . 335

21.1.1 Unsafe references . 338
21.2 lvalue and rvalue . 341
21.3 rvalue references and rvalue references . 342
21.4 One-liners of lvalue and rvalue references . 344
21.5 The strange T&& and the Perfect Forwarding Problem . 346

22 C++ Smart pointers 349

23 C++ Standard Library: A closer look 353
23.1 std::vector container . 353

23.1.1 Iterators . 355
23.1.2 Storing objects into std::vector . 358
23.1.3 Sneak peak: overloading operator << . 360

9

23.2 Heterogeneous types stored in std::vector . 361
23.3 Moving, not copying . 364
23.4 std::valarray and std::array . 368
23.5 Give an alias to a type with using . 370
23.6 Heavier usage of aliases . 371
23.7 Stream iterators (read on spare time) . 373
23.8 Algorithms and utilities . 374

23.8.1 About std: min_element, max_element, find, sort, reverse . 375
23.8.2 std::swap is a template . 377

23.9 Function returning a tuple . 384
23.10Header guards and namespace encapsulation . 388
23.11Formatted output with <iomanip> . 390
23.12std::complex: complex numbers and arithmetics . 391

24 Function Overloading, Optional Arguments and Default Arguments 393

25 Operator overloading 396
fortran operator overloading . 398

25.1 Overloading << to print class objects . 399

26 C++ Standard Library: more algorithms 402
26.1 std::for_each . 402
26.2 When to use std::for_each ? . 403
26.3 std::for_each in detail . 404
26.4 The std::generate algorithm . 406
26.5 C++ Standard Library algorithms - take care of copies . 407
26.6 C++ Standard Library algorithms - stateful objects and std::ref . 408

27 A few things that may speed up your code 410
27.1 noexcept: no-throw quarantee . 411

10

27.2 constexpr: compile-time constant expressions . 411
27.3 Function objects (functors) . 414
27.4 Five ways to pass a function to a function . 417
27.5 C++17 calls with std::invoke . 421
27.6 Cache data . 422
27.7 Use emplace_back() instead of push_back() . 422
27.8 Prefer the methods of containers over generic algorithms . 425
27.9 Expression templates (read on spare time) . 425

28 Generation of (Pseudo) Random Numbers 428
28.1 Simplify function calls with std::bind . 430
28.2 Return to std::generate: the member function predicament . 434

29 Boost and Ordinary Differential Equations (ODE’s) 443

30 Linear algebra - which library to use? 446
30.1 Armadillo examples . 448

31 Calling C or fortran from C++ 450

32 Fixed-size arrays in C++: plain array and std::array: 452

33 Exception handling with throw and catch 454

34 Gnu Scientific Library (GSL) 456
34.1 GSL: statistics . 458
34.2 GSL: Fast Fourier Transform (FFT) . 459

34.2.1 Passing a pointer to complex data . 462
34.3 GSL: differential equations . 464
34.4 GSL: interpolation . 471
34.5 GSL: Monte Carlo integration . 475

11

34.6 Add numbers to file names . 479

35 Lambda Functions/Expressions 480

36 Parallel C++ 486
36.1 Intel OneAPI TBB . 486
36.2 POSIX Threads (pthread) . 488
36.3 C++17: Parallel std Algorithms . 491

36.3.1 Parallel std::reduce and std::transform_reduce . 494
36.4 OpenMP parallel programming . 495

37 Tips and tricks 501

38 Some more C++ in the net 503

39 Farewell words for C++ numerical programmers 503

1 Course itinerary

See the course web page.

12

users.jyu.fi:~veapaja/Python_C++_Numerics/

1.1 Relation to other courses in JYU

Python
(NumPy, SciPy ...)

C++ numerics

 This course: FYSS5120
Efficient Numerical Programming

FYSS4456
Hiukkasfysiikan Kokeelliset Menetelmät

Experimental Methods in Particle Physics

ROOT

FYSA1130
Fysiikan Numeeriset Menetelmät
Numerical methods in Physics

Python

 TIEP112
 Ohjelmointi 2
Programming 2

C/C++

Julia

13

1.2 Popularity of programming languages

One answer is the Tiobe index

The ratings are based on the number of skilled engineers world-wide, courses and third party vendors. Popular search
engines such as Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings.
It is important to note that the TIOBE index is not about the best programming language or the language in which
most lines of code have been written.

Another answer is the PYPL,

The more a language tutorial is searched, the more popular the language is assumed to be. It is a leading indicator.
The raw data comes from Google Trends.

Count of searches of each language is presumably a good popularity indicator, as opposed to the count of existing web pages.

14

https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html

2 Version control using git

Many times I’ve made changes to a code, just to find out it stopped working. Small code improvements are the most dangerous
ones. They seem benign, but can introduce a major flaw. Furthermore, they are very difficult to spot from 10000 lines of code
after a few days. You need a way to get back to an older version, or at least view what you’ve done recently.

I’m using git (link). Let’s assume the stuff you want to track is in the current directory and subdirectories lectures/,
pythoncodes/, juliacodes/, and c++codes/ Do this:

$ sudo apt-get install git # or dnf -y install git

$ git status

fatal: not a git repository (or any parent up to mount point /)

Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).

This means you need to initialize git.

$ git init

Initialized empty Git repository in .../.git/

$ git add lectures # add everything under subdirectory lectures

$ git add pythoncodes

$ git add juliacodes

$ git add c++codes

Now git status gives a list of new files ”not staged for commit”. You need to git commit them. Some files or directories are
listed as ”Untracked files”, which won’t be tracker by git, unless you git add them. I’ve added all I want, so commit:

$ git commit -a -m "First commit" # commit git database with a comment

Check status again,

15

https://git-scm.com/

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

(commit or discard the untracked or modified content in submodules)

modified: c++codes/ParallelSTL (untracked content)

modified: lectures/git_input.tex

Untracked files:

(use "git add <file>..." to include in what will be committed)

.f2py_f2cmap

demos/

This text is in file lectures/git_input.tex, that’s why it’s marked modified. I’ve also used gitk, a graphical git repository
browser.

The difference between the committed and the current git_input.tex is

$ git diff lectures/git_input.tex

diff --git a/lectures/git_input.tex b/lectures/git_input.tex

index 188689b..772ea76 100644

--- a/lectures/git_input.tex

+++ b/lectures/git_input.tex

@@ -32,5 +32,23 @@ Now \mytt{git status} gives a list of

new files "not staged for commit". You nee

Some files or directories are listed as "Untracked files",

which won't be tracker by git, unless you \mytt{git add} them.

I've added all I want, so commit:

16

...

showing all lines I’ve changed since commit.

$ git commit -a -m "edited git_input"

$ git diff lectures/git_input.tex

(no output)

A simple do - undo test

Let’s make a simple coding mistake and undo it, reverting to the earlier version. Store this to file git-testing.py

print('this is ok')

add it to git,

$ git add git-testing.py

Edit the code to

print('this is NOT ok')

Now git notices the change,

$ git diff git-testing.py

diff --git a/pythoncodes/git-testing.py b/pythoncodes/git-testing.py

index 9d4fcc0..f1e7ba3 100644

--- a/pythoncodes/git-testing.py

+++ b/pythoncodes/git-testing.py

@@ -1 +1 @@

17

-print('this is ok')

+print('this is NOT ok')

Minus sign tells I removed the ”ok” line, and plus that I added the ”NOT ok” one. The output of git diff is designed to be
used as a patch, it’s a recipe how the old version can be converted to the new one.

If I want to stash all uncommitted changes, I type git stash. This forgets all I’ve changed after previous commit. A bit
dangerous, so be careful.

Git works on branches, the current one is master,

$ git branch

* master

Let’s create a new branch,

$ git checkout -b stupid

Switched to a new branch 'stupid'

Now I’m free to do experimenting, without messing up my old code or other stuff. Like in pythoncodes/git-testing.py,
change content to

print('stupid mistake')

and

git commit -a -m ``stupid-branch-commit''

If I decide it was stupid, I can get back to master,

18

$ git checkout master

Switched to branch 'master'

$ git branch

* master

stupid

$ git branch -d stupid

error: The branch 'stupid' is not fully merged.

If you are sure you want to delete it, run 'git branch -D stupid'.

$ git branch -D stupid

Deleted branch stupid (was 5a6c607).

where I deleted the stupid branch. The error tries to warn that I haven’t merged edit on branch stupid to branch master.
Merging (git merge ...) tries to do it’s best in bringing the two branches together. A quite delicate task, which often needs
manual interference.

Many editors are aware of the git branch you are on. Notice, that changing branches or stashing changes really changes
the content of your files. If you had an editor open it may start complaining about “file xxx changed on disk, do you really
want to edit the current buffer?” and upon saving it want you permission, too.

Every commit has a commit hash, a unique name of the commit. You’ll find it by typing

$ git log

commit 4f81ae5c4b92c3f5cc086f506dcbf71de8a29f52 (HEAD -> master)

Author: Vesa Apaja <vesa.apaja@gmail.com>

Date: Tue Aug 17 12:48:09 2021 +0300

stop for lunch

...

commit adc4695ad4aaa0736169d5f2c9cc5e5a6997d10a

19

Author: Vesa Apaja <vesa.apaja@gmail.com>

Date: Tue Aug 17 11:46:42 2021 +0300

First commit

The comments (”stop for lunch” and ”First commit”) are supposed to be informative. Knowing the commit hash, you can
always come back to an old commit,

$ git checkout <commit hash>

or revert to the previous commit.
I have the following alias:

alias gitdate='git for-each-ref --sort=committerdate refs/heads/

--format='\''%(color: red)%(committerdate:short) %(color: cyan)%(refname:short)'\'''

which lists branches and their dates (with nice colors, not visible here):

$ gitdate

2021-08-17 master

This is not quite enough, but should convince you learning git is a good investment.

20

3 Python

3.1 About Python

Python was invented by Guido Van Rossum (1956-) in December of 1989, while working at Centrum Wiskunde & Informatica
(CWI) in the Netherlands. He took some features of the ABS language, fixed some issues, and finally the language was released
1991. As you might have anticipated, Guido named the language Python after the TV show Monty Python’s Flying Circus. He
was a ”benevolent dictator for life” until stepping down from the position in 2018. After retiring from Dropbox 2019, he joined
Microsoft’s Developer Division in 2020. Python is lead by a yearly elected steering council. Nominees are nominated by a core
team member of CPython (see below) developers. The steering council appoints the Python Software Foundation leadership.

Python development relies on Python Enhancement Proposals (PEPs), which, in some form, may be invoked to a
new Python version. For example, the style of Python programs is described in PEP 8 .

These notes are about Python 3, more details in The Python Standard Library . Python is an interpreted language, the
interpreter is the program python, which runs the so-called CPython interpreter. Interpreting instructions takes longer than
executing compiled code (as in C, Java etc.). Python is a dynamically typed language, meaning the types of objects are
determined by the Python interpreter. The lack of typing prevents code optimization. Still, Python is ever so popular, and
after these lectures you may join the growing Python community.

3.2 Installation

3.2.1 Linux

Here and ever after $ stands for the (bash) shell prompt.

1. Install Python - you need root or sudo rights -

• Fedora:1

1This also installs plenty of frequently used packages to /usr/lib/python3.10/site-packages/. Caveat: Packages get eventually outdated and
updates have to be done as root or sudo.

21

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/library/index.html

$ sudo dnf install python3

• Debian, Ubuntu (untested, don’t have those OS’s):

$ sudo apt-get install python3

The command python should call python3,

$ which python

/usr/bin/python

$ ll /usr/bin/python

lrwxrwxrwx 1 root root 9 Jun 10 03:31 /usr/bin/python -> ./python3

so python is a soft link to python3.

3.2.2 Windows 10

Type “python” or “python3” in the command prompt, and you will be directed to Microsoft Store. 2

Remark: It wasn’t that smooth in my Win10, though:

1. Typed python3 and got just the common error message python is not recognized as

2. Clicked the Microsoft Store icon and found python 3.9. Installed it.

3. Typed python3 and got the error message missing msvcp140.dll. Fathomed I’m missing a MS Visual C package.

4. Found vc_redist.x64.exe from a MS web site. Download and run. Now python3 starts, exit with exit() or with ctrl-Z.

2devblogs.microsoft.com: Who put Python in the Windows 10 May 2019 Update?

22

https://devblogs.microsoft.com/python/python-in-the-windows-10-may-2019-update/

3.2.3 Python 3 vs. Python 2

There’s old Python 2 code around, so I point out a few differences. More of them in
whats new in 3.0 .

Python has a compatibility module future, which aims to make Python code run in both Python 2 and Python 3. Python
3 differs from Python 2 most notably in that print is a function, not a statement:

print "oh dear" # Python 2

print("oh dear") # Python 3

so typically a compatible code has the line

from __future__ import print_function

Remark: Some codes also have the lines

from __future__ import absolute_import

from __future__ import division

from __future__ import unicode_literals

In Python 2 map() and filter() return lists, in Python 3 they return iterators (we’l get to them later). Also reduce() was moved to functools.reduce().

One change not spotted by Python interpreters is the behaviour of division,

#Python 2: integer divided by integer is an integer

>>> 5/2

2

23

http://docs.python.org/3.0/whatsnew/3.0.html

#Python 3: integer divided by integer is a float

>>> 5/2

2.5

>>> 6/2

3.0

>>> type(6/2)

<class 'float'>

Aaron Meurer shows some significant features in Python 3 . Such as this one,

def naivesum(N):

Naively sum the first N integers

A = 0

for i in range(N + 1):

A += i

return A

Python 3 can compute naivesum(1000000000) but don’t try it in Python 2 because range() is expanded by Python 2
interpreter, taking many gigabytes of memory. Python 2 xrange() is can handle these large ranges.

3.3 Python package managers

Python programming relies on existing code base, which are Python packages imported to code as modules. For numerical
Python programs you need at least NumPy, SciPy, and Matplotlib. Python packages are stored in repositories, the most
commonly used is the Python Package Index, PyPI. Package managers are programs that download and install packages
from a repository, and, upon request, update packages to newer versions.

24

http://www.asmeurer.com/python3-presentation/slides.html

An important package standard is wheel,3 which makes package installation a lot faster and more reliable. Package with a
wheel, suffix .whl, don’t need a working C compiler to use a C extension, a Python module written in C for faster execution.
If a package doesn’t offer a .whl, installation takes the slower setup.py route and possibly needs a compiler.

3.3.1 pip package manager

pip is the builtin Python package manager, it installs packages from PyPI. There are two ways to use it, either directly

$ pip install packagename

or, loading pip as a module,4

$ python -m pip install packagename

For example, NumPy, SciPy, and Matplotlib can be installed typing either

$ python -m pip install numpy --user

$ python -m pip install scipy --user

$ python -m pip install matplotlib --user

or

$ pip install numpy --user

$ pip install scipy --user

$ pip install matplotlib --user

3Wheel in PEP427 . Wheels intend to replace eggs, the previous package standard.
4I prefer the pip module because in some machines pip points to the Python 2 installer pip2 as opposed to pip3.

25

https://peps.python.org/pep-0427/

With the --user option modules will be installed in your home directory, under $HOME/.local. Recent Python installations
do this automaticallyif you don’t have root priviliges. You can install all three packages at once,

$ pip install numpy scipy matplotlib --user

Avoid installing Python packages as root/admin.
I will drop the --user option from now on, assuming you are not root.

Be warned, that the Python system package usually contains many common Python packages. Once you’re done installing
python3 to your OS, you may already have a system-wide installation of NumPy, Matplotlib and friends. Sooner or later these
cause annoying mismatches in package versions.

Testing: start the Python interpreter and import a module. If this works, everything is fine:

$ python

>>> import numpy as np

>>> (press cntrl-D to quit)

or on the command line

$ python -c "import numpy as np"

Now and then pip suggests you should upgrade to the latest version,

$ python -m pip install upgrade pip

or

$ pip install upgrade pip

26

3.3.2 Conda and Anaconda

You may have heard about the package manager conda :

Package, dependency and environment management for any language-Python, R, Ruby, Lua, Scala, Java, JavaScript,
C/ C++, FORTRAN, and more.
Conda is an open source package management system and environment management system that runs on Windows,
macOS and Linux.

Conda installs and manages conda binary packages from the Anaconda repository or from the Anaconda Cloud. Anaconda is

Anaconda is a distribution of the Python and R programming languages for scientific computing that aims to simplify
package management and deployment. The distribution includes data-science packages suitable for Windows, Linux,
and macOS.

Anaconda installer can be downloaded from the anaconda distribution . You need some disk space, the full 2023 installer for
linux is 1015.6 MB. Run it,

$ sh Anaconda3-2023.07-2-Linux-x86_64.sh

and agree with the license terms. The default installation goes to $HOME/anaconda3. As of August 2023, Anaconda supports
Python 3.11. I tried upgrading an existing anaconda3 with the -u option, and it failed; in my case the fix was setting
permissions:

chmod +w -R $HOME/anaconda

27

https://docs.conda.io/en/latest/
https://www.anaconda.com/
https://www.anaconda.com/products/distribution

Anaconda comes with a GUI,

$ anaconda-navigator

which offers installers for Spyder, Jupyter, and
more.

Remark: After installation of conda/anaconda you may see the prompt change to (base) when you open a new shell. This means the base environment is
autoactivated. You can change that by typing

$ conda config --set auto_activate_base false

This writes to ~/.condarc,

$ cat ~/.condarc

auto_activate_base: false

More about Conda at conda@docs.conda.io . We’ll return to conda in the section 3.4.2, Virtual Environments.

Conda channels
Conda downloads packages from sources called channels, the default channel is https://repo.anaconda.com/pkgs/. There

28

https://docs.conda.io/projects/conda/en/latest

are hundreds of channels but I’m using mostly just three: default, conda-forge, and intel. A channel can be activated,

$ conda config --add channels conda-forge

$ conda config --add channels intel

$ conda config --show channels

channels:

- intel

- conda-forge

- defaults

$ conda config --get channels

--add channels 'defaults' # lowest priority

--add channels 'conda-forge'

--add channels 'intel' # highest priority

or you can pick up a code from a channel without activation,

$ conda install gpaw -c conda-forge

3.4 Spyder, the scientific Python IDE

From the Spyder web page,

Spyder is a free and open source scientific environment written in Python, for Python, and designed by and for
scientists, engineers and data analysts. it features a unique combination of the advanced editing, analysis, debugging,
and profiling functionality of a comprehensive development tool with the data exploration, interactive execution, deep
inspection, and beautiful visualization capabilities of a scientific package.

Spyder contains a variety of scientific Python packages, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy and
Cython. To see what’s installed, type pip list or conda list in the Spyder console. You can install Spyder from the
anaconda-navigator, or from the download link on the web page. Most Linux releases have it, too,

29

https://www.spyder-ide.org/

$ dnf search spyder

Last metadata expiration check: 0:17:06 ago on Fri 05 Aug 2022 04:29:11 PM EEST.

==== Name & Summary Matched: spyder ==========

python3-pyls-spyder.noarch : Spyder extensions for the python-language-server

python3-spyder-kernels.noarch : Jupyter kernels for the Spyder console

===== Name Matched: spyder ===================

python3-spyder.noarch : Scientific Python Development Environment

Remark: Spyder from Anaconda complained about libstdc++.so.6: version ‘GLIBCXX_3.4.29’ not found”;. Turned out Anaconda libstdc++.so.6

library was wrong; fixed the problem by taking it away with

$ mv ~/anaconda3/lib/libstdc++.so.6{,.bak}

3.4.1 Where does Python search for modules?

The error message

>>> import nnn

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ModuleNotFoundError: No module named 'nnn'

means you haven’t installed a module nnn, or it’s not in the Python search path.
The search path can be printed with the command5

5Or use the hard-to-remember python -c "import sys; print(’\n ’.join(sys.path))". Copy-pasting this may get the quotation marks
wrong.

30

$ python -m site

The output is something like

sys.path = [

'/wrk/vap/texst/opetus/FYSS5120_Efficient_Numerical_Programming/lectures',

'/usr/lib64/python311.zip',

'/usr/lib64/python3.11',

'/usr/lib64/python3.11/lib-dynload',

'/home/vap/.local/lib/python3.11/site-packages',

'/usr/lib64/python3.11/site-packages',

'/usr/lib/python3.11/site-packages',

]

USER_BASE: '/home/vap/.local' (exists)

USER_SITE: '/home/vap/.local/lib/python3.11/site-packages' (exists)

ENABLE_USER_SITE: True

The environment variable PYTHONPATH may also be used to tell where to look for packages, by pointing it to a site-packages

in a non-standard location. Try not to set PYTHONPATH, it may cause confusion.

How to exclude packages under .local

One way is to define an environment variable,

$ export PYTHONNOUSERSITE=1

and in this shell Python won’t use anything under $HOME/.local.

31

3.4.2 Python (virtual) environments

There are plenty of tutorials online, you can start from venv . A Python environment is dedicated for your project, where life
is almost detached from outside world and code run on fixed module versions.

Basic Python virtual environment
The vanilla Python environment is create with the command

$ python -m venv path_to_new_virtual_environment

will create a directory for the environment. For example

$ python -m venv virtual

$ ls virtual/

bin include lib lib64 pyvenv.cfg

$ source virtual/bin/activate

(virtual) [vap@suikka lectures]$ python

Python 3.10.5 (main, Jun 9 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy as np

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ModuleNotFoundError: No module named 'numpy'

(hit ctrl-D)

$ deactivate

The fact that the virtual environment can’t see the packages installed outside the sandbox is intentional, it’s the whole
point of the virtual environment. The packages will install under the virtual environment directory, in my example to
./virtual/lib/python3.10/site-packages/.

32

https://docs.python.org/3/library/venv.html

pip freeze

If you want to copy the environment,

(old env)$ pip freeze > requirements.txt

and in the other environment

(new env)$ pip install -r requirements.txt

and you’ll get the same packages and versions of them.
Conda environments
The downside of virtual environments created with python -m venv is the dependence on system Python. Conda environments
are truly standalone virtual environments, and you can create one with any Python version.

Let’s create, activate, test, and deactivate a Python 3.10 environment p3.10.

$ conda create -n p3.10 python=3.10

$ conda activate p3.10

(p3.10) [vap@suikka lectures]$ python

Python 3.10.5 | packaged by conda-forge | (main, Jun 14 2022, 07:06:46) [GCC 10.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

(press cntr-D)

(p3.10) [vap@suikka lectures]$ conda deactivate

If you happen to need Python 3.9, use something like

33

$ conda create -n p3.9 python=3.9

$ conda activate p3.9

(p3.9) $ python

Python 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:58:50)

[GCC 10.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Nothing prevents from creating a conda environment while in another conda environment. The new environment is independent
of the active environment, and you can hop around between environments,

$ conda activate p3.10

(p3.10) $ conda create -n p3.5 python=3.5

(p3.10) $ conda activate p3.5

(p3.5) $ python

Python 3.5.5 | packaged by conda-forge | (default, Jul 23 2018, 23:45:43)

[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Apparently conda environments are not virtual sandboxes.

Conda environments are stored by default in $HOME/anaconda3/envs/, So far I have

$ ls ~/anaconda3/envs/

p3.10 p3.5 p3.9

I will use conda environments later in section 7.3 to test NumPy with a few BLAS libraries. Removing an environment is done
with

34

$ conda env remove -n p3.10

3.4.3 Spyder, iPython, Jupyter Notebook, and Jupyter Lab

Spyder is an open-source cross-platform IDE (Integrated Desktop Environment), with editing, shell, graphics output, and
online help on the same platform. iPython is the “official”, more interactive command line Python interpreter, described at
length in discussion @Stackoverflow . Many use iPython with the Jupyter notebook, installation is

$ python -m pip install ipython --user

$ python -m pip install jupyter --user

Basic ipython has syntax highlighting and suggests line completion. Jupyter notebook starts on your web browser,6

$ jupyter notebook

6Starting Jupyter using ipython notebook is deprecated.

35

https://stackoverflow.com/questions/12370457/what-is-the-difference-between-python-and-ipython

Remark: The output is quite verbose,

$ jupyter notebook

[I 08:56:45.052 NotebookApp] Serving notebooks from local directory: /home/vap

[I 08:56:45.052 NotebookApp] The Jupyter Notebook is running at:

[I 08:56:45.052 NotebookApp] http://localhost:8888/?token=12ad24d43bbf91289564eb38bbebe403e4a74ad8694dec55

[I 08:56:45.052 NotebookApp] or http://127.0.0.1:8888/?token=12ad24d43bbf91289564eb38bbebe403e4a74ad8694dec55

[I 08:56:45.052 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

[C 08:56:45.085 NotebookApp]

To access the notebook, open this file in a browser:

file:///home/vap/.local/share/jupyter/runtime/nbserver-9296-open.html

Or copy and paste one of these URLs:

http://localhost:8888/?token=12ad24d43bbf91289564eb38bbebe403e4a74ad8694dec55

or http://127.0.0.1:8888/?token=12ad24d43bbf91289564eb38bbebe403e4a74ad8694dec55

In the notebook, find a small button new somewhere in the upper right corner. There are other ways to use Jupyter, as you
find typing jupyter --help. The graphics-capable qtconsole is also nice,

$ jupyter qtconsole

Jupyter Lab
A more advanced environment from Jupyter Notebook is Jupyter Lab, jupyterlab,

$ python -m pip install jupyterlab

If you work rather in a conda environment, you can

$ conda create -n condaenv

$ conda activate condaenv

(condaenv) $ conda install jupyterlab

36

(condaenv) $ jupyter lab

and you get a browser window,

Jupyter notebooks have a file suffix .ipynb. They can be converted to Python scripts using

$ jupyter nbconvert --to script your_notebook.ipynb

The output your_notebook.py can be run using ipython. If you want to show the notebook output, you can convert it to
html,

$ jupyter nbconvert --to html your_notebook.ipynb

The output is your_notebook.html.

37

3.5 Updating Python packages

3.5.1 Updating Python packages using pip package manager

A single package update as non-root user:

$ python -m pip install --upgrade packagename --user

or

$ pip install --upgrade packagename --user

How about updating all packages? One possibility is

$ pip freeze > requirements.txt

$ pip install -r requirements.txt --upgrade

Remark: Other ways: This one-liner might be useful:

$ pip list -o --format columns| cut -d' ' -f1|xargs -n1 pip install -U

Here pip list -o lists outdated packages, the rest parses relevant information from the list and feeds it to pip update pip install -U. An interactive package
update can be done using

$ pip install pip-review

$ pip-review --local --interactive

38

3.5.2 Updating Python packages using conda package manager

A single package update is

$ conda update packagename

and to update all installed packages,

$ conda update --all

If these complain about

NoBaseEnvironmentError: This conda installation has no default base environment. Use ’conda create’ to create
new environments and ’conda activate’ to activate environments.

just do as you’re told, and activate one of your conda environments. The reason you’re not in the base environment is that you
may have applied the configuration change

$ conda config --set auto_activate_base false

You can activate the base environment and do the updates,

$ conda activate base

(base) $ conda update --all

39

Troubleshooting

If the You’re not in the base environment error still pops up, you probably have CONDA_PREFIX set, and pointing to a
wrong place. In my case, I had installed conda from a linux repo, and had

$ echo $CONDA_PREFIX

/usr

$ conda info -all

...

CONDA_PREFIX = /usr

which is wrong because then conda update --all looks for the file /usr/conda-meta/history, which is not there, and causes
conda to think your base environment is inactive. 7 If you got conda by running the downloaded install script of anaconda3
as descibed earlier, you should have empty CONDA_PREFIX,

$ echo $CONDA_PREFIX

and now there is a file $HOME/anaconda3/conda-meta/history

$ conda update --all

works as expected.

7The reason was left open in the discussion anaconda-wont-update-no-default-base-environment-error @Stackoverflow. I pinpointed the problem
by running strace conda update --all.

40

https://stackoverflow.com/questions/62541017/anaconda-wont-update-no-default-base-environment-error

3.6 Python file extentions

• .py are Python source files

• .pyc are compiled bytecode, produced by python, stored in directory __pycache__

• .pyo are optimized compiled bytecode, produced by python -O of by python -OO

Importing a bytecode module is faster, hence only modules that have been imported get a bytecode file 8. You can inspect the
bytecode of module short by using the disassembler:

import dis # Python disassembler

import short # this will cause short.py to be bytecoded

dis.dis(short)

where short.py could be

def testing():

print('hello')

Bytecode can give hints how to make faster code. For example, why creating a dictionary with {} is a tiny bit faster than with
dict()? From bytecode,

>>> import dis

>>> dis.dis("{}")

1 0 BUILD_MAP 0

2 RETURN_VALUE

>>> dis.dis("dict()")

1 0 LOAD_NAME 0 (dict)

2 CALL_FUNCTION 0

4 RETURN_VALUE

8Manually python /usr/lib64/python3.x/py_compile.py short.py compiles to __pycache__/short.cpython-3x.pyc.

41

3.7 Timing and watching memory usage

3.7.1 Timing with the timeit module

Code snippets can be timed with timeit , for example

python -m timeit '"-".join(str(n) for n in range(100))'

A common usage of timeit in a module is

from timeit import Timer as T

def fun():

...

print(T(fun).repeat()) # default repeat() executes fun 1000000 times and repeats it 3 times

output: list of the three cumulative times, the minimum value is most informative

and system time with time.time() or interpreter time time.clock()) or time.process_time

from time import process_time as T

start = T()

myfunction()

print('Executed in',T()-start,'seconds.')

One way to take a peak at the bottlenecks of a code was suggested by Mike Dunlavey @Stackoverflow :

If your Python code is running slow, hit ctrl-C and the current call stack is printed.

Repeat this a few times and you get an idea what is going on.

42

https://docs.python.org/3/library/timeit.html
https://stackoverflow.com/questions/375913/how-can-i-profile-c-code-running-in-linux/378024#378024

Detailed profiling of short-running Python codes
A native Python profiler is the module profile. Profiling an entire code, 9

$ python -m profile -s cumtime myprogram.py

sorted in decreasing cumulative time. In Python console,

>>> import profile

>>> import myprogram

>>> profile.run(myprogram.main()) # assuming the program is run executing main()

Detailed profiling of long-running Python codes
The module cProfile - notice the capital P - is a C extension and has smaller overhead than profile. Usage is similar to
profile,

$ python -m cProfile -s cumtime myprogram.py

or

>>> import cProfile

>>> import myprogram

>>> cProfile.run('myprogram.main()')

I’ll return to timing Python later, and set up timing of functions as a decorator in section 3.15.

9For details, see profile @python.org.

43

https://docs.python.org/3/library/profile.html

3.7.2 Timing and watching memory usage in iPython

Timing can be done with the iPython magic %timeit, Start the iPython interpreter, and test timing of the potential energy
calculation in numerics/potential_energy.py. You can also inspect memory usage, but for that you need a module,

$ python -m pip install ipython_memory_usage

Usage is in iPython console

In [1]: import ipython_memory_usage.ipython_memory_usage as ipymem

In [2]: ipymem.start_watching_memory()

run the code

44

(Sorry, this is a picture.)

With 10000 particles in 3D the broadcasting method peaked 5378.75 MiB. NumPy broadcasting is faster but memory intensive.

45

3.8 General advice to speed up Python

• Favor local variables over global ones

• Represent numerical data using NumPy

• Vectorize, don’t do item by item. Vectorized function have deserved the name Universal function (ufunc). As a downside,
vectorization consumes memory.

• Keep data contiguous in memory: Store data in memory in the order it’s most often accessed.

• Testing membership in a dictionary is faster than in a list; dictionaries have hash tables of their members, so finding an
entry in a dictionary is an O(1) operation. Finding and entry in a list is very slow!

• Testing membership in a set is as fast as testing membership in a dictionary.

• Cache results of slow, repeated operations.

• List comprehensions are usually faster than for loops. The interpreter does a better job with such a limited list
comprehension loop compared with a general for loop. Speed gain may not be that big, though.

• Anything that avoids for loops is good. See Vectorize.

• Try built-in methods first. Some data type have their own optimized methods for common tasks, such as sorting.

46

3.9 List comprehensions

List comprehensions are often compact one-liners that are frequently used in list manipulations and filtering. Besides, a for

loop has a side effect, namely a loop variable may overwrite a global variable or create a new one,

x = 1

squares = []

for x in range(10):

squares.append(x**2)

here x=9

The value of (global) x was overwritten. This won’t happen if you use a list comprehension,

x = 1

squares = [x**2 for x in range(10)]

here x=1

Some like to use an underscore as a “dummy variable”,

squares = [_**2 for _ in range(10)]

More list comprehensions:

combine two lists to a list of tuples with non-equal integers:

[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

47

using list comprehension as a filter to find common members

a = [1,2,3,5,7,9]

b = [2,3,5,6,7,8]

print ([x for x in a if x in b])

[2, 3, 5, 7]

IMHO filtering with a list comprehension is nicer than using a lambda. 10

a = [1,2,3,5,7,9]

b = [2,3,5,6,7,8]

print(list(filter(lambda x: x in a, b)))

need list(); Python 3 has filter() as <filter object at 0x7f848d729d68>

Set comprehension works similarly,

set comprehension

a = {x for x in 'some lecture notes' if x not in 'abcdefg'}

print(a)

{'t', 'l', 'o', 's', 'n', ' ', 'm', 'r', 'u'}

notice: no duplicates

10I haven’t got a chapter about Python lambda function. I just casually throw them in and assume you find them plausible.

48

How fast is list comprehension?

Sebastian Witowski @switowski.com timed filtering certain numbers from a list of million numbers with a for loop, a list
comprehension, and a filter() function of Python 3.8. The timings were 65.4 ms, 44.5 ms, and 104 ms, respectively. In
August 2023 I tried Python 3.11, got timings 25.3 ms for loops, 21.9 ms list comprehension, and 96.5 ms for filter. For loops
are obviously getting faster in new Python, but the main assett is that the list comprehension filter is a one-liner:

result = [number for number in MILLION_NUMBERS if not number % 2]

Remark: How does the filter work? Since number % 2 is zero for even numbers, and zero is False, then if not number % 2 is True for even numbers, thus
the filter picks all even numbers. A short test using NumPy (this uses the legacy np.random.randint(), see section 3.23),

>>> import numpy as np

>>> MILLION_NUMBERS = np.random.randint(0,10000000,size=1000000)

>>> result = [number for number in MILLION_NUMBERS if not number % 2]

>>> result

[2393076, 6394306, 5062132, 2072312, 393650, 7329480, 3207092, ...

4187270, 4375422, 7783536, 8514914]

49

https://switowski.com/blog/for-loop-vs-list-comprehension

Nitpicking: What makes list comprehension sometimes faster than for-loops?

Both for-loops and list comprehensions have loops, and it’s not really looping that makes any difference. Neither is there
any more translated C-code in comprehensions. What happens inside a loop can make a small, insignificant difference.

Let’s look at the bytecode for two functions ; run appending_loop_vs_list_comprehension.py: 11 Appending to a list
translates to

>> 36 FOR_ITER 23 (to 84)

38 STORE_FAST 1 (i)

6 40 LOAD_FAST 0 (l)

42 LOAD_METHOD 1 (append) <--- THIS IS SLOW

64 LOAD_FAST 1 (i)

66 PRECALL 1

70 CALL 1

80 POP_TOP

82 JUMP_BACKWARD 24 (to 36)

5 >> 84 LOAD_CONST 0 (None)

while list comprehension translates to

>> 6 FOR_ITER 4 (to 16)

8 STORE_FAST 1 (i)

10 LOAD_FAST 1 (i)

12 LIST_APPEND 2 <--- THIS IS FASTER

14 JUMP_BACKWARD 5 (to 6)

>> 16 RETURN_VALUE

In the comprehension, the optimized LIST_APPEND bytecode is utilized to add elements to the list. This is more efficient
than repeatedly loading and using the append() method. Fine, but it’s all boils down to how well the present day Python
interpreter optimizes the code. Adding 5 numbers to a list with append() method can be a bit faster, and even appending
10000 numbers to a list takes in my desktop 193 µs vs. comprehension 146 µs, and for a million numbers it takes 30.3 ms vs.
26.5 ms. It’s not a game changer. However, in section 7.7 I’m talking about NumPy broadcasting, and that makes a difference.

11See why-is-a-list-comprehension-so-much-faster-than-appending-to-a-list @Stackoverflow.

50

https://stackoverflow.com/questions/30245397/why-is-a-list-comprehension-so-much-faster-than-appending-to-a-list

3.10 String concatenation

stringconcat.py

'''

Strings are immutable, so changing them must be done by creation of a new string.

Two ways to create a random string

'''

import random

import string

N=10

long version

s = ""

for i in range(N):

s += random.choice(string.ascii_lowercase)

print(s)

short version since python 3.6:

s = ''.join(random.choices(string.ascii_lowercase, k=N))

older python:

#s = ''.join(random.choice(string.ascii_lowercase) for _ in range(N))

print(s)

51

3.11 Counting hashable objects

What are hashable objects? Any object you can type hash(object), which is the same as print(object.__hash()). Obvi-
ously hashable objects have the attribute __hash__(). Not much wiser? All immutable objects (integers, strings, tuples, ...)
are hashable because they have a permanent id and a __hash__() for their entire lifetime. Apart from immutable objects, you
can always define a class with the method __hash__(),

class Foo:

def __hash__(self):

return 42

print(hash(Foo))

output possibly 1452873573337

Interestingly, the hash value is not 42. Also functions are hashable,

def f(x):

return 1

print(hash(f))

output possibly 1439470782047

Enough talk, let’s get back to the topic of counting hashable objects. The collections package contains very fast routines,
such as Counter, a dict subclass container for counting in list, tuple, dictionary, etc..

from collections import Counter

name='Vesa Apaja'

VA_counter = Counter(name)

print(VA_counter)

52

https://docs.python.org/3/library/collections.html

Counter({'a': 3, 'V': 1, 'e': 1, 's': 1, ' ': 1, 'A': 1, 'p': 1, 'j': 1})

print(VA_counter['a'])

3

VA_counter.most_common()

[('a', 3), ('V', 1), ('e', 1), ('s', 1), (' ', 1), ('A', 1), ('p', 1), ('j', 1)]

VA_counter.update('aa') # the opposite is subtract

print(VA_counter['a'])

5

dic = {'1':'aaa','2':100,'3':11}

dic_counter = Counter(dic)

print(dic_counter)

Counter({'1': 'aaa', '2': 100, '3': '11'})

dic2 = {'a':11,'b':100,'c':11,'d':200}

print(Counter(dic2))

Counter({'d': 200, 'b': 100, 'a': 11, 'c': 11})

The method most_common() returns a list of tuples (element,frequency) arranges according to frequency in decreasing order.
The method elements() returns an iterator,

print(VA_counter.elements())

<itertools.chain object at 0x147bac9dc790>

print(list(VA_counter.elements()))

['V', 'e', 's', 'a', 'a', 'a', 'a', 'a', ' ', 'A', 'p', 'j']

VA_counter.clear() # empty the counter

print(VA_counter)

Counter()

Comment: dequeu in collections package is nice piece of code. Also C++ has the deque container.

53

https://docs.python.org/3/library/collections.html

3.12 Sorting

There are two ways to sort:

1. a = sorted(b) gives a as sorted b. Objects a and b are separate entities.

2. b.sort() sorts b in place

After b.sort() there is no ”original” b around , sorting overwrites b:

b = [1,4,6,3,1,2,6,7]

b.sort()

print(b) # output is [1, 1, 2, 3, 4, 6, 6, 7]

3.12.1 Sorting by a key

We can use the key attribute in sorting,12

12Historical note: In old Python the idiom was DSU - decorate, sort, undecorate, known also as the Schwarzian transformation. For curiosity I
have added the code dsu_example.py.

54

key_sort_example.py

import random

import string

list of random ascii letters of random length

N = 10

lenlist = (int(random.random()*20)+1 for i in range(N))

gibberish = [''.join(random.choices(string.ascii_lowercase, k=kk)) for kk in lenlist]

print('list to sort:\n',gibberish)

sorting:

gibberish.sort(key=len)

#

print('list, sorted in increasing length:\n',gibberish)

Here gibberish is a list of strings, and strings have a __len__ attribute. Sorting compares __len__’s.

3.12.2 Sorting by a key in a given element

Frequently you want to sort by some element, for example sort by the third element in a list of tuples. There’s a way and a
faster way,

55

key_sort_example2.py

list of tuples to sort

data = [(x,y,z) for x in [1,2,3] for y in [4,5,2] for z in [5,4,6,8,3,1,9]]

print('unsorted:\n',data)

one way to sort by 3rd element in tuple (that is, by values in z)

sdata = sorted(data,key=lambda d: d[2])

print('sorted\n',sdata)

a bit faster way to sort by 3rd element in tuple

from operator import itemgetter

ssdata = sorted(data,key=itemgetter(2))

print('sorted\n',ssdata)

Here speed differences are insignificant but something to keep in mind if the list is very long.

3.12.3 NumPy Sorting

NumPy method numpy.ndarray.sort sorts the array in place, while numpy.sort() returns a sorted copy of an array. These
correspond to .sort() method and sorted() function in basic Python. One of the sorting arguments is axis which is defined
for arrays with more than one dimension:

2D Array:
axis=0 runs vertically downwards across rows
axis=1 runs horizontally across columns

56

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html#numpy.sort

numpy_sort_example.py

import numpy as np

origdata = np.array([[5,2,1],[4,6,7],[3,2,8]])

data = np.copy(origdata)

print(data)

[[5 2 1]

[4 6 7]

[3 2 8]]

data.sort() # sort by last axis (axis=-1, default); now same as axis=1

print('\n',data)

[[1 2 5]

[4 6 7]

[2 3 8]]

data = np.copy(origdata)

data.sort(axis=0)

print('\n',data)

#[[3 2 1]

[4 2 7]

[5 6 8]]

If a 2D array represents a matrix, sorting along an axis mixes both row vectors and column vectors. This is
unwanted if the matrix columns are, for example, eigenvectors. If you need to sort an array by an arbitrary column, take
a look at discussions @Stackoverlow . There you find a particularly neat solution suggested by Steve Tjoa,

57

https://stackoverflow.com/questions/2828059/sorting-arrays-in-numpy-by-column

numpy_argsort_example.py

import numpy as np

origdata = np.array([[5,2,1],[4,6,7],[3,2,8]])

data = np.copy(origdata)

print('\n',data)

[[5 2 1]

[4 6 7]

[3 2 8]]

data = data[data[:,0].argsort()] # sort by 1st column

print('\n',data)

[[3 2 8]

[4 6 7]

[5 2 1]]

data = np.copy(origdata)

data = data[data[:,1].argsort()] # sort by 2nd column

print('\n',data)

[[5 2 1]

[3 2 8]

[4 6 7]]

Let’s look at this piece by piece.

1. data[:,1] is array([2, 6, 2]), second elements in data.

2. data[:,1].argsort() is array([0, 2, 1]), the indices of sorted second elements.

3. data[data[:,1].argsort()] pick rows of data in the order of the index array.

58

This sorting keeps the row vectors intact. In demos I’ll figure out how to sort so that column vectors remain intact. Don’t
sneak in anything like data[:,1].sort() because that sorts data in-place, and your data array is messed up ever since. You
can convince yourself that this really is the case:

>>> data = np.array([[5,2,1],[4,6,7],[3,2,8]])

>>> data[:,1].sort()

>>> data

array([[5, 2, 1], <- this vector was in data

[4, 2, 7], <- this vector was not there

[3, 6, 8]]) <- this vector was not there

>>> data = np.array([[5,2,1],[4,6,7],[3,2,8]])

>>> data[data[:,1].argsort()]

array([[5, 2, 1], <- this vector was in data

[3, 2, 8], <- this vector was in data

[4, 6, 7]]) <- this vector was in data

3.13 Arbitrary precision calculations

3.13.1 Large integers

Arbitrarily large integers are built-in,

>>> i = 938542903859028358902894189490184901849018490819048190284912834901

>>> i

938542903859028358902894189490184901849018490819048190284912834901

59

>>> i*2

1877085807718056717805788378980369803698036981638096380569825669802

diophantine.py

Solution to the Diophantine equation

a**3+b**3+c**3 = k, a,b,c and k are integers, k=1...100

Tough ones: k=33 and k=42

Andrew Booker, University of Bristol, and Andrew Sutherland, MIT

Solution found 6.9.2019

using Charity Engine, about 500 000 home PC network

a=-80538738812075974

b=80435758145817515

c=12602123297335631

print(a**3+b**3+c**3)

3.13.2 Long floats with mpmath

An arbitrary precision floating point arithmetics is provided by mpmath .
Example: Riemann hypothesis
The trivial zeros of the Riemann zeta function are real, ζ(s) = 0 for s = −2,−4,−6, According to the Riemann

hypothesis, all nontrivial zeros are on the critical line s = 1
2
+ i t. The following code uses findroot() to numerically find a

root near given point, while mpmath.zetazero() is a built-in list of zeros.

>>> from mpmath import *

>>> findroot(zeta, 0.5+14j) # solve for zero near 0.5+14j

mpc(real='0.5', imag='14.134725141734694')

60

http://mpmath.org/doc/current/
https://en.wikipedia.org/wiki/Riemann_hypothesis @Wikipedia
https://en.wikipedia.org/wiki/Riemann_hypothesis @Wikipedia

>>> zetazero(1) # built-in list of zeros

mpc(real='0.5', imag='14.134725141734695')

>>> zetazero(1000)

mpc(real='0.5', imag='1419.4224809459956')

Example: Internal precision in numerical integration

mpmath_integral.py

2D integral using quadrature

from mpmath import mp # context object

print(mp)

f = lambda x, y: 1/(1-x**2 * y**2)

res = mp.quad(f, [0, 1], [0, 1])

print(res) # 1.23370055013617

mp.nprint(res,100) # 1.233700550136169749038117515738122165203094482421875

more precision:

mp.prec = 120

mp.dps=100

print(mp)

calculate with better precision:

res=mp.quad(f, [0, 1], [0, 1])

mp.nprint(res,100)

#1.233700550136169827354311374984518891914212425

905098828301668672027505602802400655375278389267013232

mp.nprint(mp.pi**2/8,100)

#1.233700550136169827354311374984518891914212425

905098828301668672027505602802400655375221675464819029

By default, mp.prec = 53 (double precision).

61

3.14 Advanced unpacking

3.14.1 A word about function arguments

Functions can have two kinds of arguments,

• positional arguments a.k.a non-keyword arguments are identified based on their position in the argument list.
For example

def f(x,y,z):

...

f(1,2,4) # calls f with x=1, y=2, and z=4

• keyword arguments are (key, value) pairs (dictionaries),

def f(x,y,z):

...

f(1,z=4,y=2) # calls f with x=1, y=2, and z=4

Here z=4 uses key z and value 4.

3.14.2 The beauty of the extended call syntax: *args and **kwargs

Great examples in what-does-the-star-operator-mean @Stackoverflow . Highlights:

• *arg unpacks arg to positional arguments (see code advunpacking.py)

62

https://stackoverflow.com/questions/2921847/what-does-the-star-operator-mean

this function works with any number of arguments (as long as they can be printed)

def f(*args):

for x in args:

print(x)

The function call f(1,4,6,7,8,3,2,'4','131234134') works just fine.

Remark: I often collect (x, y)-data like this,

res = []

for i in range(10):

#... some computations that give x and y

res.append([x,y])

I then want separate lists for x and y values. Zipping with zip should do that,

res = [[1,5],[2,3]]

x,y = zip(res) # not quite what I want, gives x = ([1, 5],) and y = ([2, 3],)

x,y = zip(*res) # right! *res is [1, 5] [2, 3] and so x = [1,2] and y = [5,3]

On the above-mentioned web page Donald Miner gives an example of an object factory, a special case of the so-called factory methods,

def make_car(*args):

return Car(*args)

that creates objects from the class Car. Now make_car('red', 'bmw', '335ix') creates Car('red', 'bmw', '335ix'). It so simple because *args can hold

any number of arguments. An object factory is a design pattern for creation of objects with a common interface.

63

• **kwargs unpacks keyword arguments (dictionaries) kwarg to positional arguments. Consider

def g(**kwargs):

for key, value in kwargs.items():

print(f'key {key} value {value}')

The function calls g(x=2,y=13) or g(x=2,y=13,z=33) work fine.

Using *args to absord extra arguments

Let’s take a sneak peek at the function fun1() soon to be used in a Fibonacci numbers code. Here the dictionary _cache

is not supposed to be given any values as arguments,

def fib1(n,*args,_cache={}):

print(n,_cache)

fib1(10) # output: 10, {}

fib1(10,12) # output: 10, {} <= _cache has not changed

Without the *args you will try to feed _cache a value and you get

def fib1(n,_cache={}):

print(n,_cache)

fib1(10) # output: 10, {}

fib1(10,12) # output: 10, 12 <= _cache has changed

Here *args absorbs all positional arguments after n, so essentially (n,*args) means ”n and other positional arguments”. All
keywork arguments, such as _cache in this example, are left untouched unless explicitly set.

With *args you are safe from accidentally setting keyword arguments:

64

def f(a,*args,test=False):

if test:

print('Since you insist, I kill the engine')

else:

print('a = ',a)

f(1,2)

safe, output is a = 1. The extra 2 is absorbed by *args and discarded

Here you can also use plain f(a,*,test=False). If you leave the absorbing argument out you beg for trouble:

def f(a,test=False):

if test:

print('Since you insist, I kill the engine')

else:

print('a = ',a)

f(1,2)

unsafe!

output: Since you insist, I kill the engine

Later in these notes we write wrapper functions, which collect all possible positional and keyword arguments, packed as
args and kwargs,

def wrapper(*args, **kwargs):

...something...

You can extract parts easily

65

a = range(10)

first, *mid, last = a # or : first,*_,last = a

print(first,last)

#0 9

another way

first, last = a[0], a[-1]

3.15 Decorators

Decorators are wrappers that can be used to add extra functionality to a function, without modifying the body of the function.
You don’t want to write an address on a gift, instead you wrap the gift and write the address on the wrapper. Since all functions
have arguments and keywords, any function can be wrapped like this:

def universal_decorator(any_function):

def wrapper(*args, **kwargs):

return any_function(*args, **kwargs)

return wrapper

This needs editing to actually do something, apart from calling any_function(). The *args passes arguments (if any) and the
**kwargs passes keyword arguments (if any) to the actual function. Here I added printing of the function name:

66

deco.py

def mydecorator(any_function):

def wrapper(*args, **kwargs):

print('entering ',any_function.__name__)

return any_function(*args, **kwargs)

return wrapper

@mydecorator

def func(x):

return x**2

if __name__=='__main__':

print(func(10))

entering func

100

Nothing prevents re-decorating a decorated function.

3.15.1 Python preprocessing and adding code for debugging

Personally, I would like to have the possibility to turn decorators on and off for debugging purposes or just for extra verbosity.
Something along the lines

THIS DOES NOT WORK AS INTENDED

#ifdef DEBUG

@trackcalls

67

#endif

def function_under_scrutiny():

and execute python -DDEBUG testdebug.py if I want trackcalls to be effective, else not. However, python won’t preprocess
#ifdef and #endif. There are Python preprocessors around, but I would hesitate on adding another interpreter to the mixture.

Typically debugging is done using the structure

debug_or_not.py

if __debug__:

print("debugging")

else:

print("not debugging")

and

$ python debug_or_not.py

debugging

$ python -O debug_or_not.py

not debugging

The option -O turns on basic optimization, sets __debug__ to false and also ignores all assert statements. However, it’s a bit
lengthy to use an if-else structure.

Another way to proceed is given by Kundor @Stackoverflow : attach to the wrapper both the decorated function and the
undecorated one,

68

https://stackoverflow.com/questions/37393287/how-to-make-decorators-optionally-turn-on-or-off

deco_with_unwrapped.py

def trackcalls(fun):

def wrapper(*args, **kwargs):

print('executing',fun.__name__)

return fun(*args, **kwargs)

wrapper.nodebug = fun

return wrapper

@trackcalls

def job():

return 'job done'

print(job()) # this tracks

print(job.nodebug()) # this doesn't

Not quite an on/off decorator, the decorator here is always on but with added functionality. Why does it work? Functions in
Python are objects, and objects can return objects. Be aware that a decorator takes at least some time to interpret, and that
a decorated function can’t be undecorated.

3.15.2 Turning a decorator on/off using python -O

I haven’t seen this approach suggested elsewhere but it’s so simple it can’t be my brainchild. Remember how __debug__ code
was thrown away by python -O. Define two decorators, the actual decorator and a decorator that just returns the original
function,

69

debug_deco.py

if __debug__:

def trackcalls(fun):

def wrapper(*args, **kwargs):

print('executing',fun.__name__)

return fun(*args, **kwargs)

return wrapper

else:

def trackcalls(fun):

return fun

@trackcalls

def job():

return 'job done'

print(job())

Result:

$ python debug_deco.py

executing job

job done

$ python -O debug_deco.py

job done

Add a counter of function calls and timing measurement and you have a code that profiles some predefined parts of itself unless
run as python -O. The option -OO omits also docstrings and saves some space.

70

There seems to be no speed penalty for using the
extra empty decorator vs. the direct function call.

0 20 40 60 80 100
repeat

0.136

0.137

0.138

0.139

0.140

0.141

tim
e

us
ed

 in
 1

00
0

ca
lls

empty decorator
plain function

71

Remark: Typing python takes so long, so I have aliases (defined in file .bashrc),

$ alias p{,d}

alias p='python3 -O'

alias pd='python3'

A college used to have aliases

alias meak=make

alias maek=make

alias meka=make

alias mkea=make

alias mkae=make

because he would hastily type any of the variants wanting to run make. I’m no better, I have

alias mm=make

alias mmm='make clean;make'

72

Decorator classes

So far I’ve been talking about decorator functions, but decorator classes are even more versatile.

decorator_class.py

class MyDecorator:

def __init__(self, f):

self.f = f

print('entering ',f.__name__)

def __call__(self,*args,**kwargs):

print('decorated with MyDecorator')

return self.f(*args,**kwargs)

@MyDecorator

def func(x):

return x**2

print(func(10))

entering func

decorating with MyDecorator

100

The magic method __call__ makes the class name callable, as MyDecorator(). Here func(10) decorated with MyDecorator()

means the same as

MyDecorator(func)(10) # for *undecorated* func(); Notice: not the same as MyDecorator(func(10))

Decorators can be stacked, this will be executed in the order deco1 calling deco2 calling func.

@deco1

@deco2

def func(x):

73

3.15.3 dataclass decorator

Take a look at the code

pointclass.py

from dataclasses import dataclass

@dataclass

class PointClass:

x : float

y : float

outlier : bool = False

point1 = PointClass(1.1,2.2,True)

point2 = PointClass(1,4)

print(point1)

print(point2)

#PointClass(x=1.1, y=2.2, outlier=True)

#PointClass(x=1, y=4, outlier=False)

The module dataclasses has the decorator dataclass that automatically adds an appropriate __init__(), saving you the
trouble of typing it yourself,

not needed, this was done by dataclass

def __init__(self, x : float, y : float, outlier : bool = False):

self.x = x

self.y = y

self.outlier = outlier

74

https://docs.python.org/3/library/dataclasses.html

The decorator dataclass also added __repr__(). All this was done by dataclass based on the data in the visible PointClass.
Sometimes dataclass can be persuaded to add a __hash__() magic method.

3.15.4 Cache decorator

If a time-consuming function f(x) is frequently called with the same argument xi, it may be wise to store the value f(xi). The
storage is a cache, a dictionary of {key:value} pairs. You can write your own dictionary or use a cache decorator. The
latter is a single line instruction to provide a function with a cache of wanted size. Recursively computed Fibonacci numbers
are the canonical example.

75

cachedecorator.py

'''

Fibonacci number recursive computation

Cache decorator from functools; performance profiling

'''

from functools import cache

import profile

class Fun:

"""

>>> Fun.fib0(10)

55

>>> Fun.fib1(10)

55

>>> Fun.fib2(10)

55

"""

no cache

def fib0(n):

if n < 2:

return n

return Fun.fib0(n-1) + Fun.fib0(n-2)

self-made cache

def fib1(n,*,_cache={}): # local _cache dictionary used here

if n in _cache:

return _cache[n]

if n < 2:

return n

result = Fun.fib1(n-1) + Fun.fib1(n-2)

_cache[n] = result # Store result in _cache

return result

cache decorator; Python 3.9: @cache gives @lru_cache(maxsize=None)

@cache

def fib2(n):

if n < 2:

return n

return Fun.fib2(n-1) + Fun.fib2(n-2)

if __name__ == '__main__':

test functionality; to see output, run with python cachedecorator.py -v

if __debug__:

import doctest

doctest.testmod()

funs = [Fun.fib0, Fun.fib1, Fun.fib2]

n = 25 # not too large, please :^)

for fun in funs:

print('call function',fun.__name__)

profile.run('fun(n)')

print('cache information for fib2 with cache decorator:',Fun.fib2.cache_info())

I got 242791 function calls (7 primitive calls) in 0.760 seconds

55 function calls (7 primitive calls) in 0.000 seconds

32 function calls (7 primitive calls) in 0.000 seconds

cache information for fib2 with cache decorator: CacheInfo(hits=23, misses=26, maxsize=None, currsize=26)

You can tune the cache size by looking at the hit/miss info. The cache decorator is simple to invoke,

from functools import cache

@cache

def f(x):

... # time consuming calculation, same input x used frequently

As indicated in a comment, since Python 3.9 @cache is a thin wrapper to @lru_cache(maxsize=None). @lru_cache has a few
options that may improve performance in some cases.

77

Remark: Just for fun:
David Beazley writes a code using Python lambda (lambda calculus, see video DB @Youtube). He has lambda written as λ, which looks much nicer.

DB_Y_combinator.py

#

Idea stolen from David Beazley

#

Y-combinator (Haskell B. Curry) to do recursion

#

Y = lambda f:(lambda x: f(lambda z:x(x)(z)))(lambda x: f(lambda z: x(x)(z)))

#

Factorial

#

R = lambda f: lambda n: 1 if n==0 else n*f(n-1)

fact = Y(R)

for i in range(11):

print(f'fact({i}) =', fact(i))

#

Fibonacci sequence

#

R = lambda f: lambda n: 1 if n<=2 else f(n-1)+f(n-2)

fib = Y(R)

for i in range(11):

print(f'fib({i}) =', fib(i))

78

https://www.youtube.com/watch?v=5C6sv7-eTKg

3.15.5 Decorators with arguments

Decorators with arguments won’t increase speed but can improve readability and save your time. These decorator patterns
can change the functioning of a decorator dynamically. A good intro is in decorators @Codementor . There you find a nice
example of a decorator that checks for permission to execute a function:

@requires_permission('administrator')

def delete_user(iUserId):

code ...

@requires_permission('premium_member')

def premium_checkpoint():

code ...

This is achieved with a function that returns a decorator,

def requires_permission(sPermission):

def decorator(fn):

def decorated(*args,**kwargs):

lPermissions = get_permissions(current_user_id())

if sPermission in lPermissions:

return fn(*args,**kwargs)

raise Exception("permission denied")

return decorated

return decorator

No need to set up several decorators, such as @requires_admin, @requires_premium_member
A working example is in file decorator_with_arguments.py.

79

https://www.codementor.io/sheena/advanced-use-python-decorators-class-function-du107nxsv

3.16 Iterables, generators and yield

If you can write

for x in xs:

then xs is iterable, i.e. can be iterated element by element. For example, the list [1,2,3] is iterable. Iterables may be very
large, so if you only need a few elements, then storing them all in memory is inefficient. Instead, you define a special type of
iterator, a generator, which generates the elements on demand. For example, the list comprehension

a = [x**2 for x in range(10)]

print(a)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

for elem in a: print(elem)

0

1

2

...

creates the list a, an iterable fully stored in memory, and print(a) prints the whole list. This is simple to convert to a
generator expression, just replace []’s with ()’s:

g = (x**2 for x in range(10)) # generator expression

print(g)

<generator object <genexpr> at 0x7ff5565420f8>

for elem in g: print(elem)

0

1

2

80

...

creates a generator expression g, therefore print(g) won’t print the elements but says that g is a generator object expression
stored somewhere in memory. The for loop asks the generator to generate elements, in this case all of them.

A generator yields next output only on demand.

The return returns whatever you ask it to return, possibly something fully expanded in memory. Replace return with
yield and the function returns a generator.

yield_example.py

Functions returning a generator or a generator expression

def square1(n):

for x in range(n):

yield from [x**2] # yield makes this return a generator

def square2(n):

return (x**2 for x in range(n)) # (x**2...) is a generator expression, return it

print(square1(6))

print(list(square1(6)))

#<generator object square1 at 0x7f6a2e11c9e8>

#[0, 1, 4, 9, 16, 25]

print(square2(6))

print(list(square2(6)))

#<generator object square2.<locals>.<genexpr> at 0x7f6a2e11c9e8>

#[0, 1, 4, 9, 16, 25]

Generators use less memory because you compute only what you need.
A generator function’s body won’t execute until you ask it to.

81

For example, in list(g(2)) it’s the call to function list() that tells g to generate element 2.
One more quirk, notice how there was no explicit yield in

def square2(n):

return (x**2 for x in range(n)) # generator expression

generator expressions are objects, and so they can be passed around and also return’ed.
A generator function remembers the state of it’s local variables. Once you call a generator function it won’t

simply exit, it’s put on hold. www.programiz.com gives the following example:

82

https://www.programiz.com/python-programming/generator

yield_next.py

A simple generator function

def my_gen():

n = 1

print('This is printed first')

yield n

n += 1

print('This is printed second')

yield n

n += 1

print('This is printed last')

yield n

a = my_gen()

print(next(a))

print(next(a))

print(next(a))

print(next(a))

'''

This is printed first

1

This is printed second

2

This is printed last

3

Traceback (most recent call last):

File "yield_next.py", line 19, in <module>

print(next(a))

^^^^^^^

StopIteration

'''

This instantiates a generator my_gen() called a, and iterates a few times using next(). The last next(a) gives the error
StopIteration because there are no more yields in the generator – we have exhausted the generator 13. Each yield has
only one number to yield, so successive next()’s move down the yields until there are none left.

13Also for-loops use next() to iterate.

83

3.16.1 Generator for watching a file

A generator is an excellent choise if you want to follow and process the latest line appearing on a file. The file could be
accumulating log data, stock markets, simulation results, or electricity spot prices. I show two possibilities:

• If you are working in a bash shell, the command

$ tail -f -n 1 filename

will put the last line on console (option -n 1 picks one line at a time), so you basically want to run this command from
Python and analyze the output line. This is done in the code shell_watching_data.py. The code uses subprocess to
start tail -f -n 1 filename on the background and sends the output line for further analysis.

• The sample code generator_watching_data.py uses only Python file reading.

The function watch_file() is quite generic. The reason why the sample codes look a bit odd is that, for testing, the same
script writes data and watches for file updates.

Remark: If watching a file is all you need, then in bash shell

$ watch filename

will show the contents, updated once in a second.

84

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/shell_watching_data.py
http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/generator_watching_data.py

3.16.2 Generator pipelines

Generator pipelines are high-performance, memory efficient, and modular tools

They are Unix-like, consider, for example, the following command:

$ ls -la|grep *py|more

Example: Read data from file and process it
The data file has columns index, value, value. Let’s find all even index y-values, add them together and print the sum.

Write each sub-task as a generator function and pipeline them:14

pipeline.py

A pipeline of generator functions

write a data file "data.tmp" for testing

filename = 'data.tmp'

try:

does the data file exist?

with open(filename,'r') as file:

pass

except:

doesn't exist, create it

import numpy as np

with open(filename,'w') as file:

for i in range(20):

file.write(f"{i:<5} {np.random.random():<8.3f} {np.random.random():<8.3f}\n")

with open(filename,'r') as file:

lines = (line for line in file)

evenlines = (line for line in lines if int(line.split()[0])%2 == 0)

ycol = (float(line.split()[2]) for line in evenlines)

print("sum(y;even index)=",sum(ycol))

• Testing if a file exists can be done using the os module, the pathlib module and many more. I prefer to try opening
and closing the file, if it fails the file doesn’t exist, so I create it. The power of try-except is strong.

14Warning: this uses the legacy np.random.random(), see section 3.23.

85

• The generators lines, evenlines, and ycol are just waiting for activation, so walk past them and look at the last line
of code.

• The function call sum(ycol) asks the generator ycol to generate a value. ycol asks the generator evenlines to generate
a line with even index. Finally, evenlines asks the generator lines to read a line from file.

• String line is split to columns using the method line.split(). This isn’t picky about the data file format, now the
assumed field separator is space. Avoid fixed indices, such as line[13:16], it’s too prone to errors.

• You can debug generators by printing intermediate values, but be aware that adding intermediate yields breaks up
generator pipelines - a leaking pipeline. Printing a generator is safe but not very informative,

print(evenlines)

<generator object <genexpr> at 0x7f05f88697d8>

but for testing you have to ask the generator to actually yield values,

print(list(evenlines))

[' 0 0.23 0.972\n', ' 2 0.771 0.00342\n', ' ...]

This, however, exhausts the generator, so all subsequent attempts to ask evenlines to generate more values fails. The
pipeline is broken and silently fails, with

output: sum(y;even index)= 0

After print(list(evenlines)), there are no more evenlines to generate, no values to sum, hence the sum is zero. Most
generators can be exhausted, a feature to keep in mind. Generators do lazy evaluation: they won’t move a finger until
demanded – and they are so lazy that they evaluate once and only once.

86

3.17 The versatile underscore

Underscore can mean a few things depending on the context,

• Underscore hints that this is supposed to be an internal variable,

def fib1(n, *args, _cache={})

...something...

• Underscore marks ignored value or values,

first,_,last = [1,2,3] # ignore 2

a = range(10)

first,*_,last = a # advanced unpacking, clearly discards mid values

The last example can, of course, be written also as first,last = a[0],a[-1] .

• In the Python interpreter underscore can also refer to the previous value,

>>> a = 2352635251234

>>> a

2352635251234

>>> _

2352635251234

>>> _**3

13021583502190843901122159705126080904

>>>

Underscores have their own life in Python names, and a quite a vivid life it is.

87

3.18 Underscores in Python names

PEP 8 gives recommendations about Python names. Particularly intriquing things may happen if a class attribute has two
undercores, namely

underscores.py

class Foo:

def _bar1():

print("this is class Foo's _bar1() \n")

def __bar2():

print("this is class Foo's __bar2()\n")

def _test():

Foo.__bar2()

these work:

Foo._bar1()

Foo._test()

this doesn't work; raises AttributeError

Foo.__bar2()

but this does:

Foo._Foo__bar2() # Python name mangling

Python name mangling hides names with leading double underscores a bit deeper, in order to avoid unintended use outside
the class. Inside the class Foo.__bar2() is correct but not outside. The method is still accessible as Foo._Foo__bar2(), so it’s
hidden but not private.

88

https://www.python.org/dev/peps/pep-0008/#naming-conventions

3.18.1 Magic methods

Magic methods have leading and trailing double underscores (hence called also “dunder methods”). The magic method
__init__() is executed when a class is instantiated,

init_example.py

class MyClass:

def __init__(self,value):

print('Initializing to x =',value)

self.x = value # This x is an instance variable

def do_things(self,y):

print('doing things with x =',self.x,'and y =',y)

instantiate an instance of class MyClass

my = MyClass(10) # this calls __init__

my.do_things(20)

Initializing to x = 10

doing things with x = 10 and y = 20

myone = MyClass(1) # calls __init__

myone.__init__(2) # calls __init__ directly

myone.do_things(20)

Initializing to x = 1

Initializing to x = 2

doing things with x = 2 and y = 20

doing things with x = 10 and y = 20

my.do_things(20)

doing things with x = 1 and y = 20

89

Notice how there was no name mangling for __init__. In this example x is an instance variable, meaning it’s bound to
a specific instance of the class. Every instance of the class MyClass has it’s own x.

Magic methods enhance readability

No matter how ugly and complicated the classes may be, the bread-and-butter operations on class instances should be simple
and plausible. Now suppose it makes sense to add and compare two instances of WaveClass like this:

wave_add1.py

class WaveClass:

def __init__(self,frequency=0,amplitude=0):

self.frequency = frequency

self.amplitude = amplitude

def add(self,other):

frequency = (self.frequency + other.frequency)/2

amplitude = self.amplitude + other.amplitude

return WaveClass(frequency,amplitude)

def gt(self,other):

return self.amplitude>other.amplitude

w1 = WaveClass(0.1,2.0)

w2 = WaveClass(0.3,1.0)

w3 = WaveClass(0.23,3.0)

w4 = WaveClass(0.12,4.0)

w12 = w1.add(w2)

print('combined wave 12:',w12.frequency,w12.amplitude)

print('wave 2 higher than wave 3:',w2.gt(w3))

w1234 = w1.add(w2).add(w3).add(w4)

print('combined wave 1234:',w1234)

print('combined wave 1234:',w1234.frequency,w1234.amplitude)

"""

combined wave 12: 0.2 3.0

wave 2 higher than wave 3: False

combined wave 1234: <__main__.Wave object at 0x14db9afff190>

combined wave 1234: 0.1675 10.0

"""

90

I’m not complaining about WaveClass per se, since I won’t often look at it. But lines such as

w1234 = w1.add(w2).add(w3).add(w4)

could infest my daily code and they appear unnecessarily ugly. I would prefer to see sums in the form

w1234 = w1+w2+w3+w4

and this is where magic methods come into play.

91

wave_add2.py

class WaveClass:

def __init__(self,frequency=0,amplitude=0):

self.frequency = frequency

self.amplitude = amplitude

def __add__(self,other):

frequency = (self.frequency + other.frequency)/2

amplitude = self.amplitude + other.amplitude

return WaveClass(frequency,amplitude)

def __gt__(self,other):

return self.amplitude > other.amplitude

def __eq__(self, other):

return self.frequency == other.frequency and self.amplitude==other.amplitude

def __str__(self):

return f'{self.__class__.__name__}({self.frequency:<.3f}, {self.amplitude:.3f})' # note: 3 decimals

def __repr__(self):

return f'{self.__class__.__name__}({self.frequency},{self.amplitude})'

w1 = WaveClass(0.1,2.0)

w2 = WaveClass(0.3,1.0)

w3 = WaveClass(0.23,3.0)

w4 = WaveClass(0.12,4.0)

print('w1+w2 = ', w1+w2)

print('w1+w2+w3+w4:',w1+w2+w3+w4)

print('wave 2 higher than wave 3:',w2>w3)

print('wave 2 lower than wave 3:',w2<w3)

print('repr(w1) = ',repr(w1))

print('eval(repr(w1))==w1 is ',eval(repr(w1))==w1)

"""

w1+w2 = Wave(0.200, 3.000)

w1+w2+w3+w4: Wave(0.168, 10.000)

wave 2 higher than wave 3: False

wave 2 lower than wave 3: True

repr(w1) = Wave(0.1,2.0)

eval(repr(w1))==w1 is True

"""

The magic method __add__ tells how the + operator acts on Waves. As the wave class example shows, __gt__ definition
automatically defines also __lt__. More magic methods are listed in Python reference. The way __add__ is applied with the

92

https://docs.python.org/3/reference/datamodel.html#special-method-names

+-operator is operator overloading, and we’ll see how hte same idea is implemented in C++ (section 25).

Remark: The magic method __str__ is applied with calls to print() and format(). A close relative to __str__ is __repr__. The goal of __repr__ is to be
unambiguous and __str__ is to be readable.15__repr__ is typically used for debugging and it represents all relevant information about the object that could
be needed to reconstruct it, while __str__ shows some human-readable information. Python has no idea how to print an instance without neither __str__

nor __repr__. One popular sanity check is to compare if an object matches it’s representation,

eval(repr(object)) == object # should be True

This requires that __eq__ is defined; Most builtins and my WaveClass pass the test.a The canonical example is

import datetime

now = datetime.datetime.now()

print(str(now))

2022-08-08 14:31:47.266444

print(now)

2022-08-08 14:31:47.266444

print (repr(now))

datetime.datetime(2022, 8, 8, 14, 31, 47, 266444)

eval(repr(now)) == now

True

aWithout __eq__, the interpreter would go down comparing the references of the two distinct objects eval(repr(object)) and
object, which obviously aren’t equal. You need to explicitly tell what “equal” means.

3.18.2 Context managers

A context manager typically makes sure that if you start something, you properly finish it. If you open a file you may want
to close it when you’re done, without explicitly calling close. Consider opening and reading a file using the built-in context
manager,

15See Discussion @Stackoverflow.

93

https://stackoverflow.com/questions/1436703/what-is-the-difference-between-str-and-repr

with open('./short.py', 'r') as f:

f.read()

This will open, read, and close the file. A context manager interface has two magic methods

1. __enter__ is called when interpreter meets the keyword with

2. __exit__ is called when the context finishes

If you wish, provide __enter__ and __exit__, and you have coded your own context manager. In the next example you want
to make sure there is a ”close” when the job is done,

from contextlib import closing

import urllib.request

with closing(urllib.request.urlopen('http://google.com')) as page:

htmlpage=page.readlines()

#print(htmlpage)

This reads the whole page to htmlpage and calls page.close() even in case of error. Additional timeout can be added to make
sure the operation ends if the connection hangs.

Generators in context managers

Generators in context managers need special attention because of lazy evaluation. Consider this example 16

16See Context managers @Wiki for details.

94

https://en.wikibooks.org/wiki/Python_Programming/Context_Managers

with open('./short.py') as f:

lines = (line for line in f) # generator

list(lines) # fails, ValueError: I/O operation on closed file.

The last line list(lines) asks the generator lines to generate lines, but lines tries to read from file f that was already
closed when the context manager __exit__:ed. The generator object lines is there (you can call print(lines)) but it can’t
generate anything any more. Generators in context managers are possible, but you need to release resources explicitly.

generator_context.py

def linereader(infile):

with open(infile) as f:

for line in f:

yield line

from contextlib import closing

with closing(linereader('./short.py')) as lines:

print(list(lines))

95

Example of a context manager

This context manager makes sure your thesis is sent to your thesis supervisor for inspection:

context_manager.py

class PhD:

def __init__(self, thesis):

self.thesis = 'Harry Potter and '+thesis

print(f'__init__: Start writing thesis called "{self.thesis}"')

def __enter__(self):

print(f'__enter__: Read articles for my thesis.')

return self

def __exit__(self, exception_type, exception_value, traceback):

if exception_type:

print(f'exception type: {exception_type}')

print(f'exception value: {exception_value}')

print(f'traceback: {traceback}')

print(f'__exit__: I wont send an empty thesis to my supervisor')

else:

print(f'__exit__: Send thesis "{self.thesis}" to my supervisor')

def serious_work(self):

print("I'm taking this seriously")

def fooling_around(self):

print("I'm rather playing video games")

raise Exception('something wrong with my time management')

with PhD(thesis = 'Neutron Scattering from Aluminium Alloys') as th:

th.serious_work()

th.fooling_around() # try this to see how an exception is handled

96

Output:

__init__: Start writing thesis called "Harry Potter and Neutron Scattering from Aluminium Alloys"

__enter__: Read articles for my thesis.

I'm taking this seriously

__exit__: Send thesis "Harry Potter and Neutron Scattering from Aluminium Alloys" to my supervisor

Notice how __init__ and __enter__ are called immediately when the context starts.

As you see, __exit__ can handle exceptions, such as running th.fooling_around(): 17

Output:

__init__: Start writing thesis called "Harry Potter and Neutron Scattering from Aluminium Alloys"

__enter__: Read articles for my thesis.

I'm rather playing video games

exception type: <class 'Exception'>

exception value: something wrong with my time management

traceback: <traceback object at 0x148978006700>

__exit__: I wont send an empty thesis to my supervisor

Traceback (most recent call last):

File "context_manager.py", line 28, in <module>

th.fooling_around() # try this to see how an exception is handled

File "context_manager.py", line 24, in fooling_around

raise Exception('something wrong with my time management')

Exception: something wrong with my time management

The exception arguments in __exit__(self, exception_type, exception_value, traceback) must be there whether
you use them or not. Leaving them out as in __exit__(self) gives

TypeError: __exit__() takes 1 positional argument but 4 were given

which tries to tell that Python always calls __exit__ with 4 arguments and I had only one.

17The exception was triggered with raise Exception(); an easy way to cause a ZeroDivisionError exception is to call print(1/0).

97

3.19 Coroutines

Things to remember (inspired by David Beazley’s talk about coroutines):

• Generators produce data for iteration

• Coroutines can both produce and consume data → coroutines can be pipelined

Coroutines have these properties:

1. You start, prime, a coroutine and it waits for further orders.

2. A coroutine starts really fast, and costs practically nothing. As if you called a function.

3. A coroutine takes about 1 kB of memory. For instance, starting a thread takes several megabytes of memory

4. At any time, you can send data to the object and it processes it.

You may think of coroutines as event-driven objects or generator functions. Coroutines won’t run truly parallel in the
CPython interpreter (see GIL problems later in 13.1) but they swap tasks really fast.

98

http://dabeaz.com/coroutines/Coroutines.pdf

Here’s and example of how to prime a coroutine and to send data to it.

coroutine_and_source.py

import numpy as np

def data_consumer(id):

A coroutine that eats data sent to it

print('primed the data_consumer',id)

while True:

data = yield

print(id,'eats', data)

def data_source(target):

An ordinary function that produces data and send is to target

for data in ['beas','potatoes','lettuce','cucumber']:

target.send(data)

eater = data_consumer('thehungryone')

eater.send(None) # prime the coroutine, now it's ready to receive data

print('manually feeding:')

eater.send('cookie')

eater.send('elephant')

eater.close() # stop it

print('feeding from source:')

veg = data_consumer('veggie')

next(veg) # another way to prime a coroutine, same as veg.send(None)

data_source(veg)

veg.close() # stop it

yield is where data exits from a generator and yield is where data enters a coroutine.

99

As David Beazley points out, a decorator can prime a coroutine automatically,

coroutine_decorator.py

Wrapper from http://www.dabeaz.com/coroutines/coroutine.py

edited: no method .next(), but a built-in function next()

automate coroutine priming

def coroutine(func):

def start(*args,**kwargs):

cr = func(*args,**kwargs)

next(cr) # prime the coroutine

return cr

return start

@coroutine

def data_consumer(id):

A coroutine that eats data sent to it

print('primed the data_consumer',id)

while True:

data = yield

print(id,'drinks', data)

eater = data_consumer('joe')

eater.send('coffee')

Coroutines can form a pipeline, and a pipeline that cannot branch is a rotten pipeline. Of course you must prime all coroutines
in the pipeline or it fails without a warning. This kind of failure is easily avoided with a coroutine priming decorator.18

18Warning: this uses the legacy np.random.random(), see section 3.23.

100

coroutine_pipeline.py

"""

A pipeline of coroutines

Wrapper from http://www.dabeaz.com/coroutines/coroutine.py

edited: no method .next(), but a built-in function next()

Automatic coroutine priming

"""

def coroutine(func):

def start(*args,**kwargs):

cr = func(*args,**kwargs)

next(cr) # prime the coroutine

return cr

return start

@coroutine

def sequencefinder(sequence,next_filter=None):

while True:

number = yield

if str(sequence) in str(number):

print(f'{number:>40} contains number sequence {sequence}')

try:

next_filter.send(number)

except:

the last coroutine acts as a sink

pass

def source(target):

for i in np.arange(10000000):

target.send(int(1e30*np.random.random()))

import numpy as np

np.random.seed(123131313)

Feed random numbers to coroutines that find given sequences in it

pipeline:

source -> f_first -> f_second

f_second = sequencefinder(31415926) # find longer sequence 31415926 (and no further)

f_first = sequencefinder(314159,f_second) # find short sequence 314159 and feed to second finder

start the pipeline process

source(f_first)

101

3.20 Delegating work to subgenerators with yield from

Covering all exceptions and edge cases used to be very tricky, but since Python 3.3 we have the all-mighty yield from. The
idea is that a generator may receive the value it yields from another generator. To fully appreciate the subtleties, I recommend
main uses of yield from @Stackoverlow. The essence of

def my_generator:

yield from my_subgenerator

is, AFAIK, that whatever comes from my_subgenerator is transparently copied to yield. Moreover, it’s a two-
way door, my_generator may also send data to my_subgenerator, so the word “from” is a bit odd. If you consider that a
generators may give out anything (results, exceptions, StopIteration, etc.), you realize that there are awfully many possibilities
to cover: miraculously, yield from does it all! Obviously yield from saves lot’s of coding, and makes splitting generators to
subgenerators an easy task, similar to splitting functions to subfunctions.

3.21 Changing behaviour of a library class method

Suppose you have a Python library class, call it LibraryClass, that came with a downloaded package. You find that
LibraryClass is excellent, but has a method whose implementation doesn’t meet your needs.19 The point is, that

You definitely don’t want to edit the library, because your edits may be
overwritten already in the next update.

Let’s say LibraryClass contains the method write that’s not good enough. Create a your own class, which inherits all
from LibraryClass, but has a it’s own, improved write method:

19Inspired by a real-world problem I helped to solve some time a go.

102

https://stackoverflow.com/questions/9708902/in-practice-what-are-the-main-uses-for-the-new-yield-from-syntax-in-python-3

class MyClass(LibraryClass):

def write(self,*args,**kwargs):

whatever write is supposed to do

myinstance = MyClass()

myinstance.write(...)

The newly implemented write method overrules - shadows - the old LibraryClass method.

Curiosity: Poking a method to a class

Consider an empty class,

class EmptyClass():

pass

It does nothing so far. Can we add a method to it afterwards, so that it becomes

class EmptyClass():

def fun(self,*args,**kwargs):

some code

print(*args)

Obviously the function would need to have the self argument, so how about writing a global function fun() and bind it to
the class:

103

poke_method_to_class.py

An empty class

class EmptyClass:

pass

A global function

def fun(self,*arg):

print(*arg)

print(self)

create an instance before poking

old_instance = EmptyClass()

poke fun to EmptyClass

EmptyClass.fun = fun

create an instance after poking

new_instance = EmptyClass()

the new_instance has method fun:

new_instance.fun('calling new_instance.fun')

also the old_instance has method fun:

old_instance.fun('calling old_instance.fun')

"""

calling new_instance.fun

<__main__.EmptyClass object at 0x145b021f3be0>

calling old_instance.fun

<__main__.EmptyClass object at 0x145b021f3c40>

"""

The class instance created before poking the method to the class knows about that method after poking. One downside is
that the global function has now the argument self but you can still call it with a dummy first argument, e.g. with an empty
string fun('',1.9).

Curiosity: Poking an attribute to an object

You can also add new attributes to objects.

104

poke_attribute.py

def hello():

print("Hi there!")

if __name__ == '__main__':

hello()

print('dir(hello):\n',dir(hello))

print(hello.__name__)

print('inquiry about attribute:',hasattr(hello,'numerical_value'))

since False, add the attribute:

print(80*'-')

print("setting a new attribute 'numerical_value' to value 101")

setattr(hello,'numerical_value',101)

print('dir(hello):\n',dir(hello))

print('inquiry about attribute:',hasattr(hello,'numerical_value'))

print(hello.numerical_value)

3.22 Curiosity: Making sure only one class instance can be created: Singleton

Although you may never need one, and some argue you nver should, the Singleton class 20 gives me a chance to comment
about a few Python aspects that are interesting per se.

Sometimes you want to prevent creating but one instance of a certain class.

Such an allow-only-one-instance design patterns are called singletons @wikipedia, implementation in Python is very
simple, the essence is to make use of the magic method __new__, which is called when an instance is about to be created. From
Wikipedia (almost),

20The class name is, of course, irrelevant. Once would do.

105

https://en.wikipedia.org/wiki/Singleton_pattern#Python_implementation

class Singleton:

__instance = None

def __new__(cls, *args, **kwargs):

if not cls.__instance:

cls.__instance = object.__new__(cls)

return cls.__instance

Notice that cls refers to the class (now Singleton), while self would refer to the specific instance of the class. The dunder
method __new__ is called before __init__, initialization of an instance. The double underscore makes __instance a bit more
private.21 The first instance of the Singleton class has __instance set as None, so it returns a new instance of the Singleton
class. Second and subsequent attempts to create new instances have __instance set so that __new__ keeps returning the same
first instance again and again.

The class variable, in this example __instance is not really a “save” or a “static” variable as in some other programming
languages, where static variables inside a function remember their values between function calls. Here __instance is a class
variable, it belongs to the Singleton class and it’s the same whenever you deal with a Singleton. Mostly class variables are
ment to share data between all class instances, just that now there can be only one single instance.

Remark: Also super().__new__(cls) will be translated to object.__new__(cls), which can be seen if you make a deliberate error,

File ".../singleton_test.py", line 19, in __new__

cls._instance = super().__new__(cls,*args)

TypeError: object.__new__() takes exactly one argument (the type to instantiate)

21Users can access __instance if they insist. The Python name mangling rules say it’s Singleton._Singleton__instance; see 3.18. It’s not
private, just well hidden.

106

Remark: Maybe a bit less cryptic solution would be to use a @classmethod, a method bound to a class and which access and modify the state of the
class,

class Singleton:

__instance = None

@classmethod

def get(cls, *args, **kwargs):

if not cls.__instance:

cls.__instance = cls(*args, **kwargs)

return cls.__instance

and create objects using sing = Singleton.get().

Remark: Sometimes you see code explicitly inheriting object, class Singleton(object). However, that’s redun-

dant in Python 3, where base-classes automatically inherit from object, and you may as well write just class Singleton.

107

Testing Singleton:

s1 = Singleton()

s2 = Singleton()

print(s1 is s2)

print(id(s1),id(s2))

"""

True

23143765155792 23143765155792

"""

The objects s1 and s2 are exactly the same, I just used two names for the same object to be able to superficially tell them
apart. The above code actually means

s1 = Singleton()

s2 = s1

108

3.23 NumPy random numbers and seeds

Some topics mentioned here will be re-iterated in the C++ section. If you don’t remember anything else about this section,
remember at least this advice:

Don’t recycle random numbers.

Devices producing real random numbers have turned out to be too slow, therefore we rely on
Pseudo Random Number Generators (PRNGs).22

Remark: Motivation, if you need any: Let’s say you’ve instantiated two PRNGs gen1 and gen2, and the test gen1 is gen2 gives False. If the algorithm is

good, gen1 will produce numbers that are sufficiently random, meaning the generated set of numbers satisfy strict randomness criteria. Then you have gen2,

which is an instance of the same class as gen1, so it, too, will produce good random numbers. The catch is that if you generate, say, 108 numbers with gen1 and

108 numbers with gen2, will the 2× 108 numbers satisfy strict randomness criteria? In the worst case, if the generators use the same seed, you could actually

have twice exactly the same 108 numbers. Even with different seeds randomness is compromised. How badly, depends on how large the internal state space of

the PRNG is and how large and how different the seeds are. I have a real-world example that caused an ethernet error ‘‘Broken cable?’’ about once a month.

There’s no perfect PRNG. The two popular and good ones are:

• Mersenne Twister MT19937 or MT19937-64 @Wikipedia is a well-tested, widely used generator. First version 1997. Long
period (219937 − 1), but large state buffer (2.5 KiB), and a bit slow. I’ll apply MT19937 in C++.

• Permuted congruential generator PCG @Wikipedia A newcomer (2014) with long period (2128 ≈ 3× 1038).

Core Python relies on MT19937,

22I would have liked to call them “generators”, but Python already has them in another meaning.

109

https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Permuted_congruential_generator

>>> import random

>>> random.random()

0.3162973958752622

>>> random.random.__doc__

'random() -> x in the interval [0, 1).'

>>> print(random.__doc__)

... long description ...

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.

* It is one of the most extensively tested generators in existence.

* The random() method is implemented in C, executes in a single Python step,

and is, therefore, threadsafe.

while NumPy default is PCG64, see pcg64 @numpy. 23

>>> import numpy as np

>>> print(np.random.__doc__)

========================

Random Number Generation

========================

Use ``default_rng()`` to create a `Generator` and call its methods.

=============== ===

Generator

--------------- ---

23The implementation follows the research of Melissa O’Neill (homepage @cs.hmc.edu).

110

https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html
https://www.cs.hmc.edu/~oneill/

Generator Class implementing all of the random number distributions

default_rng Default constructor for ``Generator``

=============== ===

=== ===

BitGenerator Streams that work with Generator

--- ---

MT19937

PCG64

PCG64DXSM

Philox

SFC64

=== ===

...

>>> print(np.random.default_rng())

Generator(PCG64)

Sequential code

In a sequential code - applies also to codes that import threading thanks to GIL - you can create one PRNG instance and
use that. Or, if you don’t trust yourself, make it a singleton class. Most of us use the NumPy module random to create pseudo
random numbers. The usage depends on the current implementation in NumPy, so better look at the random number manual
@numpy.org. The recommended procedure is, at the moment of writing,

>>> from numpy.random import default_rng

>>> rng = default_rng()

>>> vals = rng.standard_normal(10) # normally distributed

>>> more_vals = rng.standard_normal(10)

>>> rng.random(5) # random floats in the half-open interval [0.0, 1.0)

111

https://numpy.org/doc/stable/reference/random/index.html
https://numpy.org/doc/stable/reference/random/index.html

Out[10]: array([0.26708778, 0.21264404, 0.77064753, 0.84541853, 0.12868363])

Remark: People, me included, became used to code now considered legacy, namely convinience func-

tions such as numpy.random.seed() and numpy.random.random(). I still have them in some samples, sorry.

Parallel code

If you need only relatively few random numbers in each parallel worker, you can generate the numbers in one worker and
distribute the splitted list to the workers. I wonder if there’s anyone doing this.

If you need to generate lots of random numbers in each parallel worker you need to be really careful.

How can you make sure all the random numbers generated in parallel workers are sufficiently random?

112

Remark: Maybe I need to convince you that random numbers in parallel execution are to be taken seriously. In 2021 Tanel Pärnamaa found a nasty surprise
concerning machine learning with PyTorch + NumPy (see post @github.io). He presents a minimal code for testing:

tanel_numpy_pytorch.py

import numpy as np

from torch.utils.data import Dataset, DataLoader

class RandomDataset(Dataset):

def __getitem__(self, index):

return np.random.randint(0, 1000, 3)

def __len__(self):

return 16

dataset = RandomDataset()

dataloader = DataLoader(dataset, batch_size=2, num_workers=4)

for batch in dataloader:

print(batch)

The code overwrites the __getitem__() method of the inherited Dataset class, see Chapter 3.21. The batches are not supposed to be repeating, but in that
version of PyTorch they came out exactly the same, meaning you’d be repeating exactly the same operation multiple times, and wondering how come my
neural network learns so slowly. The reason for this failure, in Tanel’s own words, was

PyTorch uses multiprocessing to load data in parallel. The worker processes are created using the fork start method. This means each worker
process inherits all resources of the parent, including the state of NumPy’s random number generator.

There was a long discussion whether this is a bug or a feature. In any case, in recent PyTorch this has been fixed or changed. The take-home message: With
some hesitation, you can copy random number generators, but never copy their states.

Since you’ve decided which of the available PRNGs you want to use, to only remaining question is how to seed PRNGs in
workers so that each worker receives a sufficiently different seed, whatever that means.24

A PRNG is just a deterministic algorithm, there’s no magic source of randomness in it. The purpose of the seed is to
select the internal state vector of the PRNG, and the algorithm evolves the state vector in a clever way to produce seemingly
random numbers. In PCG64:

24Massively parallel code can dig up seeding problems that won’t ever surface in smaller scales. I’ll leave the massively parallel discussion to
experts.

113

https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
https://bashtage.github.io/ng-numpy-randomstate/doc/pcg64.html

The pcg64.RandomState state vector consists of 2 unsigned 128-bit values, which are represented externally as
python longs (2.x) or ints (Python 3+). pcg64.RandomState is seeded using a single 128-bit unsigned integer
(Python long/int). In addition, a second 128-bit unsigned integer is used to set the stream.

One general advice: Don’t use seeds such as 1, 2, 3.., and especially

Don’t use seeds with lots of zeros.

An all-zero initial state has very low entropy25, and the PRNG algorithm gets stuck there. Even if the state is only partly
zeroes, you end up with less random output.26 What may happen if workers have PRNGs with distinct yet too similar seeds?
Remember PRNGs evolve their internal state and produce an output. Then, with bad luck, a generator state happens to
coincide (collide) with a state some other PRNG has visited. From then on, that poor PRNG will evolve the same route the
other generator did, and you are recycling random numbers. Avoiding collisions is impractical if not impossible, all we want is
make them very improbable.

Back to the question how to get distinctive seeds to workers. One way is to choose an initial high entropy seed, give each
worker a distinct key, and combine the initial seed with the key to get the worker seeds, (see also parallel @numpy.org)

>>> from numpy.random import SeedSequence, default_rng

A big integer as initial seed

>>> entropy = 52906836728959148027957190488174817840

>>> ss = SeedSequence(entropy)

Spawn off 10 child SeedSequences to pass to child processes.

>>> child_seeds = ss.spawn(10)

>>> streams = [default_rng(s) for s in child_seeds]

For testing, generate 5 uniformly distributed random numbers from each stream

>>> for s in streams: print(s.random(5))

Spawning children copies the initial seed and adds a different key to each child, for example

25If you get only numbers 0, it’s one bit of information, so entropy is log2(1) = 0. Very low entropy, like in absolute zero temperature in
thermodynamics. Entropy is not a property of a single number, but the whole number space.

26Computer scientist use the poetic name zeroland.

114

https://numpy.org/doc/stable/reference/random/parallel.html

>>> child_seeds[3]

SeedSequence(

entropy=52906836728959148027957190488174817840,

spawn_key=(3,),

)

Some testing,

>>> default_rng(child_seeds[2]).__getstate__()

{'bit_generator': 'PCG64',

'state': {'state': 60282425288889213924973460985733618434,

'inc': 296823201770864150067649502116665995049},

'has_uint32': 0,

'uinteger': 0}

Don’t be surprised if you get exactly the same random output every time you run this code. It’s all deterministic, so how could
it change?

Repeatable output is good for checking, but often you need to produce fresh data the next time you run the code, so you
need seeds that change with time. 27 There you have it: seed that’s drawn from the system clock, or something that relates to it,
such as keystroke timings, file system changes etc. The system clock is deterministic by itself - a clock giving random numbers
is no clock at all. Now you face the same question, how to repeat the calculation so that you’re producing new independent
data?

One way would be to store the state vectors of the PRNGs at the end of the run, and reload them in the next run. That
would be close to continuing the calculation longer. That’s not a very popular or recommended solution, so consider using the
system clock, something along the lines

27I have a story about an academic who repeated simulations with the same seed.

115

parallel_seed_test.py

import numpy as np

from numpy.random import SeedSequence, default_rng

import datetime

hit the number pad until you get bored

entropy = 52906836728959148027957190488174817840

thistime = np.datetime64(datetime.datetime.now()).astype(np.uint64)

entropy = entropy*thistime # just one possibility

ss = SeedSequence(entropy)

child_seeds = ss.spawn(10)

child_rngs = [default_rng(s) for s in child_seeds]

for rng in child_rngs: print(rng.random(5))

The function datetime.datetime.now() has microsecond resolution,

>>> datetime.datetime.resolution

datetime.timedelta(microseconds=1)

so that’s the maximum pace you should start new runs.

116

Remark: Another way is to initialize SeedSequence with a tuple (entropy,key),

>>> from numpy.random import SeedSequence, default_rng

High entropy initial seed (here 32 bits)

>>> entropy = 0x87351080e25cb0fad77a44a3be03b491

>>> keys = [key for key in range(10)] # keys for 10 workers

>>> child_seeds = [SeedSequence((entropy,key)) for key in keys]

>>> streams = [default_rng(s) for s in child_seeds]

For testing, generate 5 random numbers U[0,1) from each stream

>>> for s in streams: print(s.random(5))

The spawn method and the tuple initialization are not quite the same thing.

Remark: The module randomstate provides a way to seed multiple PCG64 generators (failed to install in my computer, so haven’t tested this). In
principle,

>>> from randomstate.entropy import random_entropy

>>> import randomstate.prng.pcg64 as pcg64

>>> entropy = random_entropy(4)

128-bit number as a seed

seed = reduce(lambda x, y: x + y, [long(entropy[i]) * 2 ** (32 * i) for i in range(4)])

streams = [pcg64.RandomState(seed, stream) for stream in range(10)]

117

3.24 Debugging Python segmentation fault

Segmentation faults are memory handling errors, which kick you out of Python shell. Usually this happens without giving any
hint of what happened and where. A bit more information can be obtained using the faulthandler module,

$ python -q -X faulthandler code.py

Here’s an example of a code that segfaulted,

$ python -q -X faulthandler Au_chain.py

Fatal Python error: Fatal Python error: Segmentation fault

Segmentation faultThread 0x

00007efe7296d740 (most recent call first):

File "...long path .../lib/python/hotbit/solver.py", line 108 in diagSegmentation fault

and that line was trying to solve a generalized eigenvalue proglem

e, wf = geig(H,S)

so the problem was either bad input or the underlying LAPACK library routine failed. Keep digging.

118

3.25 Pattern matching with match-case in Python version 3.10 - and a warning

Python 3.10 introduced pattern matching because it’s such a great tool in functional programming languages (Scala, Rust,
Haskell). The idea is to check if an object has certain characteristics, without multitude of isinstance() tests and complicated
if-elif-else structures.

The proposals for match-case are in PEP634 and PEP635. In one example, the task is to check if x is a tuple with two or
three elements, and to set host, port, and mode accordingly. The old implementation could be

if isinstance(x, tuple) and len(x) == 2:

host, port = x

mode = "http"

elif isinstance(x, tuple) and len(x) == 3:

host, port, mode = x

Since Python 3.10 you can do it more elegantly,28

match x:

case host, port:

mode = "http"

case host, port, mode:

pass

match-case is often a lot faster than multiple if-else tests, see, e.g., examples @ tonybaloney.github.i0.

28Code highlighting for match-case is missing.

119

https://www.python.org/dev/peps/pep-0635
https://www.python.org/dev/peps/pep-0635
https://tonybaloney.github.io/posts/python-match-statement.html

Everything was fine, until someone noticed a problem: match-case rebinds variables! Take a look at the following
“Schrödinger’s cat” problem.

schrodinger_match.py

Pattern matching caveat

CAT_DEAD = False

CAT_ALIVE = True

print('before match:')

print(f'CAT_DEAD is {CAT_DEAD}')

print(f'CAT_ALIVE is {CAT_ALIVE}')

print('doing match:')

match CAT_ALIVE:

case CAT_DEAD:

print("CAT_ALIVE matches CAT_DEAD")

print('after match:')

print(f'CAT_DEAD is {CAT_DEAD}')

print(f'CAT_ALIVE is {CAT_ALIVE}')

The output in Python 3.11 is

before match:

CAT_DEAD is False

CAT_ALIVE is True

doing match:

CAT_ALIVE matches CAT_DEAD

after match:

CAT_DEAD is True

CAT_ALIVE is True

If you use match-case to look at the cat, the cat turns to a zombie, both dead and alive. In the code pattern matching in
match-case set a value to a variable that was not suppose to change! This kind of side effect is against all good programming
language practices, so no wonder opposition rose.

120

3.26 The Property decorator

A Python keyword you find in many codes is property. It’s a built-in function, mostly used as a decorator @property. It’s
used for these purposes:

• Turning class attributes to properties
Attributes are simple data in an object, accessed with the dot notation object.attribute. The problem is that you
have no control how the data is accessed and you can’t define special handling of the data.
Properties are special kind of attributes that take care of their access and handling. In short, you can validate data.

• Defining read-only attributes, set only at __init__

For example ASE (Atomic Simulation Environment) (ASE @dtu.dk) has a base class for atoms and molecules,

class Atoms:

""" description """

def __init__(self, symbols=None,

positions=None, numbers=None,

tags=None, momenta=None, masses=None,

magmoms=None, charges=None,

scaled_positions=None,

cell=None, pbc=None, celldisp=None,

constraint=None,

calculator=None,

info=None,

velocities=None):

self._cellobj = Cell.new()

self._pbc = np.zeros(3, bool)

...

121

https://wiki.fysik.dtu.dk/ase/

The underscore in the periodic boundary conditions attribute _pbc signals that it’s supposed to be non-public, that is, not
supposed to be set as object._pbc = In __init__, it’s initialized to the default value array([False, False, False]).
To change those you’d use a setter() method. Similarly, to read the value you’d use a getter() method.

ASE has this code:

@property

def pbc(self):

"""Reference to pbc-flags for in-place manipulations."""

return self._pbc

@pbc.setter

def pbc(self, pbc):

self._pbc[:] = pbc

def set_pbc(self, pbc):

"""Set periodic boundary condition flags."""

self.pbc = pbc

def get_pbc(self):

"""Get periodic boundary condition flags."""

return self.pbc.copy()

Here one exposes a public property pbc to replace direct manipulation of _pbc. Calling the method set_pbc() falls back to
pbc. (if for some reason z-direction can’t be made periodic) the tests will be executed.

122

Finally, why does the get_pbc() return a copy of the NumPy array pbc and not the array itself? Suppose you had a data
validation in the code, making sure the z-direction can’t be made periodic:

@pbc.setter

def pbc(self, pbc):

print('called pbc setter')

if pbc[2] == True:

raise ValueError("Z-direction can't be made periodic")

self._pbc[:] = pbc

This prevents mistakes:

atom = Atoms()

atom.pbc=np.array([False,True,True])} # raises ValueError

atom.set_pbc(np.array([False,False,True])) # raises ValueError

However, if you had get_pbc() returning the original array, you can by-pass validation:

def get_pbc(self):

"""Get periodic boundary condition flags."""

return self.pbc # <= BAD IDEA: not a copy but the array itself

atom = Atoms()

periodic[:] = atom.get_pbc() # notice the [:]

periodic[2] = True

print(atom.pbc)

output : [False,True,True] # NO VALIDATION, changed pbc[2] to illegal value!

123

A method that returns the original array makes all safety measures useless. Return a copy, and the user can’t get hold of the
original array. Another reason to return a copy is that you may want to return a modified data array without any changes
made to the original one.

You can make a read-only property by leaving out all setters.

class Circle:

def __init__(self,radius):

self._radius = radius

@property

def radius(self):

return self._radius

c1 = Circle(10.0)

print(c1.radius)

c1.radius = 5.0 # AttributeError: property 'radius' of 'Circle' object has no setter

There’re no private Python variables. You can set c1._radius = 5.0. Just don’t, it’s not meant to be set.

124

4 Simulation and Measurements in Python

Suppose I have a simulation code, and want to do measurents at a certain frequency. Some measurements are computionally
so expensive that I want them done only now and then, or the simulation chokes on measuring. Here I show how to set up a
simulation and a way to add measurements to it. This is me coding, so it’s subject to improvements.

125

The base class MeasurementBase defines how measurements are added and executed:

class MeasurementBase:

def __init__(self):

start with an empty list of measurements and set number of collected data to zero

self.measurements = []

self.steps = 0

def add_measurement(self, measurement, frequency = 1, *args, **kwargs):

adds a callback function "measurement._measure"

default: frequency = 1 means measure at every step

test the function has a __call__()

if not callable(measurement._measure):

eprint(f'{measurement.name} has no callable method _measure')

raise ValueError

print(f'adding new measurement: name={measurement.name} frequency={frequency}')

self.measurements.append((measurement._measure, frequency, args, kwargs))

def do_measurements(self):

self.steps +=1

for measure, frequency, args, kwargs in self.measurements:

if self.steps%frequency == 0:

measure(self,*args,**kwargs)

The callable test makes sure the measument can be called. I inherit the MeasurementBase to all measurement classes
and to the simulation class. The list of measurements and their frequencies is measurements. The method do_measurements

is called in the actual simulation, and a particular measurement is performed if steps is a multiple of that measurements
frequency.

126

A measurement class has two methods, _measure that does the measurement, and get, which return the result upon request.
Prototypically, a measurement looks like this:

class Measure_Something(MeasurementBase):

def __init__(self, verbose = False):

self.verbose = verbose

self.name='measure_something'

if(self.verbose): print('Measure_Something initialized')

def _measure(self,simulation,*args,**kwargs):

if(self.verbose): print(f' {self.name} using {simulation}')

get data from object ``simulation'' and analyze it.

Something like

self.result += simulation.data

def get(self):

return self.result

127

Prototype of the Simulation class:

class Simulation(MeasurementBase):

def __init__(self, verbose=False):

super().__init__()

self.verbose = verbose

add here initializations of simulation data

def run(self,N):

for _ in range(N):

... run the simulation for one step

self.do_measurements()

Here super() refers to the base class, and super().__init__() calls MeasurementBase.__init__(). Without this
self.measurements.append fails, because the list measurements and the counter steps are missing.

128

In the main function I create a simulation instance, a measurement instance, and add measurements:

if __name__ == '__main__':

simu = Simulation()

something = Measure_Something(frequency=10) # you may add verbose=True

simu.add_measurement(something)

test run

for i in range(5):

print(u'\u2500'*80) # thick horizontal line

print('iter ',i)

simu.run(500)

result = something.get()

print(f' something = {result}')

This runs the simulation for 500 steps, measures something every 10 steps, and prints out the result. This is repeated 5 times.
A working test code is in measurement example.py. It computes random numbers and measures their average, and lower and
upper limits.

129

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/measurement_example.py

5 Python Serialization

Serialization means converting an object to a byte stream, a form which can be stored or transmitted. Serialization is very
useful if you want to store data between calculations. Simple serialization can be done using repr(). Here are some common
serialization modules:

• CSV (Comma Separated values, flat data)

write_and_read_csv.py

import csv

with open('file.csv','w') as f:

f_writer = csv.writer(f, delimiter=',', quotechar='"')

f_writer.writerow(['name','score','date'])

f_writer.writerow(['Vesa','1', '1.1.1980'])

f_writer.writerow(['Minttu','5', '1.1.2021'])

with open('file.csv','r') as f:

lines = csv.reader(f)

for line in lines:

print(line)

130

• JSON (Javascript String Object Notation, nested data)

write_and_read_json.py

write data using dump method

import json

test data

data = [['name','score','date'],['Vesa',1,'1.1.1980'],['Minttu',5,'1.1.2021']]

with open('file.json', 'w') as f:

json.dump(data, f, sort_keys=True)

read data

with open('file.json', 'r') as f:

data = json.load(f)

for d in data:

print(d)

131

• Pickle is Python’s native data serialization module. The process is pickling.

pickle_example.py

import pickle

def store():

Vesa = {'key' : 'Vesa', 'name' : 'Vesa Apaja', 'age' : 25, 'middle name' : 'A'}

Jack = {'key' : 'Jack', 'name' : 'Jack Ripper', 'age' : 10**6, 'middle name' : 'the'}

dic = {} # dictionary

dic['Vesa'] = Vesa

dic['Jack'] = Jack

print('dumping data')

with open('data.pkl','wb') as f: # write, *binary format*

pickle.dump(dic, f)

def load():

print('loading data')

with open('data.pkl','rb') as f: # read, *binary format*

doc = pickle.load(f)

for keys in doc:

print(keys, '=>', doc[keys])

if __name__ == '__main__':

store()

load()

132

6 Matplotlib

Matplotlib is the graphical Python toolkit.
John D. Cook plots exponential sums, and they make pretty pictures:

exposum_picture.py

import matplotlib.pyplot as plt

from numpy import array, pi, exp, log

def f1(n):

return n/10 + n**2/7 + n**3/17

def f2(n):

return log(n)**4.1

def f3(n):

return log(n) + n**2/100.

Ns = [15000,1200,12000] # number of points

fs = [f1,f2,f3] # functions f(n)

titles = [r'$f(n)=\frac{n}{10} + \frac{n^2}{7} + \frac{n^3}{17}$',

r'$f(n)=\log(n)^{4.1}$',r'$f(n)=\log(n) + \frac{n^2}{100}$']

for i,(N,f,title) in enumerate(zip(Ns,fs,titles)):

z = array([exp(2*pi*1j*f(n)) for n in range(3, N+3)])

z = z.cumsum()

plot:

plt.subplot(1,3,i+1)

plt.title(title)

plt.plot(z.real, z.imag, color='#333399')

plt.gca().set_aspect(1)

fig = plt.gcf()

fig.suptitle(r'Complex cumulative sums of $\exp(2\pi i f(n))$ from n=3...')

plt.show()

133

https://matplotlib.org/
https://www.johndcook.com/blog/2017/10/07/exponential-sums-make-pretty-pictures/

20 0

10

0

10

20

f(n) = n
10 + n2

7 + n3

17

40 20 0
20

0

f(n) = log(n)4.1

0 200

100

0

100

200

f(n) = log(n) + n2

100

Complex cumulative sums of exp(2 if(n)) from n=3...

134

6.0.1 Updating a plot by clicking it

One trick I recently added to my bag is updating a plot by clicking it. I usually let a Monte Carlo simulation run, and only
now and then check its progress. I used to run a Python analyzer code again and again, with manually killing the plot window.
This is boring, so now I just click the plot and it reads new data from the disk and updates the plot. Here’s a prototype of
matplotlib’s click-the-canvas idea:

matplotlib_click.py

import matplotlib.pyplot as plt

x = []

y = []

xlims = [0,1]

ylims = [0,1]

def onclick(event):

if event.button == 1:

x.append(event.xdata)

y.append(event.ydata)

plotit()

def plotit():

plt.clf()

plt.scatter(x,y)

plt.xlim(xlims)

plt.ylim(ylims)

plt.draw()

if __name__ == '__main__':

fig = plt.figure(figsize=(10, 8), dpi=80)

fig.canvas.mpl_connect('button_press_event',onclick)

plotit()

plt.show()

135

6.0.2 Matplotlib backends and how plots are viewed

Jupyter users can skip this discussion, they’ve already made their choice.
Matplotlib supports a number of backends for viewing plots (Tk-window, browser,...), or what output format (PS, PDF,

...) to use. One of them is webagg, which sends the plot to browser:

matplotlib_backend.py

import matplotlib.pyplot as plt

import numpy as np

x = np.arange(1,10,0.1)

y = np.sin(x)

plot to Tk window

plt.switch_backend('TkAgg')

plt.plot(x,y,'bo-')

plt.show()

plot to browser

plt.switch_backend('WebAgg')

plt.plot(x,y,'bo-')

plt.show()

I mostly save matplotlib figures by clicking the save-button on the plot window, hardly ever save plots inside a script.

136

7 NumPy

For numerical work NumPy is the most important Python package.

NumPy @numpy.org is for handling numerical data, and it brings efficicient matrix operations to python. The dedicated
matrix data type is numpy.matrix (same as numpy.mat), a specialized 2D numpy.array:

>>> A = np.array([[1,2,3],[4,5,6]])

>>> type(A)

<class 'numpy.ndarray'>

>>> B = np.matrix([[1,2,3],[4,5,6]])

>>> type(B)

<class 'numpy.matrixlib.defmatrix.matrix'>

While numpy.matrix is always 2D, numpy.array can have any dimension, and 2D arrays won’t remain 2D in all operations.
See the discussion about differences of numpy array and matrix @Stackoverflow. Both matrix and array has the @-operator for
matrix multiplication and dot product. Let’s take a closer look at what @ does.

7.1 Matrix product and elementwise product

Be careful with operators * and @:

numpy.matrix * numpy.matrix computes matrix product
numpy.array * numpy.array computes elementwise product

and (since Python 3.5)

numpy.matrix @ numpy.matrix computes matrix product
numpy.array @ numpy.array computes matrix product

137

www.numpy.org
https://stackoverflow.com/questions/4151128/what-are-the-differences-between-numpy-arrays-and-matrices-which-one-should-i-u

For example,

>>> l1 = [[1,2],[3,4]] # 2x2 list

>>> l2 = [[2,2],[2,2]] # 2x2 list

>>> a = np.matrix(l1) # 2x2 matrix

>>> b = np.matrix(l2) # 2x2 matrix

>>> c = np.array(l1) # 2x2 array

>>> d = np.array(l2) # 2x2 array

>>> a*b # * is here matrix product, same as a@b

matrix([[6, 6],

[14, 14]])

>>> c*d # * is here elementwise multiplication

array([[2, 4],

[6, 8]])

>>> c@d # @ is matrix product

array([[6, 6],

[14, 14]])

Also the operator ** has two meanings,

with numpy.matrix a the operation a**2 computes matrix square, same as a*a and same as a@a
with numpy.array a the operation a**2 squares all elements in a, same as a*a, not same as a@a

138

7.2 Dot product calculated three ways

A small speed test. In math, vectors x and y, and the result is (x− y)T .(x− y). I used diff=x-y and

1. diff.T.dot(diff)

2. np.dot(diff.T,diff)

3. np.square(diff).sum()

and wanted also to see which is faster, vectors as 1D numpy.array or as 1D numpy.matrix.

Careful with shapes:
I set up data using x = np.random.random(N), an array with shape (N,). converting this in-place to matrix using x=np.asmatrix(x)
gives a shape (1,N) matrix - that’s a column vector! If you feed column vectors to the functions, you compute (in math)
(1, N)T (1, N) = (N, 1)(N, 1) = (N,N) and you end up with a matrix. With large N this eats lot’s of memory! 29

Shape (N,) is not the same as shape (N,1), and they convert differently.

29I got Memory Error with 23 GB of RAM and only after that realized my mistake.

139

100 101 102 103 104 105 106 107

N

10 5

10 4

10 3

10 2

10 1

tim
e

(s
)

Dot product using array or matrix
array, np.square(diff).sum()
matrix, np.square(diff).sum()
array, diff.T.dot(diff)
matrix, diff.T.dot(diff)
array, np.dot(diff.T,diff)
matrix, np.dot(diff.T,diff)

100 101 102 103 104 105 106 107

N

10 5

10 4

10 3

10 2

10 1

tim
e

(s
)

Dot product using array or matrix
np.square(diff).sum()
diff.T.dot(diff)
np.dot(diff.T,diff)
np.square(diff).sum()
diff.T.dot(diff)
np.dot(diff.T,diff)

Left results are for AMD Ryzen 1700x, right ones are for AMD Ryzen 3900x. Conclusions:

• Dot product with numpy.dot is always faster than the array method .dot or squaring+summing

• For N< 105, 1D NumPy arrays with np.dot are always fastest ← BEST BET

• For N> 105, 1D NumPy matrices and np.dot are marginally fastest - but may be dead slow for N< 105!

• For N> 107 arrays and matrices are about equally fast

• NumPy arrays and method .dot speed fluctuates, and is slow for very small N

140

dot_product_speed.py

import numpy as np

import mytimer

@mytimer.timer

def dot_function(x,y):

diff = x - y

return diff.T.dot(diff)

@mytimer.timer

def npdot_function(x,y):

diff = x - y

return np.dot(diff.T,diff)

@mytimer.timer

def sqsum_function(x,y):

diff = x - y

return np.square(diff).sum()

if __name__=='__main__':

arr_res = []

mat_res = []

funs = [sqsum_function,dot_function, npdot_function]

labs = ['np.square(diff).sum()','diff.T.dot(diff)','np.dot(diff.T,diff)']

cols = ['r','b','y']

for i in range(25):

N = 2**i

x = np.random.random((N,1))

y = np.random.random((N,1))

xx = np.asmatrix(x)

yy = np.asmatrix(y)

for f, lab, col in zip(funs,labs,cols):

r,t1 = f(x,y)

r,t2 = f(xx,yy)

lab = lab if i==0 else '' # ternary, label only for first value in the data set

arr_res.append([N,t1,lab,col])

mat_res.append([N,t2,lab,col])

import matplotlib.pyplot as plt

plt.switch_backend('TkAgg')

for r in arr_res:

N,t,lab,col = r

plt.loglog(N,t,'o',color=col, label=lab)

for r in mat_res:

N,t,lab,col = r

plt.loglog(N,t,'s',color=col, label=lab)

plt.title('Dot product using array or matrix')

plt.xlabel('N')

plt.ylabel('time (s)')

plt.legend()

plt.show()

141

Above I used the timer function as a decorator,

mytimer.py

from time import process_time as T

def timer(fun):

def wrapper(*args, **kwargs):

tic = T()

res = fun(*args, **kwargs)

toc = T()-tic

#print("mytimer: {:20}".format(fun.__name__),"took {:10.8f} seconds".format(toc))

print(f"mytimer: {fun.__name__:20} took {toc:10.8f} seconds")

return res,toc

return wrapper

This returns the tuple (res,toc), res is what the function returns and toc is the timing.

7.3 NumPy BLAS

The speed of NumPy matrix and vector operations depends on which compiled BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra PACKage) it uses. One way to get info is

>>> import numpy

>>> numpy.show_config()

blas_mkl_info:

NOT AVAILABLE

blis_info:

NOT AVAILABLE

openblas_info:

libraries = ['openblas', 'openblas']

library_dirs = ['/usr/local/lib']

language = c

define_macros = [('HAVE_CBLAS', None)]

142

runtime_library_dirs = ['/usr/local/lib']

blas_opt_info:

libraries = ['openblas', 'openblas']

library_dirs = ['/usr/local/lib']

language = c

define_macros = [('HAVE_CBLAS', None)]

runtime_library_dirs = ['/usr/local/lib']

lapack_mkl_info:

NOT AVAILABLE

openblas_lapack_info:

libraries = ['openblas', 'openblas']

library_dirs = ['/usr/local/lib']

language = c

define_macros = [('HAVE_CBLAS', None)]

runtime_library_dirs = ['/usr/local/lib']

lapack_opt_info:

libraries = ['openblas', 'openblas']

library_dirs = ['/usr/local/lib']

language = c

define_macros = [('HAVE_CBLAS', None)]

runtime_library_dirs = ['/usr/local/lib']

%Supported SIMD extensions in this NumPy install:

% baseline = SSE,SSE2,SSE3

% found = SSSE3,SSE41,POPCNT,SSE42,AVX,F16C,FMA3,AVX2

% not found = AVX512F,AVX512CD,AVX512_KNL,AVX512_KNM,AVX512_SKX,AVX512_CLX,AVX512_CNL,AVX512_ICL

Apparently I have (had) OpenBLAS package installed and ready for use. From command line the same is

$ python -c "import numpy ; numpy.show_config()"

Is there support for SSE3 and AVX2? My CPU has them, type cat /proc/cpuinfo|grep avx2. 30 Grepping avx, I
found that there are AVX2 instructions in, e.g., numpy/core/_multiarray_umath.cpython-38-x86_64-linux-gnu.so.

FlexiBLAS
My laptop shows config entries

30AMD and Intel CPUs have 256-bit AVX2, new Intel CPUs have also AVX-512, a 512-bit register.

143

https://github.com/xianyi/OpenBLAS

libraries = ['flexiblas', 'flexiblas']

FlexiBLAS (cf. flexiblas @Magdeburg) was introduced to make switching BLAS libraries easier. It supports all common BLAS
libraries, such as NETLIB-BLAS, OpenBLAS, ATLAS, Intel MKL, and BLIS. The point is that the program interface is the
same for them all, and you can switch backends without recompiling. 31 The admin tool is flexiblas,

$ flexiblas list

System-wide:

System-wide (config directory):

OPENBLAS-OPENMP

library = libflexiblas_openblas-openmp.so

comment =

NETLIB

library = libflexiblas_netlib.so

comment =

User config:

Host config:

Enviroment config:

The active backend is chosen either as

$ flexiblas default BACKENDNAME

or

31Since Fedora Linux distro version 33 FlexiBLAS is the default.

144

https://www.mpi-magdeburg.mpg.de/projects/flexiblas

$ export flexiblas=path_to_BLAS_library

In my case the default backend was set by the installed flexiblas-netlib package,

$ cat /etc/flexiblasrc

default = openblas-openmp

Intel OneAPI and MKL
According to intel-oneapi-product-fact-sheet.pdf, Intel OneAPI is ”free for developers to use locally or in the Intel DevCloud
and ships in December 2020.” I downloaded it from Intel OneAPI and installed it in the default /opt/intel, activation of
OneAPI is done by sourcing

$ source /opt/intel/oneapi/setvars.sh

Now NumPy has a access to the Intel MKL (Math Kernel Library),

>>> import numpy

>>> numpy.show_config()

blas_mkl_info:

libraries = ['mkl_rt', 'pthread']

library_dirs = ['/opt/intel/oneapi/intelpython/latest/lib']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/opt/intel/oneapi/intelpython/latest/include']

blas_opt_info:

libraries = ['mkl_rt', 'pthread']

library_dirs = ['/opt/intel/oneapi/intelpython/latest/lib']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/opt/intel/oneapi/intelpython/latest/include']

lapack_mkl_info:

libraries = ['mkl_rt', 'pthread']

library_dirs = ['/opt/intel/oneapi/intelpython/latest/lib']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/opt/intel/oneapi/intelpython/latest/include']

lapack_opt_info:

145

https://newsroom.intel.com/wp-content/uploads/sites/11/2020/11/intel-oneapi-product-fact-sheet.pdf
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

libraries = ['mkl_rt', 'pthread']

library_dirs = ['/opt/intel/oneapi/intelpython/latest/lib']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/opt/intel/oneapi/intelpython/latest/include']

146

Conda Intel Python environment
Installation of intelpython3_full fails for some Python 3.x versions (incompatible glibc). Apparently Python 3.9 works, I
did all in one step.

$ conda create -n conda_intel_3.9 intelpython3_full python=3.9

... long list, takes awhile

...

Installed package of scikit-learn can be accelerated using scikit-learn-intelex.

More details are available here: https://intel.github.io/scikit-learn-intelex

For example:

$ conda install scikit-learn-intelex

$ python -m sklearnex my_application.py

147

7.4 BLAS and speed

Here’s a small speed comparison of a few NumPy operations with various BLAS libraries. Operations are:

1. 2 times np.dot(A,B) for 4096x4096 random matrices A,B

2. 100 times np.dot(A,x) for 4096x4096 random matrix A and vector x

3. np.linalg.svd(A) for 2048x2048 random matrix A

4. np.linalg.cholesky(A) for 4096x4096 symmetric random matrix A

5. np.linalg.eig(A) for 1024x1024 random matrix A

I got these timings on AMD Ryzen 3900x (times are seconds) and OMP_NUM_THREADS=4.

1 2 3 4 5
OpenBlas 5.584 1.189 8.751 12.896 4.323

MKL 6.255 0.762 6.621 13.551 3.624

AMD CPUs suffer from ”Performance regressions may occur on non-Intel x86-compatible processors.” 32

32There used to be a way to fool MKL to unlock AVX2 optimizations, namely export MKL_DEBUG_CPU_TYPE=5, but Intel took that away in 2020.
Thanks Intel.

148

Intel and AMD Zen Architecture
An interesting study of how Intel performs in an AMD Zen architecture (Ryzen CPU family) was done by Daniël de Kok,
2020-08-31-MKL-Zen. I copied the benchmark from benchmarks-performance-analysis @LANL and repeated some of Daniëls
analysis.

$ mt-dgemm 4000 |grep GF # gcc and OpenBlas

$ mt-dgemm-icc 4000 |grep GF # icc and MKL

gcc and OpenBlas 57.314954 GFlops/s used one thread
icc and MKL 206.648378 GFlops/s used multiple thread

There are Zen -optimizations33

92.39% libmkl def.so.1 [.] mkl blas def dgemm kernel zen

Where did Cholesky decomposition spend time?

Overhead Shared Object Symbol

50.72% libmkl_def.so.1 [.] mkl_blas_def_xdcopy

23.51% libmkl_def.so.1 [.] mkl_blas_def_dgemm_kernel_zen

4.92% libmkl_def.so.1 [.] mkl_blas_def_dgemm_pst

3.40% libmkl_def.so.1 [.] mkl_blas_def_dgemm_copyat_bdz

2.84% _multiarray_umath.cpython-37m-x86_64-linux-gnu.so [.] syrk

2.62% libmkl_def.so.1 [.] mkl_blas_def_xdgemv

1.28% libmkl_def.so.1 [.] mkl_blas_def_dgemm_copyan_bdz

1.00% libmkl_core.so.1 [.] mkl_lapack_dlarfb

Mostly copying, apparently NumPy array needs some reorganization to work in MKL. There’s zen, but what about AVX2?
Following Daniël’s suggestion to fake Intel CPU. See instructions in Using MKL efficiently @sigma2.no. 2023: in C, add
code

33I used linux perf tool with perf top -F1000 -d10 -p PID_OF_PROCESS.

149

https://danieldk.eu/Posts/2020-08-31-MKL-Zen.html
https://www.lanl.gov/projects/crossroads/benchmarks-performance-analysis.php
https://documentation.sigma2.no/jobs/mkl.html

// Fake intel

int mkl_serv_intel_cpu_true() {

return 1;

}

I get

Overhead Shared Object Symbol

61.68% _multiarray_umath.cpython-37m-x86_64-linux-gnu.so [.] _aligned_strided_to_contig_size8.A

16.48% libiomp5.so [.] _INTERNAL01e60a8a::__kmp_wait_template<kmp_flag_64<false, true>, true, false, true>

15.54% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_kernel_0

1.25% libmkl_avx2.so.1 [.] mkl_blas_avx2_dtrsm_kernel_ll_0

0.80% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_dcopy_right12_ea

Now AVX2 was utilized, and the Cholesky decomp took about 11 seconds. Glad you asked! The time comsuming
_aligned_strided_to_contig_size8.A is related to memory latency, so there are lot’s of memory accesses involved. Maybe
threaded execution wasn’t a good idea? This can be tested setting export OMP_NUM_THREADS=1, now I get

Overhead Shared Object Symbol

38.77% libmkl_avx2.so.1 [.] mkl_blas_avx2_xdcopy

32.74% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_kernel_0

6.31% libmkl_avx2.so.1 [.] mkl_blas_avx2_xdgemv_t

4.12% libmkl_avx2.so.1 [.] mkl_blas_avx2_xdgemv_n

2.54% _multiarray_umath.cpython-37m-x86_64-linux-gnu.so [.] syrk

2.37% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_kernel_nocopy_NT_b1

1.59% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_dcopy_down4_ea

1.29% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_kernel_0_b0

1.00% libmkl_core.so.1 [.] mkl_lapack_dlarfb

0.84% libmkl_avx2.so.1 [.] mkl_blas_avx2_dgemm_dcopy_down12_ea

0.72% libmkl_avx2.so.1 [.] mkl_lapack_ps_avx2_dlarfx

0.69% libmkl_avx2.so.1 [.] mkl_blas_avx2_xdrotm

Intel compiler 2023 and AMD Ryzen 9 5950X
gcc and OpenBlas 70.293325 GFlops/s used one thread

icx and MKL 66.083919 GFlops/s used one thread
icx and MKL 234.707818 GFlops/s multiple threads, not fake Intel
icx and MKL 539.644187 GFlops/s multiple threads, faked intel (see later)

150

Some timings with just one thread:

1 2 3 4 5
OpenBlas 5.346 0.389 4.848 11.083 1.195

MKL 5.208 0.467 5.281 11.885 1.159
MKL (faked Intel) 4.749 0.373 4.018 8.809 0.990

151

7.4.1 Blis BLAS library

Blis is a very competitive BLAS alternative. From channel conda-forge,

$ conda create -n p3.10 python=3.10

$ conda config --add channels conda-forge

$ conda config --get channels

--add channels 'defaults' # lowest priority

--add channels 'conda-forge' # highest priority

$ conda activate p3.10

(p3.10) $ conda install -c conda-forge blis

Installation using Python pip is

$ python -m pip install blis

If you want a more optimized blis library, get it from blis @github. The Linux installation proceeds along these lines (AMD
zen3 architecture):

$ mkdir blis_install

$ cd blis_install

$ git clone https://github.com/flame/blis

$ cd blis

$./configure CC=gcc CFLAGS='-Ofast' --prefix=. --enable-cblas=auto zen3

$ make -j 5

$ make install

If blis.pc is in your pkg-cfg path you can find the link instructions

152

https://github.com/flame/blis
https://github.com/flame/blis

$ pkg-cfg blis --libs

153

7.5 View, and deep or shallow copy

7.5.1 Copying Python lists

It’s good to know when objects are copied (slow operation) and when only alias names are assigned (fast operation). Putting
an ”=” sign to equate Python objects causes surprises if you jump back and forth between C++ and Python. From the Python
course example,

>>> x = 3

>>> y = x

>>> id(x),id(y)

(140128514287328, 140128514287328)

>>> y = 4

>>> id(x),id(y)

(140128514287328, 140128514287360)

>>> x,y

(3, 4)

so x and y are the same thing until you change the contents of either.

Python creates a copy only on demand or when it has to.

Mutable objects, lists and dictionaries, are more quirky. Take a look how shallow lists (unnested lists) behave,

>>> x = ['a','b']

>>> y = x

>>> id(x),id(y)

(140128370669640, 140128370669640)

>>> y = ['c','d'] # assign the name y for a new list

>>> x,y

154

http://www.python-course.eu/python3_deep_copy.php
http://www.python-course.eu/python3_deep_copy.php

['a', 'b'] ['c', 'd']

>>> id(x),id(y)

(140128370669640, 140128380172808)

With the line y = ['c','d'] I told Python to create a new list, and to ”recycle” the old name y. The object y got a completely
new life in Python, all past forgotten.

But suppose I change only one value,

>>> x = ['a','b']

>>> y = x

>>> id(x),id(y)

(140128380172808, 140128380172808)

>>> y[0]='c' # set value in-place, use old y

>>> x,y

(['c', 'b'] ['c', 'b'])

>>> id(x),id(y)

(140128380172808, 140128380172808)

With the line y[0]='c' changed the 0th element of the old y, in-place. Here x and y are still two names for the same thing
and also x is updated when y changed. Slicing creates a real copy of a shallow list,

>>> x = ['a','b']

>>> y = x[:] # slice of whole x to new list y

>>> id(x),id(y)

(140128370669640, 140128370775368)

and they are two separate lists. With sublist things get interesting. Modify the shallow list element,

155

>>> x = ['a',['b','c']]

>>> y = x[:]

>>> id(x),id(y)

(140128380170760, 140128370669640)

>>> y[0] = 'new'

>>> x,y

(['a', ['b', 'c']], ['new', ['b', 'c']])

This was expected, but what if we modify the sublist?

>>> x = ['a',['b','c']]

>>> y = x[:]

>>> id(x),id(y)

(140128380170760, 140128370669640)

>>> y[1][0]='new'

>>> x,y

(['a', ['new', 'c']], ['a', ['new', 'c']])

and you see that slicing y=x[:] copies only the references of the sublists in x, and while the shallow lists in x and y

are separate, they share the sublists. Very economical, but subject to human error. There is a method deepcopy() that copies
the sublists,

>>> from copy import deepcopy

>>> x = ['a',['b','c']]

>>> y = deepcopy(x)

>>> x,y

(['a', ['b', 'c']], ['a', ['b', 'c']])

>>> y[1][0]='new'

156

>>> x,y

(['a', ['b', 'c']], ['a', ['new', 'c']])

7.5.2 Converting 2D data: numpy.matrix ↔ numpy.array without copying

Avoid unnecessary copying of data. Let’s examine a few cases:

>>> import numpy as np

>>> data_array = np.random.random((500,600))

>>> A = np.matrix(data_array) # creates a copy

>>> np.shares_memory(data_array,A)

False

>>> B = np.asmatrix(data_array) # no copying

>>> np.shares_memory(data_array,B)

True

>>> C = np.matrix(data_array,copy=False) # no copying

>>> np.shares_memory(data_array,C)

True

now data_array, B, and C share data, modifying any of them changes all

Even in the no-copying cases tests B is data_array gives False. There data bound checking inquiry numpy.may_share_memory()
is a bit cheeper than numpy.shares_memory().

Conversion of a Python list to numpy.array can’t be done in-place, (a numpy.array needs a bit more memory for the
metadata),

>>> import numpy as np

>>> mylist = [1,2,3,4]

>>> arr1 = np.asarray(mylist) # creates a copy

157

>>> arr2 = np.array(mylist, copy=False) # creates a copy

7.5.3 NumPy arrays: Copying data or Changing View?

Exactly when is data copied and when not? NumPy arrays have a base attribute,

>>> import numpy as np

>>> a = np.arange(6)

>>> b = a.reshape((2, 3)) # *new view* to a

>>> b.base is a

True

>>> b[1,1]=100

>>> a

[0 1 2 3 100 5]

>>> b

[[0 1 2]

[3 100 5]]

so as the similar base suggested, they share the same memory and modifying either a or b will change both. A direct NumPy
method may_share_memory agrees,

>>> import numpy as np

>>> a = np.arange(6)

>>> b = a.reshape((2, 3))

>>> np.may_share_memory(a,b)

True

A NumPy array is raw data + view, raw data and information how to interpret it.
Some operations copy the raw data (slow), some just create a new view (fast).

158

NumPy arrays have an attribute flags,

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-only.

A view (slice, etc.) inherits WRITEABLE from its base array at creation time,

but a view of a writeable array may be subsequently locked while the base array

remains writeable. (The opposite is not true, in that

a view of a locked array may not be made writeable.

However, currently, locking a base object does not lock

any views that already reference it, so under that circumstance

it is possible to alter the contents of a locked array via a previously

created writeable view onto it.) Attempting to change a non-writeable array

raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

UPDATEIFCOPY (U) This array is a copy of some other array.

When this array is deallocated, the base array will be

updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

>>> a = np.arange(6)

>>> b = a.reshape(2, 3)

>>> print(a.flags)

159

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html

C_CONTIGUOUS : True

F_CONTIGUOUS : True

OWNDATA : True

WRITEABLE : True

ALIGNED : True

UPDATEIFCOPY : False

>>> print(b.flags)

C_CONTIGUOUS : True

F_CONTIGUOUS : False

OWNDATA : False

WRITEABLE : True

ALIGNED : True

UPDATEIFCOPY : False

A 1D array is always contiguous both in C and in fortran, because there’s only one index running through memory locations.
In memory, a is stored as

something else ... , a[0], a[1], a[2], a[3], a[4], a[5] , ... something else

A 2D arrays is by default always contiguous in C, b is stored as
something else ..., b[0,0], b[0,1], b[0,2], b[1,0], b[1,1], b[1,2], ... something else

This is not contiguous in fortran, because fortran would’ve used the order
something else ..., b[0,0], b[1,0], b[0,1], b[1,1], b[0,2], b[1,2], ... something else.

7.5.4 NumPy: ndarray.resize() or numpy.resize()?

NumPy arrays have a method .resize(), but there is also a NumPy function resize(). What’s the difference?

NumPy method .resize()

Resizing an object whose data is viewed by another object fails, and you can’t resize an object that doesn’t own it’s
data.

160

>>> a = np.arange(6) # a owns the data

>>> b = a.reshape(2,3) # b is a view of a, b doesn't own the data

>>> a.resize(4,2)

Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

by another array in this way.

Use the np.resize function or refcheck=False

>>> b.resize(4,2)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: cannot resize this array: it does not own its data

The method a.resize() failed because it tries to resize the array in-place, but that would change b as well. Setting
refcheck=False (as in a.resize(4,2,refcheck=False)) skips the reference checks and you get the speed boost of the
resize() method.

NumPy function resize()

>>> a = np.arange(6)

>>> b = a.reshape(2,3)

>>> a = np.resize(a,(4,2))

>>> a

array([[0, 1],

[2, 3],

[4, 5],

[0, 1]])

>>> b

[[0 1 2]

161

[3 4 5]]

The line a = np.resize(a,(4,2)) stores the created 8-element array back to a; for arrays a and b this is the parting of the
ways. The extra data occupying a is made up according to the rule ”... repeated if necessary to fill out the required number of
elements. The data are repeated in the order that they are stored in memory.” Hence the recycled values 0, 1 in the end.

Remark: A funny way of creating a 50 element array [0,1,0,1,0,1....1] would be (btw, this works with any pattern)

>>> a = np.resize([0,1],50)

>>> a

[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1]

7.5.5 More array slicing

In Python negative indices count from the end. For example, b[0:-3] is all but the last three elements.

>>> import numpy as np

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])

>>> a

array([[1 2 3]

[4 5 6]

[7 8 9]])

>>> a[:,:-1] # all rows, all but the last column

array([[1 2]

[4 5]

[7 8]])

>>> b = np.array([1,2,3,4,5,6])

>>> b

162

array([1 2 3 4 5 6])

>>> b[::-1] # reverse, ''read from the end with step -1''

array([6 5 4 3 2 1])

>>> b[::2] # every second element, step 2

array([1 3 5])

>>> b[1:2] # element 1, stop before element 2

array([2])

Reversing b[::-1] and picking every second element b[::2] work also for Python lists. However, a[:,:-1] doesn’t, because
for lists :,:-1 is interpreted as a tuple, and list indices can’t be tuples. For list of lists, such as a=[[1,2,3],[4,5,6]], element
6 is adressed as a[2][1], not as a[2,1].

7.5.6 Curiosity: How to set temporary NumPy print options

The function np.set_printoptions() changes NumPy print options from that point on. Sometimes it’s preferable to just
temporarily change options. This can be achieved using a context manager34.

34This elegant context solution is by unutbu @Stackoverflow .

163

https://stackoverflow.com/questions/2891790/how-to-pretty-printing-a-numpy-array-without-scientific-notation-and-with-given

numpy_temporary_print_options.py

setting temporary numpy print options

import numpy as np

import contextlib

class MyPrintOptions:

@contextlib.contextmanager

def __printoptions(self,*args, **kwargs):

original = np.get_printoptions()

np.set_printoptions(*args, **kwargs)

try:

yield

finally:

np.set_printoptions(**original)

def is_numerical(self,arg):

try:

1+arg

return True

except:

return False

def print(self,*args,precision=3):

if self.is_numerical(args[0]):

tit=''

else:

tit,*args= args

if np.isscalar(*args):

form = "{:<."+str(precision)+"f}"

print(tit,form.format(*args))

else:

with self.__printoptions(precision):

print(tit,*args)

if __name__=='__main__':

A = np.random.random((3,2)) # try A=1234.567890123456

print("NumPy default output:\n",A)

mypops = MyPrintOptions() # instantiate class

print("MyPrintOptions default 3 decimal output:")

mypops.print(A)

print("MyPrintOptions 12 decimal output:")

mypops.print(A,precision=12)

print("back to NumPy default output:\n",A)

164

The np.isscalar() test is there because

numpy.set_printoptions() affects only NumPy arrays, NumPy passes a scalar back to Python

so all formatting has to be done there. Here I used the format method.

A hackish way to find out if arg is a number:

class My:

def is_numerical(self,arg):

try:

1+arg

return True

except:

return False

This relies on the fact that Python raises an exception (TypeError) if arg can’t be added to a number. You could, of course,
check arg’s type against known numerical types - What a bore! Using try-except is close to Python’s EAFP heart:

EAFP: Easier to Ask for Forgiveness than Permission.

Perhaps this is close to the idea,

NON-EAFP:
If you are a pilot or a bird or an aeroplane, then please fly.

EAFP:
Forgive me, could you please fly?

You see the power of EAFP when you have added a kite, a frisbee, and a flying squirrel.

165

7.6 NumPy matrix operations

Basic matrix operations are very fast in NumPy:

matrixops.py

import numpy as np

A = np.random.randint(10, size=(4,4))

A = A + np.transpose(A)

print('A =\n',A)

print('Rank(A) =', np.linalg.matrix_rank(A))

print('Tr(A) =', np.trace(A))

print('Det(A) =', np.linalg.det(A))

print('Inv(A) =', np.linalg.inv(A))

print(' A^3 =', np.linalg.matrix_power(A, 3))

eigenvalues:

lam, eigv = np.linalg.eig(A)

print('\n')

for i,l in enumerate(lam):

print('i =',i,' l =',l)

Av = A@eigv[:,i]

lv = l*eigv[:,i]

print(' Av =',Av)

print(' l v =',lv)

166

matmul_example.py

matrix multiplication operator @

import numpy as np

A = np.random.random((3, 3)) # random 3x3 matrix

B = np.random.random((3, 3))

C = A@B

print(C)

np.set_printoptions(precision=3)

print(C)

'''

[[0.90608775 1.21181521 1.11203345]

[0.91196897 1.32365173 1.15275434]

[0.85486192 1.25971373 1.1405692]]

[[0.906 1.212 1.112]

[0.912 1.324 1.153]

[0.855 1.26 1.141]]

'''

More about numpy.set_printoptions()
NumPy stores arrays in row-major order, meaning the right-most index changes fastest. This is the same was

as in C/C++, whereas fortran and Matlab use column-major order. Neither is better than the other. Which ever you choose,
accessing elements consequtive in memory is fast, accessing elements stored far apart in memory is slow.

167

https://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html

indexorder.py

import numpy as np

from time import process_time as T

N=10000

a = np.random.rand(N,N,3)

values are stored a[0,0,0] a[0,0,1] a[0,0,2] ... a[0,0,N] a[0,1,0] a[0,1,1] ...

tic = T()

a[:,:,0] = a[:,:,1] # values are far in memory, collecting them is slow

a[:,:,2] = a[:,:,0]

a[:,:,1] = a[:,:,2] # ahem, this is *not* a swapping operation

toc = T() - tic

print(toc,"seconds using (N,N,3) in default row major order")

change index order to fortran's column major order

values are stored a[0,0,0] a[1,0,0] a[2,0,0] ... a[N,0,0] a[0,1,0] a[1,1,0] ...

a = np.random.rand(N,N,3)

tic = T()

a = np.asfortranarray(a) # this takes time

a[:,:,0] = a[:,:,1] # values are consequtive in memory, collecting them is fast

a[:,:,2] = a[:,:,0]

a[:,:,1] = a[:,:,2]

toc = T() - tic

print(toc,"seconds using (N,N,3) in column major order")

same size task, but define the array in different order to begin with

a = np.random.rand(3,N,N)

tic = T()

a[0,:,:] = a[1,:,:] # values are consequtive in memory, collecting them is fast

a[2,:,:] = a[0,:,:]

a[1,:,:] = a[2,:,:]

toc = T() - tic

print(toc,"seconds using (3,N,N) in default row major order")

#0.9668405870000001 seconds using (N,N,3) in default row major order

#0.9624588530000002 seconds using (N,N,3) in column major order

#0.12479739399999978 seconds using (3,N,N) in default row major order

The difference in second and third is entirely due to the slow operation a = np.asfortranarray(a). After that conversion
is done, the remaining tasks are similar. This underlines how important it’s to choose an efficient data representation right

168

from the beginning. You can ask what storage order is use with print(a.flags).
Linear regression
Here’s a NumPy take on linear regression.

linregression.py

Linear regression a.k.a. least square fit to a linear function

import numpy as np

import matplotlib.pyplot as plt

test data

x = np.arange(10)

y = 2*x + 3 + (np.random.random(x.size)-0.5)*2 # y = 2x+3+noise

A = np.array([x, np.ones(x.size)])

print(A)

linear regression

c = np.linalg.lstsq(A.T, y)[0]

print("linear regression coeffs:",c)

plt.plot(x, c@A, 'b-',label='lsq fit') # c@A is c[0]*x+c[1]

plt.plot(x, y, 'ro',label='orig. data')

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.show()

169

0 2 4 6 8
x

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

y

lsq fit
orig. data

7.7 NumPy broadcasting instead of for-loops

Nested for-loops,

for i in a:

for j in b:

for k in c:

may be performance bottlenecks because Python is an interpreted language. This is the only reason, there’s nothing wrong
with loops per se. People have come up with a few ways to avoid for-loops in Python - something we never need to do in
compiled languages.

As we saw earlier, list comprehensions are sometimes useful. For example

170

>>> import numpy as np

>>> a = range(100)

>>> s = []

>>> for i in a:

>>> for j in a:

>>> for k in a:

>>> s.append([i,j,k])

>>> s = np.array(s)

can be written in a more readable form using list comprehension,

>>> import numpy as np

>>> a = range(100)

>>> s = [[i,j,k] for i in a for j in a for k in a]

>>> s = np.array(s)

and the code is a bit faster, but we’re after a bigger fish.
Before continuing, I give a general advice:

If you have a nested for-loop and it’s a performance bootleneck,
keep the loops and try Numba jit or njit, see chapter 11.

If Numba doesn’t do what you need, keep reading.

I recommend talks given by Jake VanderPlas, one is about losing loops. NumPy has some very nice rules that does what
loops would but a lot faster. Broadcasting rules tell how NumPy does an operation with two arrays with non-matching
shapes. For example, subtracting a number from every element - that every would be the loop index we want to avoid:

171

https://speakerdeck.com/jakevdp/losing-your-loops-fast-numerical-computing-with-numpy-pycon-2015
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

>>> import numpy as np

>>> x = np.array([1,2,3,4,5])

>>> x.shape # shape (5,)

>>> x-2 # array x and number 2 have different shapes

where NumPy ”clones” number 2 to match the array x, something like

"x-2 = (1,2,3,4,5) - (2,2,2,2,2) = (-1,0,1,2,3)"

Suppose you have a 1D array x with elements xi and you want to create a difference matrix with

dij = xi − xj . (1)

If you want speed, the indices i, j should not appear in the Python program. Obviously d = x - x won’t do (why ?). You want
to trick NumPy to clone every element xj in x and subtract that from all elements xi. This is something NumPy broadcasting
is good at.

NumPy broadcasting rules:
From right to left, look for a matching dimension or 1 in the two arrays and clone the arrays to match in
shape.

The final shape is not necessarily the shape of either of the two input arrays.
Looking only at array shapes and some operator "op", this is how broadcasting re-shapes arrays:

(5,) op (6,) Error, no broadcasting rule

(5,1) op (6,) = (5,6)

(4,5) op (5,) = (4,5)

(4,5,6) op (5,6) = (4,5,6)

172

(4,5) op (4,1,5) = (4,4,5) Note: not (4,5,5)

Pictorially, the ”(4,5)+(5,) = (4,5)” looks like
3 4 5 4 2
1 2 6 1 1
2 8 5 2 3
7 4 4 3 9

+
(
2 2 2 3 3

)
=

3 4 5 4 2
1 2 6 1 1
2 8 5 2 3
7 4 4 3 9

+

2 2 2 3 3
2 2 2 3 3
2 2 2 3 3
2 2 2 3 3

 =

5 6 7 7 5
3 4 8 4 4
4 10 7 5 6
9 6 6 6 12

I added the parenthesis for clarity, but, as you notice, NumPy broadcasting rules are not math rules. Rather, think
about them as rules that are plausible and do a well defined, unique operation. The 3D arrays are even more interesting, in the
following example both arrays need cloning:

4x5 +

=
+ =

4x4x5

4x1x5

4x4x5 4x4x5

I leave the pictorial representation of 4 and higher dimensional cases for you! Let’s get back to computing distances
dij = xi−xj, for N=5 particles in D=1 dimensional space. The coordinate array is the NumPy array x of shape (5,). If you try
x-x, that’s (5,)-(5,)=(5,) and you get just five zeroes. But you can make NumPy broadcasting to clone the second x,

173

if you compute the difference for array shapes (5,1)-(5,) = (5,5). That (5,5) is the shape of the difference matrix in 1D. All you
need is to reshape x to (5,1) and subtract the original x. Notice that we don’t change the data, just take two different views of
it.

Adding a dimension to an array
Adding an extra dimension - or an axis - is easy and cheap,

>>> import numpy as np

>>> x = np.array([1,2,3,4,5]) # (5,)

>>> d = x[:,np.newaxis] - x # (5,1)-(5,) => NumPy broadcasting => (5,5)

>>> d

[[0 -1 -2 -3 -4]

[1 0 -1 -2 -3]

[2 1 0 -1 -2]

[3 2 1 0 -1]

[4 3 2 1 0]]

If you prefer, you can also use the method .reshape(), in the example x.reshape(5,1) would be the same as x[:,np.newaxis].
You can add dimensions anywhere,

>>> import numpy as np

>>> y = np.ones((5,3,2), int)

>>> y.shape

(5,3,2)

>>> y[:,:,np.newaxis,:].shape

(5,3,1,2)

174

Let’s compute the potential energy of particles,

Vpot =
N∑

i<j,i,j=1

V (|xi − xj|) ,

where the pair interaction V (r) depends only on the interparticle distance r, the i, j-distance is |xi−xj|. The position vectors x
are given as NumPy arrays x of shape (N,D) for N particles in D dimensions. Notice the chosen index order: I’m assuming the
coordinate data is mostly accessed so that the dimension index runs fastest, so Python’s column-major order (particle index,
dimension index) is efficient. For three dimensions, the data in memory would be

other data x(0,0) x(0,1) x(0,2) x(1,0) x(1,1) ... x(N,0) x(N,1) x(N,2) other data

To summarize, the coordinates are in an array of shape (N,D), and the distance vector xi − xj is a three-index array
(i, j, dimension) of shape (N,N,D). We can use the broadcasting rule that takes two (N,D) arrays and gives an (N,N,D) array,
schematically35

(N,1,D) - (N,D) = (N,N,D)

Remark: If you like, you can first write the operation for particles i and j for dimension k. The coordinates are (i,k) and (j,k), so the

distance in dimension k is (i,1,k) - (j,k) = (i,j,k), and vectorize the operation for i and j in all N coordinates and k in all D dimensions.

The resulting distance vector array is symmetric with zero diagonal, so there’s redundant information. All we need is the
vector lengths, so we take the lower (or upper) triangle, and compute the vector lengths, in math |xi−xj| =

√∑
k(xi,k − xj,k)2.

This function does the job:

35It’s easier to get an (N,N,D) array from two (N,D) arrays with broadcasting, than an (D,N,N) array from two (D,N) arrays.

175

potential_simple.py

import numpy as np

def V(r):

return 2*r # just for testing

def PotentialEnergy(x):

d = x[:,np.newaxis,:]-x # broadcasting, d.shape is (N,N,D)

r = np.sqrt((d**2).sum(2)) # aggregation, sum of squares over dimensions (3rd index) , r.shape is (N,N)

rs = r[np.triu_indices_from(r,1)] # r is now upper triangle without diagonals, rs.shape is (N*(N-1)/2,)

return rs.min(),np.sum(V(rs))

if __name__=='__main__':

3 particles in 2 dimensions

x = np.array([[3,1],[4,3],[2,2]]) # shape (3,2)

rmin,Vpot = PotentialEnergy(x)

print(f"minimum distance = {rmin:.5f}")

print(f"potential energy = {Vpot:.8f}")

The next code compares this with a nested for-loop.

176

potential_energy.py

potential energy of N particles in 3D space: sum_i<j V(r_ij)

import numpy as np

pair potential (Lennard-Jones 6-12)

def V(r):

return r**-12 - r**-6

potential energy

def PotentialEnergy(x):

d = x[:,np.newaxis,:]-x # broadcasting, d.shape is (N,N,D)

r = np.sqrt((d**2).sum(2)) # aggregation, sum of squares over dimensions (3rd index) , r.shape is (N,N)

rs = r[np.triu_indices_from(r,1)] # collect upper triangle without diagonals, rs.shape is (N*(N-1)/2,)

return rs.min(),np.sum(V(rs))

def PotentialEnergyLoop(x):

pot = 0

rmin = np.inf

N = x.shape[0]

for i in np.arange(0,N-1):

for j in np.arange(i+1,N):

r = np.sqrt(((x[i]-x[j])**2).sum())

if r<rmin: rmin = r

pot += V(r)

return rmin,pot

def output(title,m,v,timing):

print('\n',title)

print(f' min distance {m:.5f}')

print(f'potential energy {v:.5f}')

print(f'calculation took {timing:.3f} seconds')

if __name__=='__main__':

x = 100*np.random.random((1000,3)) # 1000 points in 3D space

from time import process_time as T

tic = T()

m,v = PotentialEnergy(x)

t1 = T()-tic

output('Broadcasting and aggregation',m,v,t1)

tic = T()

m,v = PotentialEnergyLoop(x)

t2 = T()-tic

output('Explicit for-loops',m,v,t2)

print(f'\n Speedup: Broadcasting was {t2/t1:.1f} times faster than nested for loops')

177

7.8 NumPy einsum tensor operations

The name einsum refers to the Einstein summation convention. If you are comfortable with multiple indices, then einsum can
do transpose, sum, multiply, and much mode. Even better, einsum is memory efficient and fast - these two qualities often go
hand in hand. einsum is for tensor operations, so no wonder it’s also built into PyTorch and Tensorflow.

7.8.1 Computing Di =
∑

j AiBij

Alex Riley has a nice blog post about the power of einsum. He demonstrates how array manipulation of array shapes (3,) and
(3,4) can be done. In math, the example is about computing

Di =
∑
j

AiBij .

Using NumPy broadcasting and sum
Let’s split the task to two parts,

Di =
∑
j

Cij , where Cij = AiBij ,

and do the latter with broadcasting. Shapes are, from left to right, (3,4) = (3,)*(3,4), so for broadcasting you’d want to multiply
shapes (3,1)*(3,4),

>>> import numpy as np

>>> A = np.array([0,1,2])

>>> B = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])

>>> C = A[:,np.newaxis]*B # shapes (3,1) and (3,4) => broadcasts to (3,4)

>>> D = C.sum(1) # same as C.sum(axis=1), D is [0 22 76]

Broadcasting and sum can be calculated together,

178

http://ajcr.net/Basic-guide-to-einsum/

D = (A[:,np.newaxis]*B).sum(1)

The only problem is that for A[:,np.newaxis]*B NumPy creates a temporary array before doing the sum.

Using NumPy einsum

Read the math expression Di =
∑

j AiBij as ∑
j

AiBij → Di (2)

and j is summed over, so with the Einstein summation convention we get

AiBij → Di , (3)

which is D = np.einsum('i,ij->i',A,B):

>>> import numpy as np

>>> A = np.array([0,1,2])

>>> B = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])

>>> D = np.einsum('i,ij->i',A,B)

>>> D

[0 22 76]

You know that j is summed over because it doesn’t appear in the result after ->.

Remark: Element-wise products without any summations are also simple to code using einsum. For example, matrix C with elements Cij = AiBij can be
cast as AiBij → Cij , and the einsum code is

C = np.einsum('i,ij->ij',A,B)

Notice how simple einsum made this look!

179

All basic operations that can be done using NumPy methods, such as transpose(), trace(), and inner_product, have their
einsum equivalents.

import numpy as np

A = np.array(range(9)).reshape(3,3) # shape is (3,3)

AT = np.einsum('ij->ji',A) # transpose

TrA = np.einsum('ii->',A) # trace

B = np.array(range(12)).reshape(3,4) # shape is (3,4)

AB = np.einsum('ik,kj->ij',A,B) # matrix multiplication, same as AB=A@B

ABe = np.einsum('ij,ij->ij',A,B) # elementwise multiplication, same as AB=A*B

C = np.einsum('ij,jk->ij',A,B) # inner product, same as C=np.inner(A,B)

In math, the last operation is Cij =
∑

k AijBjk.

7.8.2 Potential energy calculation with NumPy einsum

Returning to the potential energy calculation, the task was

V =
N∑

i<j,=1

V (rij) , rij =

√∑
k

(dijk)2 , dijk = xik − xjk .

einsum can compute rij a bit faster,

def PotentialEnergy(x):

d = x[:,np.newaxis,:]-x

r = np.sqrt(np.einsum('ijk,ijk->ij',d,d)) # array with elements rij

180

rs = r[np.triu_indices_from(r,1)]

return rs.min(),np.sum(V(rs))

This broadcasting + einsum turned out to be almost twice as fast as broadcasting + sum accregation.

7.8.3 einsum optimization

For example NumPy inner and dot can link to external libraries that do the operations very fast. IMHO, there should be no
reason why numpy.einsum('ij,jk->ij',A,B) shouldn’t produce as fast code as numpy.inner(A,B).

The project opt_einsum provides a drop-in replacement to einsum and claims to be faster. Installation:

$ python -m pip install opt_einsum --user

The project page provides an example of tensor contraction, and true, opt_einsum was 1000 times faster than einsum. But
there’s more to it, namely NumPy einsum has the option optimize. A snipped from the code:

optimize : {bool, list, tuple, 'greedy', 'optimal'}

Choose the type of path. If a tuple is provided, the second argument is

assumed to be the maximum intermediate size created. If only a single

argument is provided the largest input or output array size is used

as a maximum intermediate size.

* if a list is given that starts with "einsum_path", uses this as the

contraction path

* if False no optimization is taken

* if True defaults to the 'greedy' algorithm

* 'optimal' An algorithm that combinatorially explores all possible

ways of contracting the listed tensors and choosest the least costly

path. Scales exponentially with the number of terms in the

contraction.

* 'greedy' An algorithm that chooses the best pair contraction

at each step. Effectively, this algorithm searches the largest inner,

Hadamard, and then outer products at each step. Scales cubically with

the number of terms in the contraction. Equivalent to the 'optimal'

path for most contractions.

Default is 'greedy'.

181

https://github.com/dgasmith/opt_einsum

So let’s add this iPython code to the game,36

tensor_contraction.ipy

import numpy as np

from opt_einsum import contract

N = 10

C = np.random.rand(N, N)

I = np.random.rand(N, N, N, N)

print(f"{'einsum no optimization:':30}",end =" ")

%timeit np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

print(f"{'einsum optimization optimal:':30}",end =" ")

%timeit np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C, optimize='optimal')

print(f"{'einsum optimization greedy:':30}",end =" ")

%timeit np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C, optimize='greedy')

print(f'{"opt_einsum.contract:":30}',end =" ")

%timeit contract('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

The line

%timeit np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

is iPython line magic; the % character makes timeit take as an argument the rest of the line.

IPython line magic needs the iPython shell

$ ipython

In[1]: %load tensor_contraction

36Can you reverse engineer what the code computes? For comparision, the Python script tensor_contraction.py shows how to use
timeit.timeit().

182

and press enter. The %load is also line magic.37

Timings for N = 10

To make the differences more pronounced try N = 12

The speed boost from optimization is significant in the human time scale.

NumPy einsum promotion problem
As Alex Riley (see below) points out, be aware that data types are not promoted in einsum, in other words, make sure the
result fits to the original data type. He gives the following example:

import numpy as np

a = np.ones(300, dtype=np.int8)

print(np.sum(a))

300, correct result

print(np.einsum('i->', a))

44, wrong result

The problem was that the correct result 300 won’t fit to the original np.int8 integer type.

37Cell magic %%timeit times the whole cell multiple lines.

183

8 SciPy

SciPy adds scientific tools, such as linear algebra, integration, ordinary differential equation solving, and signal processing, to
the Python toolbox. I’m not going to dive in, just say that if you use SciPy you are already doing well. Demo 2 uses SciPy
to compute inter-particle distances, and I have a few sample codes that use SciPy, numerics/gaussian_process_intro.py,
numerics/mpi4py_eigvals.py, and numerics/scipy_robust_regression.py, which I discuss here.

8.1 SciPy robust regression

We did linear regression in NumPy (7.6). SciPy robust regression can take care of outliers (badly deviating data points) and other
problems. The fitting module is scipy.optimize.least squares, and knows, e.g., trust-region, dog-leg, and Levenberg-Marguardt
algorithms. Fitting to a bounded function, such as a sin(bx)/x with parameters a and b, can be done with the standard least
squares method, but fitting to exponents is more volatile, as this example shows:

function a+ b exp(cx)
input data a = 1 b = 4 c = −0.3

Fitting to 50 points, with some noise and a few outliers:
standard 16482.6791514 -16478.4656682 2.21543558952e-05
soft l1 0.958414361752 4.11960272585 -0.303014525135
cauchy 0.860903786064 4.15712082527 -0.285476235032

184

www.scipy.org
http://scipy-cookbook.readthedocs.io/items/robust_regression.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

0 2 4 6 8 10

1

0

1

2

3

4

5 outliers
noisy data with outliers
standard fit
soft_l1 fit
cauchy fit

The fit used three functions (most examples in the net lump them together to one generdata() function, but I opted to
keep them separate)

input data

def fun(x):

return 1.0 + 4.0*np.exp(-0.3*x)

parametrized model function

def fitfun(x,*par):

a,b,c,*par = par

return a+b*np.exp(c*x)

residual of model-data

def resfun(par, x, y):

return fitfun(x,*par) - y

185

A technical detail: functions such as 2 sin(3x)/x give numerically a division-by-zero at x = 0, so let’s see how to fix that.
Actually there’s a built-in function that computes sin(x)/x correcty also at x = 0, but that’s besides the point.

First attempt to avoid 1/0

def fun(x):

x[x == 0] = 1e-10 # handle division-by-zero; still one pitfall, see later

return 2.0*np.sin(3.0*x)/x

This vectorizes with a NumPy array x. The line x[x == 0] = 1e-10 sets all zeros in the input to a small value, but you can’t
do that for a scalar x, so trying to patch

Second attempt to avoid 1/0

BAD, non-EAFP

def fun(x):

if isinstance(x,(list, tuple, np.ndarray)) :

x[x == 0] = 1e-10

else:

x = 1e-10

return 2.0*np.sin(3.0*x)/x

A try-except is more pythonic,

A fairly good solution, also EAFP

def fun(x):

try:

x = x.astype(float,copy=False) # ugly but necessary

x[x == 0] = 1e-10

except:

x = 1e-10

186

return 2.0*np.sin(3.0*x)/x

The line x = x.astype(float,copy=False) makes sure the array is floats; if not, make a copy to a float array. This is a
precaution against an interesting mistake, in Python console

>>> import numpy as np

>>> x = np.array([1,0,2,3])

>>> x[x == 0] = 1e-10 # detects correctly zeroes in the array, but ...

>>> x

array([1, 0, 2, 3])

The problem is that an integer array can’t hold floats and now this works against our good intentions to avoid zeros.

You can, of course, sacrifice some accuracy - and add a hard-to-spot bug -

A potentially dangerous way to avoid 1/0

def fun(x):

return 2.0*np.sin(3.0*x)/(x+1e-10) # ok, unless you have x=-1e-10 :^)

You may choose just to ignore the division-by-zero warnings and make sure the rest of the code is not choking if it gets a few NaNs
(NaN means “Not a Number”). SciPy gets very upset about NaNs. Yet another, post-compute remedy: numpy.nan_to_num()
replaces infinities with a finite huge value and NaNs with zeroes.

The actual fitting and extracting the fitted parameters was done like this:

(x,y) is the input data we try to fit, par0 is the initial guess (1,1,1)

fit = least_squares(resfun, par0, loss='soft_l1', f_scale=0.1, args=(x,y))

a,b,c = fit.x # extract parameters a,b,c

In addition to the fitted parameters, the object fit contains lots of status information, such as the cost function and the
Jacobian.

187

Let’s say you have found options in optimize.least_squares that almost always works for your problems. You may
consider hiding details, there’s no need to tell everywhere that you are using Scipy least squares with this loss function and that
noise scale if it’s your default: see the sample code numerics/fit_adapter.py.

8.1.1 Simplified Function Interface with functools.partial

It may be an overkill to write a simplified caller as a class method. Suppose you are always calling
scipy.least_squares() with loss='soft_l1',f_scale=0.1 and just don’t want to repeat parts of the call? The functools.partial
does a bit what std::bind does in C++, it creates a function with some arguments frozen, see fit_adapter_partial.py. The
way functools.partial works is simple,

from functools import partial

def f(x,y):

return(x+y)

add1 = partial(f,1)

add11 = partial(f,11)

print(add1(5))

print(add11(5))

output:

6

16

9 Pandas

Pandas @pydata.org is a software library written for data manipulation and analysis. It adds DataFrames to python, a
structure that made R data analysts favorite. In short, Pandas makes accessing, indexing, merging, and grouping data easy.

188

http://pandas.pydata.org/

Pandas is build on NumPy, it’s all about representation of data. You may probably do without Pandas and live with ”plain
NumPy”, but Pandas is a very attractive data framework. Often Pandas users are less worried about raw speed than fluent data
management, but anyhow speed comparisons don’t flatter Pandas. A recent speed comparison between NumPy and Pandas was
done by Goutham Balaraman, reported here. The outcome was that NumPy takes less memory and is faster for less than 50K
rows, while Pandas is better at above 500K rows. Between that, it depends. Some say Pandas takes 20x longer than NumPy
for very large data sets.

What is a DataFrame? From Pandas web page, the pandas.DataFrame is

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).
Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series

objects.

A Series is a one-dimensional labeled array capable of holding any data type,

import pandas as pd

s = pd.Series([1, 3, 5, 7], index=['a', 'b', 'c', 'd'])

a 1
b 3
c 5
d 7

A DataFrame can be created from data,

import pandas as pd

import numpy as np

data = {'Programming task': ['easy','usual','difficult','insanely difficult'],

'Time taken': ['5 min','20 min','1 hour','finish elsewhere'],

'Credits': ['approving nod',np.random.random(),'30','supervisor takes the credit']}

df = pd.DataFrame(data,columns=['Programming task','Time taken','Credits']) # default index

df.to_excel('tmp.xlsx', sheet_name='Sheet1') # Excel 2010 format, uses openpyxl

df.to_csv('tmp.csv',sep='\t') # CSV format, separator is tab

189

http://gouthamanbalaraman.com/blog/numpy-vs-pandas-comparison.html

print(df)

screen output:

Programming task Time taken Credits

0 easy 5 min 1

1 usual 20 min 10

2 difficult 1 hour 30

3 insanely difficult finish elsewhere supervisor takes the credit

More examples on data exploration in blog post by Sunil Ray .

10 NumExrp

The package NumExpr @github.com uses a vector-based virtual machine to perform elementwise operations very fast. From
introduction to NumExpr , The virtual machine uses ”vector registers”: each register is many elements wide (by default 4096
elements). The key to NumExpr’s speed is handling chunks of elements at a time.

The interface can’t get any simpler, a pair potential calculation could be

import NumExpr as ne

pair potential (Lennard-Jones 6-12)

def V(r):

return ne.evaluate("r**-12 - r**-6") # uses NumExpr to evaluate the potential energy

and your potential energy code suddenly may get about two times faster! Sometimes NumExpr performs fabulously, just don’t
expect miracles for small arrays where NumPy excels and the overhead of compilation is significant.

190

https://www.analyticsvidhya.com/blog/2015/04/comprehensive-guide-data-exploration-sas-using-python-numpy-scipy-matplotlib-pandas/
https://github.com/pydata/numexpr
https://NumExpr.readthedocs.io/en/latest/intro.html

11 Numba

Just-in-time compilation (JIT @Wikipedia) means compilation at run time, during execution. One JIT compiler is provided by
Numba @pydata.org . Numba jit tries to convert the Python code to C and compiles it and runs in C speed. The simplest
way to get all benefits of a C extension! Using Numba you can decorate the function that was a speed bottleneck with
@jit:

from Numba import jit

@jit

def bottleneck():

...function body...

Typing variables may give a speed boost,

from Numba import jit, double

@jit(double(double[:],double[:]))

def bottlenect(x,y):

...function body...

return res

where x,y are (e.g. NumPy) arrays of 64-bit floats and res is a 64-bit float - double is the same as float64, see Numba types
@pydata.org . Typing creates the one and only specialization38 of the function. Try Numba.typeof(a) to find how Numba
types an object a.

38Means just that there is no longer bottleneck() that has e.g. integers or characters as arguments. More about specializations in the C++
section.

191

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://Numba.pydata.org/
http://Numba.pydata.org/Numba-doc/dev/reference/types.html
http://Numba.pydata.org/Numba-doc/dev/reference/types.html

11.1 Numba jit options

It’s usually a good idea to try and force a function to be compiled so that it doensn’t use the CPython interpreter and raise an
error if this is not possible. This is done by the decorator @njit, which is an alias for @jit(nopython=True),

from Numba import njit

@njit

def f(x):

...function body...

Remark: A few other @jit options:
parallel=True tries to auto-parallelize loops
cache=True use a cache file to shorten compilation times when the function was already compiled in a previous invocation.
nogil=True tries to release the global interpreter lock (GIL); possible only if Numba can compile the function in nopython mode (warns if not).
Multiple signatures can be defined simultanenously (this one creates two specializations),

from Numba import jit, int32, float32

@jit(["int32(int32)", "float32(float32)"])

def f(x):

11.2 About NumPy, Numba, and NumExpr

Compilation has some overhead, so Numba or NumExpr won’t help on jobs that are executed only once and take a very short
time. Sometimes you can “prime” the jit compilation before the actual job by calling the jitted function once.

Remark: Numba and NumExpr, as well as NumPy, may autoparallelize execution, without you doing nothing.

Running an internally parallel code in a cluster will upset fellow researchers!

192

Below you find timing results of computing c = 2a+ 3b for large 1D arrays a. This may not be a fair comparison but gives
some hint what to expect. Looking at CPU utilization, NumExpr could autoparallelize a bit, using 130-170% CPU.

0 50000 100000 150000 200000 250000 300000
Vector length N

0.0000

0.0005

0.0010

0.0015

0.0020

Nu
m

py
 v

s n
um

ba
 v

s n
um

ex
pr

 e
xe

cu
tio

n
tim

es

Evaluating c = 2*a+3*b of vectors a and b of length N
numpy
numba
numexpr

The jump in execution time indicates L3 cache (2 MiB) overflow. That equals 2097152 bytes and arrays a,b, and c take
that at around N=87000 (from import sys; sys.getsizeof(c)). NumExpr does best with large arrays, but there is significant
overhead in small array operations. Operations on unaligned or strided data benefit the most. If you have Intel MKL available
NumExpr can use it.

193

Here’s a longer test, run in a different machine:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Vector length N 1e6

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Nu
m

py
 v

s n
um

ba
 v

s n
um

ex
pr

 e
xe

cu
tio

n
tim

es

Evaluating c = 2*a+3*b of vectors a and b of length N
numpy
numba
numexpr

194

The core code was

import numpy as np

import NumExpr as ne

from Numba import jit, double

import time

nrep = 100

Nmax = 300000

step = 10000

res = []

def add_fac(f1,f2,a,b):

return f1*a+f2*b

Numba_add_fac=jit(double[:](double,double,double[:],double[:]))(add_fac)

def loop():

for N in np.arange(step,Nmax,step=step):

toc = 0

c = np.empty(N)

for rep in np.arange(nrep):

a = np.random.random(N)

b = np.random.random(N)

tic = time.time()

c = Numba_add_fac(2,3,a,b) # Numba

c = add_fac(2,3,a,b) # NumPy

c = ne.evaluate("2*a+3*b") # NumExpr

toc += time.time()-tic

res.append((N,toc/nrep))

195

12 Machine learning with Python

Python has become a very popular language in machine learning and data mining, which supposedly is behind the increasing
popularity of Python. 39 I’ll introduce machine learning because I assume many of you are using Python in that context.

The bread and butter in machine learning is computation of gradients, Jacobians, and Hessians, and handling of tensors.
There are several Python packages to choose from, 40

• TensorFlow @github.com , originally developed in Google, is an open source software library for numerical computation
using data flow graphs.

$ pip install tensorflow

• PyTorch @pytorch.org , originally developed by Facebook, is

an open source machine learning framework that accelerates the path from research prototyping to production
deployment.

$ pip install torch

$ pip install torchvision

• Scikit-learn @scikit-learn.org ; Python module sklearn

Scikit-learn is a user-friendly machine learning toolkit

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable - BSD license

39”Machine learning” means fitting but we call it machine learning for sales purposes.
40Theano (2007-2017) died after version 1.0, but it’s legacy lives in Keras, Lasagne and Blocks.

196

https://github.com/tensorflow/tensorflow
https://pytorch.org/
http://scikit-learn.org/stable/

$ pip install sklearn

• Keras @keras.io

$ pip install keras

Keras is a user-friendly machine learning toolkit

high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or
Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result
with the least possible delay is key to doing good research.

At the moment of writing (standalone) Keras appears to be de facto on top of Tensorflow. Since 2019 Keras is built in to
Tensorflow. Keras Sequential network model can be defined using two idioms,

import tensorflow as tf

model = tf.keras.Sequential()

or equivalently

from tensorflow.keras import Sequential()

model = Sequential()

I should mention also Apache MXnet @Wikipedia , CNTK @github.com (Microsoft Cognitive Toolkit), and Deeplearning4j
@Wikipedia .

197

https://keras.io/
https://en.wikipedia.org/wiki/MXNet
https://github.com/Microsoft/cntk
https://en.wikipedia.org/wiki/Deeplearning4j
https://en.wikipedia.org/wiki/Deeplearning4j

Both Keras and PyTorch are high level abstractions. For a recent comparison of PyTorch and Tensorflow, see link
@dezyre.com . An August 2021 article about Keras, Tensorflow and Pytorch is here @simplilearn.com I’m talking mostly
about Keras, but also PyTorch is a quite comfortable, high level API.

As a physicist, you might appreciate SciANN: Neural Networks for Scientific Computations, ”SciANN is a Keras wrapper
for scientific computations and physics-informed deep learning.”

12.1 Fully connected, dense neural network

View a neural network as a function,

y = neural_network(x)

You’d like to have a neural network that approximately reproduces a training set, known points to fit:
⇒ neural_network() should be very flexible
⇒ many parameters to optimize.

We can assume x is numerical data stored in a NumPy array of shape, say, (n,). A simple and fast operation on an array
is matrix multiplication. There’s a subtle difference how @, which uses the __matmul__() method, and np.dot() deal with
multidimensional arrays, and it’s safer to use here the latter,

y = np.dot(w, x) # w.shape is (m,n)

Frequently one does it the other way round,

y = np.dot(x, w) # w.shape is (n,m)

The array w is weight, which already has n*m parameters. Often y is not located where x is, so we should be able to shift the
output of np.dot(w,x) by adding a bias array b to the output. We get a neural network model

198

https://www.dezyre.com/article/pytorch-vs-tensorflow-2021-a-head-to-head-comparison/416
https://www.dezyre.com/article/pytorch-vs-tensorflow-2021-a-head-to-head-comparison/416
https://www.simplilearn.com/keras-vs-tensorflow-vs-pytorch-article
https://github.com/sciann/sciann

y = np.dot(w, x) + b

The problem is that this is a linear function in x, and the output is always a linear combination of inputs. This seriously limits
the possible {x,y} data this function can reproduce ⇒ add nonlinearity in the form of a nonlinear function activation(),
which could be, for example,

199

import numpy as np

ReLU

def activation(x):

return np.where(x>0, x, 0) # or np.maximum(0,x)

This cuts off any negative signals and returns the rest as they are, expressed in another way, max(0, x). Themax(0, x) activation
is known as rectifier or ReLU (rectified linear unit) activation function.

4 2 0 2 4
2

1

0

1

2
Frequently used activation functions

relu
sigmoid
tanh

All built-in activations in Keras can be listed and plotted using the code
keras activations.py, some frequently used activations are tanh(x) and

relu(x) = max(0, x) ReLU (Rectifying Linear Unit)

sigmoid(x) =
1

1 + exp(−x) .

So far we have a model41

y = activation(np.dot(w,x) + b)

It’s best to add one more weight-bias modification, which adds scaling and shifting of activation output, and the network
model

y = np.dot(w2,activation(np.dot(w1,x) + b1) + b2)

where weights and biases are different from layer to layer. In math, (activation() is now σ())

y = w2σ(w1x+ b1) + b2 .

41If activation(x is np.where(x>0,1,0), the model y = activation(np.dot(w,x) + b) with binary (1 or 0) output is called a perceptron.

200

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/keras_activations.py

Input #1

Input #2

Input #3

Input #4

Hidden
layer

Input
layer

Output
layer

We can split the operations and define a hidden layer between the input layer and
the output layer,

x # input layer input

z = np.dot(w1,x) + b1 # hidden layer input

h = activation(z) # hidden layer output is now output layer input

y = np.dot(w2,h) + b2 # output layer output

so the same principle as in

The toe bone’s connected to the foot bone,
The foot bone’s connected to the ankle bone,
The ankle bone’s connected to the leg bone,
Now shake dem skeleton bones!

The one-hidden layer neural network is already a universal function approximator for
certain continuous functions, meaning most functions y = f(x) can be arbitrarily well
approximated by it - given large enough width in the hidden layer.

In Keras,

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.utils import plot_model

model = Sequential()

define the topology of the model

model.add(Dense(8, input_dim=3, kernel_initializer='uniform', activation='relu'))

model.add(Dense(1, kernel_initializer='uniform'))

print(model.summary())

plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)

No activation in the output layer; weights and biases are initialized to uniformly
distributed random numbers. Summary gives parameters 32+9 = 41; from weight (8,3)
+ bias (8,) = 3*8 + 8 = 32, and weight (8,1) + bias (1) = 8*1+1 = 9.

201

We can make the network deeper by forwarding the hidden layer output to another hidden layer - that’s a sequential
model. Narrow but deep networks are more capable than wide but shallow ones. If every node in a layer is connected to every
node in the next layer you have a fully connected network. Evaluating the output y from the input x is done via forward
propagation of signal through the network, which is why this is a feed-forward network.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Hidden
layer

Hidden
layer

Input
layer

Output
layer

The keras model of a fully connected, dense neural network in the
figure could be

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

model = Sequential()

define the topology of the model

model.add(Dense(5, input_dim=4, kernel_initializer='uniform', activation='relu'))

model.add(Dense(7, kernel_initializer='uniform', activation='softmax'))

model.add(Dense(5, kernel_initializer='uniform', activation='tanh'))

model.add(Dense(1, kernel_initializer='uniform'))

See options for a dense network. For more keras examples here, and tips
for debugging here. Kernel means weight, and kernel_initializer choses
the random number distribution used to compute initial weight matrix
(tensor) elements.

So far we have only built a neural network model, and set hyperpa-
rameters, just a few, which define the model structure and some more
parameters you fix from the start. But there are also model parameters,
weights and biases, which you manipulate to fit the training data better,
and so far we haven’t figured out how to train the network. Knowing noth-
ing about the optimal values the optimal weight and bias values we may
as well guess them,

Weights and biases are initialized to random values

202

https://keras.io/api/layers/core_layers/dense/
https://keras.io/examples/
https://keras.io/examples/keras_recipes/debugging_tips/

12.2 Training a neural network

Training a neural network is nontrivial but in principle a straigthforward task. There are very many parameters to tweak, and
only a finite set of data for training. The more training data you have the better.

Let’s assume we know that for input x the output should be y. This is a limited data set of known results. For example,

• function fit: a single variable function, x = {−4,−3,−1, 0, 1, 2, 3, 4} the values are known to be y = {4, 3, 1, 4, 3, 7, 8}.

• cathegorize: canine-feline pictures x = {fig1, fig2, ..., f ig500} are known to show y = {cat, dog, ..., cat, cat, dog}.
Before training you need to fix a few things:

• Divide the data set to a training set (xtr,ytr), and set aside about 1/3 of the data as a validation set (xval,yval). The
training data set consists of samples, a sample is one input vector. That is, a sample is one piece of data that gives a
known output.

• Loss function or Cost function (L or C) is the function whose value you try to minimize. Zero loss means a perfect
fit to training data. You have the training set and you know the answer for that set, so you construct a function that
is positive, and increases when the model result is further from the known answer. A simple one is L = ||y − ytr||2 for
output y and training output ytr.

Now you are ready to start minimizing the loss function. First, compute the error signal

∂L
∂y

, (4)

which tells which direction the last layer output y should change to get smaller loss L. The error signal is the final outcry you
hear in the end of the network telling the output is not quite correct. The big question is how to get from the error signal
the information which direction should the layer weights and biases change? The answer is given by backpropagation, (see
backpropagation @Wikipedia), which lies in the essense of training neural networks.

First, an input is sent through the network - a feed forward - and evaluate the error signal from of output. Next, take the
error signal and send it back to the network from the end, and read the gradients of weights and biases when the backpropagating
error signals reaches them.

203

https://en.wikipedia.org/wiki/Backpropagation

A neural network is like a radio with hundreds of adjustable knobs. The input is radio waves, and you know your
favorite song is playing nonstop but sounds horribly distorted. You turn a knob a bit and it sounds somewhat better
(or worse), then turn another knob, and so on. Then you realize that finding the optimal knob settings using this
method would take ages. Luckily, your radio can be taught with backpropagation - it’s not a common radio. The
distorted sound you hear deviates from you favorite song, and that deviation is the error signal. You send the error
signal back to the radio in backpropagation, and while going through the radio it attaches to every knob a mark
indicating which way it should be turned (but not how much, just how bad the current setting is). You do small
knob adjustments and immediately your song plays a lot better. After a few cycles your song plays as nicely as it
can with that box of a radio, and you sit back and enjoy.

12.2.1 Math details for one-hidden layer network forward and backward propagation

Forward propagation in a one-hidden layer network written in Python is

z = np.dot(w1,x) + b1

h = activation(z)

y = np.dot(w2,h) + b2

which makes clear that there are two different weights and biases.

204

Let’s write this in math, the component notation is on the first column, and the vector notation is on the second column.
Here wn and bn indicate n:th layer weights and biases.

FORWARD PROPAGATION

zi =
∑
k

w1
ikxk + b1i z = w1x+ b1 (layer 1 weighted input)

hi = σ(zi) h = σ(z) (layer 1 output)

yj =
∑
i

w2
jihi + b2j y = w2h+ b2 (layer 2 output)

L =
1

2

∑
j

(yj − ytr,j)
2 L =

1

2
||y − ytr||2 (a simple loss function) . (5)

The backward error propagation is best expressed using an adjoint and a bar notation for gradients of the loss function. (see
e.g. automatic differentiation @Wikipedia) For any quantity q the adjoint is defined

q̄ :=
∂L
∂q

. (6)

I emphasize that all adjoints are just numerical quantities we compute.42 The error signal backprobagation is initiated
with the trivial

L̄ :=
∂L
∂L = 1 . (7)

The key is to apply the chain rule of differentiation,

∂f(g(x, y))

∂x
=

∂f

∂g

∂g

∂x
, (8)

The arrows show how the error signal backpropagates:
42One reason to use the bar notation is that adjoints are a special case of gradients,

q̄ := ∇qL ,

but it’s always the gradient of L so why repeat it.

205

https://en.wikipedia.org/wiki/Automatic_differentiation

BACKWARD PROPAGATION

∂L
∂L := L̄ = 1 L̄ = 1

∂L
∂yj

:= ȳj = L̄(yj − ytr,j) ȳ = L̄ (y − ytr) Error signal

∂L
∂w2

ji

:= w̄2
ji =

∂L
∂yj

∂yj
∂w2

ji︸ ︷︷ ︸
hi

= ȳjhi w̄2 = ȳ hT (used in updating w2)

∂L
∂b2j

:= b̄2j =
∂L
∂yj

∂yj
∂b2j︸︷︷︸
1

= ȳj b̄2 = ȳ (used in updating b2)

∂L
∂hi

:= h̄i =
∑
j

∂L
∂yj

∂yj
∂hi︸︷︷︸
w2

ji

=
∑
j

ȳjw
2
ji h̄ = (w2)T ȳ

∂L
∂zi

:= z̄i =
∑
j

∂L
∂yj

∂yj
∂hi

∂hi

∂zi
=

∂L
∂hi

∂hi

∂zi︸︷︷︸
σ′(zi)

= h̄iσ
′(zi) z̄ = h̄ ◦ σ′(z)

∂L
∂w1

ik

:= w̄1
ik =

∑
j

∂L
∂yj

∂yj
∂hi

∂hi

∂zi︸ ︷︷ ︸
z̄i

∂zi
∂w1

ik︸ ︷︷ ︸
xk

= z̄ixk w̄1 = z̄ xT (used in updating w1)

∂L
∂b1i

:= b̄1i =
∂L
∂yj

∂yj
∂hi

∂hi

∂zi︸ ︷︷ ︸
z̄i

∂zi
∂b1i︸︷︷︸
1

= z̄i b̄1 = z̄ (used in updating b1) . (9)

Notice that quantities y, h, and z were computed and stored in forward propagation. The operator ◦ denotes a Hadamard
product, an elementwise product.

206

In some occations you may find that your network won’t learn. If, for example, σ′(z) happens to be too small, which means
the weighted layer input is in a region where the activation is almost flat, you get z̄ ≈ 0, and subsequent weights and biases have
zero gradient. Such a no-learning situation happens easily with the sigmoid activation, but not so easily with ReLU (unless the
layer input becomes negative).

12.2.2 Gradient descent

Once backward propagation is finished you know the gradients of weight and biases, w̄ := ∂L
∂w

and b̄ := ∂L
∂b
. The aim is to reduce

the loss, so proceed to the direction of negative gradients. Backward propagation only reveals the gradients, but not how far to
move in the negative gradient direction. One way is to guess a (positive) learning rate η, a small, adjustable hyperparameter:

WEIGHT AND BIAS UPDATE

w1 → w1 − η
∂L
∂w1

= w1 − ηw̄1

b1 → b1 − η
∂L
∂b1

= b1 − ηb̄1

w2 → w2 − η
∂L
∂w2

= w2 − ηw̄2

b2 → b2 − η
∂L
∂b2

= b2 − ηb̄2 . (10)

This approach is not particularly effective for locating the minimum of the loss function. This is primarily due to the fact that
the terrain of the function can contain numerous local minima, and the algorithm described above runs the risk of becoming
trapped in one of them.

Adjusting weight and biases is just like any other optimization problem with known gradients, and there are multiple
algorithms to choose from. The improved algorithms remember how succesfull the previous gradient updates were and keep
updating their optimization strategy. polular ones are Adam, Adagrad, Momentum, AMSGrad, RMSProp, AdaMax and
Nesterov. See Sebastian Ruder: An overview of gradient descent optimization algorithms. Most are readily available in
Keras/Tensorflow/PyTorch.

207

https://ruder.io/optimizing-gradient-descent/

12.2.3 Automatic Differentiation (AD)

We saw how to get from forward propagation through a neural network to backward propagation for a single hidden layer
network. Imagine adding more hidden layers and trying to repeat the same calculation. You soon realize that the pen-and-
paper algebra gets messy, and it’s ever so easy to make mistakes.

Can one automatically generate the backward propagation from a given forward propagation? The answer is yes, with
Automatic Differentiation (AD) (see AD @Wikipedia).

Error backpropagation through a multilayer network relies on repeated application of the chain rule. I turns out that
backpropagation is a special case of AD. Once you have defined a neural network, Tensorflow and other clever software can
backpropagate the error signal automatically. 43

Automatic differentiation is not numerical differentiation. The derivative of function f(x) is

df(x)

dx
= lim

dx→0

f(x+ dx)− f(x)

dx
, (11)

but the ratio numerically unstable in the limit dx→ 0, because for dx close to machine precision x+dx = x and f(x+dx) = f(x).
That’s how you actually can find the machine precision:

>>> x = 1.0

>>> x+1e-15 == x

False

>>> x+1e-16 == x

True

Note added: don’t test x+1e-16 is x, that’s always False (hint: immutable object).
Automatic differentiation is not symbolic differentiation. All that’s moving about is numbers, not symbols. You

start from the right with the gradient 1, and let it backpropagate. All adjoints are just numerical arrays.

43One of the first to actually program backpropagation was Seppo Linnainmaa, in his Master’s thesis in Univ. Helsinki (1970), without mentioning
neural networks. He also made use of automatic differentiation! In 1974 Linnainmaa was awarded the first doctorate ever in computer science at the
University of Helsinki.

208

https://en.wikipedia.org/wiki/Automatic_differentiation

Automatic differentiation is a numerical method to compute gradients of arbitrary functions in machine precision accuracy.

I recommend Jonathan Kernes’ blog about automatic differentiation. Here’s a short appetizer.
Every function can be expressed as a combination of a few elementary functions, such as sin(), cos(), exp(), and all op-

erators are also functions: + is add() and ∗ is mul(). In Python, + means the magic method __add__() and ∗ means
__mul__():

>>> x = 3.0

>>> y = 4.0

>>> x.__mul__(y)

12

These are elementary operations, and all computations can be written as a computational graph. For example, the
function y=f(x1,x2)=x1*x2 +c1 is the directed graph shown below:

Circles are nodes with either variable (x1,x2), constant (c1), operator (mul,add) or a placeholder (variable or constant to be
set in the future). Once x1, x2, c1 have numerical values, you can travel the graph from left to right and evaluate the function.
That’s not a big deal but this is: you can as easily compute derivatives and evaluate them. What makes calculation of
derivatives possible is the fact that you know how each elementary operation (add, mul, sin, exp, ...) behaves in differentiation.

209

https://towardsdatascience.com/build-your-own-automatic-differentiation-program-6ecd585eec2a

Algebraically,

f(x1, x2) = x1 ∗ x2 + c1 = add(mul(x1, x2), c1) (12)

∂f

∂x1

=
∂ add(mul(x1, x2), c1)

∂x1
. (13)

But add() and mul() are functions, so the chain rule applies,

∂f

∂x1

=
∂add(mul(x1, x2), c1)

∂x1
=

∂add(mul, c1)

∂mul︸ ︷︷ ︸
1

∂mul(x1, x2)

∂x1︸ ︷︷ ︸
x2

+
∂ add(mul, c1)

∂c1

∂c1

∂x1︸︷︷︸
0

= x2 . (14)

The next revelation is to realize that also derivatives can be written as a computational graph. What’s more, the derivative
graph backpropagates the same computational graph we already draw, only the information in the arrows change. To kickstart
backpropagation, set (just like we set ∂L

∂L = 1)

∂f

∂f
= 1 . (15)

∂mul(x1,x2)
∂x1

∂mul(x1,x2)
∂x2

∂add(mul,c1)
∂mul

∂add(mul,c1)
∂c1

1

x1

mul

x2

add

c1

f

Jonathan gives a working Python code that can handle operators addition, multiplication, power, and matrix product. Each of
them contains two methods, one for forward and one for backward propagation.

210

Remark: For example, the division operator can be handled like this:

From Jonathan Kernes' blog; Sign error in the last output corrected

class divide(Operator):

count = 0

"""Binary division operation."""

def __init__(self, a, b, name=None):

super().__init__(name)

self.inputs=[a, b]

self.name = f'div/{divide.count}' if name is None else name

divide.count += 1

def forward(self, a, b):

return a/b

def backward(self, a, b, dout):

return dout/b, -dout*a/np.power(b, 2)

The Python class divide methods forward() and backward() are these graphs:

div
div(a, b) := a

b

a

b

div
dout

1
b ∗

dout

−
a
b
2
∗ d
ou
t

211

Remark: The backward graph expresses the math (mark with suffix what is kept fixed)

d(div(a, b)) =

(
∂div(a, b)

∂a

)
b

da+

(
∂div(a, b)

∂b

)
a

db =
1

b
da−

a

b2
db . (16)

From this we need only the slopes,

(
∂div(a, b)

∂a

)
b

=
1

b
(17)(

∂div(a, b)

∂b

)
a

= −
a

b2
. (18)

The gradient output of the node is dout. In the first case b is fixed (no gradient in b, db = 0), so the gradient backpropagates along the a-branch as

(
∂div(a, b)

∂a

)
b

dout =
1

b
∗ dout . (19)

In the second case a is fixed (no gradient in a, da = 0), so the gradient backpropagates along the b-branch as

(
∂div(a, b)

∂b

)
a

dout = −
a

b2
∗ dout . (20)

212

12.3 Batches, epochs, and overfitting

Only thing that remains to be done is to deside two more hyperparameters, the batch size and the number of epochs.

• A batch: The training data set is divided into batches,

batch 1 : {xtr}1,...,Nb → {ytr}1,...,Nb

batch 2 : {xtr}Nb+1,...,2Nb → {ytr}Nb+1,...,2Nb

... (21)

The model is updated only after a full batch is run through. Suppose you make a gradient descent to minimize the loss
function. If you update the model after every sample you rely on just one piece of data. Following the gradient of that
single input is shooting your model parameters to some direction. It’s probably not the best of directions and the length
of your update vector is probably not optimal. This stochastic gradient with some randomness in vectors may find a
good minimum. If you choose a bigger batch and use the average gradient direction you get a batch gradient with a bit
less random vectors.

• Epoch: One epoch is a run through all batches, that is, the full training data set. One epoch is usually not enough
because models can’t learn that fast.

213

Schematically, three things can happen. The red dots represent the training data, and the curve the model output.

Optimal fitting OverfittingUnderfitting

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.
John von Neumann to Enrico Fermi

An overfitted model can perfectly reproduce the training data, but for new input the predictions are usually very poor, so
such a model has no predictive power and can’t generalize to new input. To detect overfitting, one puts aside some known
results as validation data, typically 30 percent of available data. During training, once model predictions with validation
data start to deteriorate it’s time to stop training. A very powerful trick to avoid overfitting is to randomly turn off some
neurons so that the remaining neurons have to compensate and adapt.

214

12.4 Learning diabetes factors among Pima indians

The Pima data contains the following information:44

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)2)

7. Diabetes pedigree function

8. Age (years)

9. Class variable (0 or 1)

In the last entry class value 1 is interpreted as ”tested positive for diabetes”. CSV data (pima-indians-diabetes.csv)

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,26.6,0.351,31,0

8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0

...

44The data set is no longer publicly available.

215

Let’s examine the data using Pandas,

import pandas as pd

read CSV data to DataFrame

header=None prevent using the first line as headers

df=pd.read_csv('pima-indians-diabetes.csv',header=None) # data is in this directory

add column names

df.columns=['pregnancies','plasma glucose','blood pressure (mm Hg)','triceps skin (mm)',

'insulin (mm U/ml)','bmi','diab. pedigree function','age (y)','diab. diagnosed']

print(df)

select column to fit/predict

col = 'diab. diagnosed'

y = df[col]

use the rest as model input

X = df.drop(col, axis=1)

print('number of studied persons',len(y))

print('number of diagnosed diabetic cases in the study',y.sum())

216

If the code pima keras.py is run for 500 epochs the results look like this:

0 100 200 300 400 500
Epoch

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

Model accuracy
Train
Test

0 100 200 300 400 500
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Lo
ss

Model loss
Train
Test

The training session tries to minimize a certain loss function, and it does well for at least during these 500 epochs. However, the
loss of the test (validation) starts to increase at about epoch 100, so the predicting power of the model is no longer improving.
According to model.report(), there are 221 parameters to fit, so no wonder the small training set can be easily overfitted.

217

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/pima_keras.py

Let’s make things worse. Add more and larger hidden layers,

model.add(Dense(20, input_dim=8, activation='relu'))

model.add(Dense(50, activation='relu'))

model.add(Dense(100, activation='relu'))

model.add(Dense(20, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

Whopping 8371 parameters!

0 100 200 300 400 500
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Model accuracy
Train
Test

0 100 200 300 400 500
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Model loss
Train
Test

As expected, the training set is almost perfectly reproduced, and the training loss is closing on zero. The test set doesn’t follow
predictions at all. The model parameters are useless garbage.

218

12.5 US Space Shuttle Data

This is just a Keras play, but the data is serious, US Space Shuttle data @archive.ics.uci.edu. It contains data from 23 shuttle
flights, all launched at temperatures between 53 °F and 81 °F (12 ◦C and 27 ◦C). The solid rocket boosters were rated to be
flown at temperatures of 39 °F and higher. Then came the Challenger launch on January 28, 1986. At 7 a.m. the temperature
was only 24 °F, and by the time of the lauch at 11:38 a.m. the temperature was 36 °F, just above freezing. Even worse, the
right solid rocket booster was still at about 28 °F: high off the ground and not getting any sunlight. The question is, having
only high temperature data, can one extrapolate to find how many O-rings sealing the solid rocket boosters are under “thermal
distress” at temperatures near freezing?

Figure 1: Challenger launch tower and the O-rings. Source: NASA

219

https://archive.ics.uci.edu/ml/datasets/Challenger+USA+Space+Shuttle+O-Ring

I tried the following model (full code keras_oring.py)

model = Sequential()

model.add(Dense(150,input_dim=1))

model.add(layers.Activation(activations.relu))

model.add(Dense(1))

model.add(layers.Activation(activations.sigmoid))

ReLU is faster and more popular than sigmoid. The changes in weights and biases are done based on gradients, computed
from the loss function, and backpropagated through the neural network. The two dreaded situations in neural networks are

1. Vanishing gradient: Backpropagated to hidden layers, a layer may get very small or exactly zero gradients. This means
the layer weights and biases are not changing ⇒ part of the network is not learning. Gradients vanish easily in deep
learning (deep=multiple hidden layers). The problem was analyzed by Hochreiter in his diploma thesis in 1991,45and as
a remedy he also developed the long short-term memory (LSTM) network.
Example: If a layer has xw + b < 0, then ReLU(xw + b)=0. The network unit dies, and in many cases stays dead. This
is known as the dying-ReLU problem.

2. Exploding gradient: Backpropagated to hidden layers, a layer may get huge gradients. The layer weights and biases blow
up.

45Some Diploma thesis! The fourth chapter ”Konstanter Fehlerrückfluß” does is all. Josef ”Sepp” Hochreiter leads the Institute for Machine
Learning at the Johannes Kepler University of Linz. I mention this from personal reasons, as someone who spent a few years as a post-doc in the Uni.

220

Remark: Details: Let’s mark, as usual, weight matrices with w, and bias vectors with b. These contain all the dense network model parameters. Often
one writes a layer output vector as y = σ(wx+ b) but Keras chooses to define it as y = σ(xw + b). Here x is layer input vector. In math notation, the Keras
code above fits (x, y)-data to the function (I leave the batch size as 1)

y1 = σ2(σ1(x1w
(1)
1j + b

(1)
j)w

(2)
j1 + b

(2)
1)) . (22)

j = 1, ..., 150 is summed over, the activation functions are the Rectified Linear Unit (ReLU) and sigmoid (also called logistic function),

σ1(x) = relu(x) = max(0, x) (23)

σ2(x) = sigmoid(x) = (1 + exp(−x))−1 . (24)

The number of parameters is: 150 in w
(1)
1j , 150 in w

(2)
j1 , 150 in b

(1)
j , and 1 (in b

(2)
1). This makes 451 model parameters, also reported by model.summary().

Keras shapes are given in the form x = (None,1), y=(None,1), w1 = (1,150), b1=(None,150), w2 = (150,1), and b2=(None,1). My output should be in range

[0,6], but sigmoid(x) ∈ [0, 1]. In the code I fix this issue by scaling y in the training data, y = y/6. Finally, I descale model output back to range [0,6].

221

From my part, this is just a 5 min game, but David Draper from University of Bath, UK, examined the shuttle data (and oil
price data) more thoroughly. 46

Figure 2: Left: Measured (blue) and model data (red). Right: Draper’s result. The vertical lines are at the freezing temperature.
There were a total of six O-rings, so this spells disaster.

46D. Draper, Assessment and Propagation of Model Uncertainty, J. R. Stat. Soc. B, 57 No 1, p. 45 (1995).

222

AI is not infallible, see Karen Zack @teenybiscuit

223

https://twitter.com/teenybiscuit/status/707727863571582978

Jackrussel terrier Nuksu taking it easy.

...and can be fooled intentionally, too, see Adam Geitgey’s blog machine-learning-is-fun. A 2019 Nature article Why deep-
learning AIs are so easy to fool @nature.com addresses the same issue. You may be interested in viewing adversarial-machine-
learning @viso.ai.

Classification of data can be done with a Support Vector Machine (SVM). I recomment An Idiot’s guide to SVM’s, by R.

224

https://medium.com/@ageitgey/machine-learning-is-fun-part-8-how-to-intentionally-trick-neural-networks-b55da32b7196
https://www.nature.com/articles/d41586-019-03013-5
https://www.nature.com/articles/d41586-019-03013-5
https://viso.ai/deep-learning/adversarial-machine-learning/
https://viso.ai/deep-learning/adversarial-machine-learning/
http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

Berwick @MIT. How to classify flowers with sklearn is well explained in sklearn video @youtube, the code is available as a
Jupyter notebook @github. You’ll see the benefits of using a Pandas DataFrame, in a Jupyter notebook with inline Matplotlib
plots.

I warmly recommend Florian Marquardt: Machine Learning for Physicists (2015-2021).

A current trend in ML is obvious in the abstract from Smith et al (2019) 47

(emphasis mine):

Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist’s
toolset. The use of computer simulations requires a balance betweencost and accuracy: quantum-mechanical methods
provide high accuracy but are computationally expensive and scale poorly to large systems, while classical forcefields
are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both
approaches. Here we train a general-purpose neural network potential (ANI-1ccx) that approaches CCSD(T)/CBS
accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. This is
achieved by training a network to DFT data then using transfer learning techniques to retrain on a dataset of gold
standard QM calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is broadly
applicable to materials science, biology, and chemistry, and billions of times faster than CCSD(T)/CBS calculations.

Along the same lines Hannu Häkkinen’s group here in the Jyväskylä University, Nanoscience Center, demonstrated that it
is possible to model the structure and dynamics of realistic monolayer-protected metal clusters using the so-called (Extreme)
Minimal Learning Machine (E)MLM. 48 Using data gathered in lengthy DFT (density functional) computations to train
(E)MLM, they demonstrated that one can reproduce the structural parameters and energetics at several temperatures with a
reasonable accuracy. The speedup was several orders of magnitude. One thing learned in this work was that it’s not enough

47Smith et al, Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning pdf (Nature Com-
munications) .

48Antti Pihlajamäki et al., Monte Carlo simulations of Au38(SR)24 nanocluster using distance-based machine learning method, J. Phys. Chem.
A124,4827-4836 (2020), and Sami Malola and Hannu Häkkinen, Prospects and challenges for computer simulations of monolayer-protected metal
clusters, Nature Communications. 12 (2021), (link to free article), de Souza Junior et al., Minimal Learning Machine: A New Distance-Based Method
for Supervised Learning, link to article (not freely downloadable).

225

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
https://www.youtube.com/watch?v=FB5EdxAGxQg
https://github.com/codebasics/py/blob/master/ML/10_svm/10_svm.ipynb
https://machine-learning-for-physicists.org/
https://www.nature.com/articles/s41467-019-10827-4.pdf
https://www.nature.com/articles/s41467-019-10827-4.pdf
https://www.nature.com/articles/s41467-021-22545-x.pdf
https://link.springer.com/chapter/10.1007/978-3-642-38679-4_40

to train on data of fairly good, low energy clusters because then MLM easily goes astrays and probes completely impossible
structures.

In Summer 2021 two groups reported highly accurate predictions of protein structures. The deep-learning models,
AlphaFold249 and RoseTTAFold50 could predict, given the amino acid sequence in a protein, most 3D atomic positions correct
to within an angstrom. One aspect of the structure is that mutations don’t occur in just single amino acids. Mutations among
related amino acids are necessary to maintain stability and folding energy of the protein, and deep learning can reliably identify
those correlated amino acids. A future challenge is to predict structures of multiprotein assemblies.

12.6 Gaussian process regression

I’m trying to give here an introduction to gaussian process regression (GPR). GPR is quite popular:

• If one has no idea what basis functions to use, gaussian processes offer a possibility for non-parametric fitting. Non-
parametric means effectively infinite number of parameters.

• Unlike other methods, GPR gives confidence limits. The standard deviation of a gaussian distribution measures the width
of the distribution.

• The Central Limit Theorem says that the distribution of a sum of random variables approaches a gaussian for many
distributions of the random variables.

Gaussian processes are implemented in the Tensorflow-Keras framework as GPflow, and in Pytorch as gpytorch.
You can implement GPR as a black box, but I’d like to give some flesh over the bones. Let P (A|B) be the conditional

probability that A happens if B has happened. Bayes’ theorem is51

49J. Jumper et al., Nature, Vol 596, 26 (2021).
50M. Baek et al., Science 373, 871-876 (2021).
51I’m using the notation of Toussaint, Bayesian Inference in Physics, Rev. Mod. Phys., Vol. 83, (2011).

226

https://pythonrepo.com/repo/GPflow-GPflow-python-science-and-data-analysis
https://gpytorch.ai
https://www.nature.com/articles/s41586-021-03819-2.pdf
https://science.sciencemag.org/content/373/6557/871.full.pdf

Likelihood Prior

P (H|D, I) =
P (D|H, I) P (H|I)

P (D|I)
(25)

Posterior Marginal likelihood or Evidence

The conditional probabilities relate prior information I, new dataD, and proposition or hypothesisH. The theorem tells how
the prior (probability) P (H|I), a probability distribution we somehow know before any new data is acquired, can be combined
with likelihood P (D|H, I) and marginal likelihood or evidence P (D|I) to obtain the posterior likelihood P (H|D, I).
In short, Bayes’ theorem tells how to add new data to prior knowledge to get a more informed probability distribution.

I’ve adobted the notation that emphasizes the fact that that the prior P (H|I) is based on pre-acquired information I. If
you leave I implicit, then the prior is P (H) without bothering to write down where it came from, and the Bayes’ theorem is52

P (H|D) =
P (D|H)P (H)

P (D)
. (26)

After all, the pre-acquired information I hangs around as the right-most quantity in the equations given earlier, so it’s quite
alright to leave it unmarked. Humorously, I is a stubborn opinion that remains unchallenged.

Maybe a useful way is to think that from the start you have no idea what the result H is. Then you gain some data on the
subject, mark it D1. You continue, and new observations give you new data D2. Repeat the experiment, and you obtain data

52The short notation is used in Bayes’ theorem @Wikipedia.

227

https://en.wikipedia.org/wiki/Bayes'_theorem

D3 and so on. Bayes’ theorem accumulates knowledge like this,

P (H) =? no idea what the result is

P (H|D1) =
P (D1|H)P (H)

P (D1)
result based on data D1

P (H|D2, D1) =
P (D2|H,D1)P (H|D1)

P (D2|D1)
result based on data D1 and D2

P (H|D3, D2, D1) =
P (D3|H,D2, D1)P (H|D2, D1)

P (D3|D2, D1)
result based on data D1, D2, and D3

... . (27)

Priming data accumulation with ”P (H) =?” is inacceptable, so in Bayesian inference there must be some prior P (H) to begin
with. Any reasonable guess will do. The second line is the short form of Bayes’ theorem, while the third line is the longer
notation.

A ”marginal” probability distribution indicates that some variables have been integrated (summed) away. Marginal likelihood
(evidence) is marginal in the sense that it’s the probability distribution for any proposition or hypothesis,

P (D|I) =
∫

dH P (D|H, I)︸ ︷︷ ︸
likelihood

P (H|I)︸ ︷︷ ︸
prior

(28)

, (29)

so it’s also the normalization of the product distribution P (D|H, I)P (H|I). In GPR P (D|H, I) and P (H|I) are gaussians,
therefore P (D|I) is also a gaussian. This is the whole point of using gaussians.

Predictions can now be made based on the posterior, which was the probabily distribution we got after obtaining new data.
The posterior tells us how probable the hypothesis H is based on data D and the old, stubborn opinion I. The hypothesis H
tells us what ypred is at some chosen input xpred, and we are - miraculously - able to take into account an infinite number of

228

hypotheses and compute the probability distribution of predictions ypred! The predictive distribution is

P (ypred|xpred, D, I) =

∫
H

dHP (ypred|xpred, H)P (H|D, I)︸ ︷︷ ︸
posterior

, (30)

and the integration is simple since all probability distributions are gaussians.
Maybe it’s now instructive to translate this talk about conditional probabilities and Bayesian inference into curves on the

x − y plane. You can think of I as a broad idea where the points (x, y) should lie, and data D is a set of a few measured
points, D = {(x1, y1), (x2, y2), ..., (xND

, yND
)}. The task is to construct all curves that go through points D and obey also the

knowledge I. Each H gives the answer, not as a rock-solid “it’s ypred”, but as a probability distribution P (ypred|xpred, H) that
appears in the formula (30). You might now think that blah, I’d rather take a straight answer and not a distribution, but a
distribution is better: From a distribution you can compute the mean value and the error bar (the width of the distribution
of ypred). This makes GPR very different from ordinary curve fitting: While you can easily find, say, a spline curve that goes
through points D, you can’t get any estimate on how reliable that spline curve is between known points D. GPR gives both
the mean curve and an error estimate.

The code gaussian process intro.py is an introduction to how the infinite number of basis functions are created. A smooth
function has some correlation between points (x1, y1) and (x2, y2) if the values x1 and x2 are close.

In GPR we use a multivariate gaussian (aka normal) distribution, so that leaves the choice of the mean values µ and especially
the choice of the covariance matrix Σ in the multivariate distribution

N(x|µ,Σ) ∼ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (31)

This is an extension of the simple

N(x|µ, σ) =∼ exp

(
−(x− µ)2

2σ2

)
, (32)

and the covariance matrix is positive definite extension of the variance σ2 to multiple dimensions. For example, two variables
x = (x1, x2) could have

Σ =

(
1 0.4
0.4 1

)
, (33)

229

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/gaussian_process_intro.py

meaning that points x1 and x2 are slightly correlated with each other, Σ(x1, x2) = 0.4. For 5 points you’d have a 5x5 matrix Σ.
In continous space it’s better to choose a correlation function, a kernel function,

Σ(x,x) = k(x,x) . (34)

which gives higher correlation for points near each other. A popular choice is to compute the elements of Σ from the exponen-
tiated quadratic kernel,

k(x1,x2) = exp

(
−||x1 − x2||2

2σ2

)
, (35)

which gives 1 in the diagonal and the correlation falls off rapidly if the points are further apart. That’s a recipe for nice,
continuous basis functions (see figures below). I used this kernel in gaussian process intro.py.

Left: Prior knowledge of the result,
representing P (H|I). Right: A few
representative gaussian process basis
functions are show in the figure.

0 2 4 6 8 10
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Prior: mean value and 95 % confidence limits

4 2 0 2 4

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Points are correlated in y- *and* in x-direction
 => Good functions for regression

230

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/gaussian_process_intro.py

Now suppose you make a measurement and obtain five results
(x1, y1)...(x5, y5). These represent D, which you add to your
prior knowledge. Generating new basis functions you notice they
fluctuate between the measured points, but the basis functions
are pinched to go through the measured points. This is done
using Scikit-learn package sklearn.gaussian_process in the
code sklearn GPR.py.

0 2 4 6 8 10
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Posterior: mean value and 95 % confidence limits

All basis functions put together gives a probability distribution,
with mean (red curve) and the 95 % confidence limits (shaded
area).

12.7 JAX

It was difficult to deside where to put jax, see jax @github.com. You’ve seen how automatic differentiation makes teaching
neural networks easier. First there was autograd. The page autograd @github.com says

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclau-
rin, David Duvenaud, Matt Johnson, and Jamie Townsend) are now working on JAX, with Dougal and Matt working
on it full-time. JAX combines a new version of Autograd with extra features such as jit compilation.

JAX can do automatic differentiation and jit compilation. One asset may be a game changer, JAX can offload computations
to GPU. JAX competes directly with NumPy and Numba, and neural network software can grow on top of JAX. JAX can do
both forward-mode and reverse-mode automatic differentiation. The latter is backpropagation.

231

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/sklearn_GPR.py
https://github.com/google/jax
https://github.com/hips/autograd

Forward-mode automatic differentiation, invented by R. E. Wenger 1964, computes derivatives by iteratively applying
elementary operations to both the input values and their corresponding derivatives. It efficient if the number of inputs is small,
and you want to compute the derivatives of a function with respect to those inputs. The iteration starts with an initial seed
vector representing the derivatives of the input values. It then applies the elementary operations of the function to both the
input values and their derivatives in a forward pass, updating the derivatives at each step.

The seed vector in forward mode is ∂x
∂x

= 1, similar to backward mode ∂y
∂y

= 1. Neural network backpropagation has seed
∂L
∂L = 1 for loss function L. Forward mode uses the chain rule of differentiation to the function, such as f(g(h(x))), from
inside to outside, while backward mode traverses from outside to inside. Forward mode is more efficient if the function maps a
small-dimensional input space to a much larget output space, Rn → Rm with n≪ m, since the number of sweeps is the input
dimension. Similarly, backward mode is more efficient if n≫ m.53

53See AD @wikipedia.

232

https://en.wikipedia.org/wiki/Automatic_differentiation

JAX can take advantage of fused multiply–add (FMA) instructions. Notice how Numba needs an initial call to the jitted
function while JAX doesn’t.

jax_jit_test.py

import jax.numpy as jnp

from jax import jit

from time import process_time as T

import numpy as np

from numba import njit

def f(x):

return x*s + 5*x

jax_f = jit(f) # compilation outside timing

numba_f = njit(f)

numba_f(np.ones(10))# compilation outside timing

print('Using JAX array')

x = jnp.ones((5000, 5000))

tic = T()

f(x)

toc = T()

print(f'{"f":>8} {toc-tic:<.6f} s')

tic = T()

jax_f(x)

toc = T()

print(f'{"jax_f":>8} {toc-tic:<.6f} s')

print('Using NumPy array')

x = np.ones((5000, 5000))

tic = T()

f(x)

toc = T()

print(f'{"f":>8} {toc-tic:<.6f} s')

tic = T()

numba_f(x)

toc = T()

print(f'{"numba_f":>8} {toc-tic:<.6f} s')

233

13 Parallel Python

There are almost too many avenues to take, see wiki about Python parallel processing. I’m reasoning that you have a multi-
core computer, so what you’d want is shared-memory parallel programming. For that Python has multiprocessing or
concurrect.futures.

If memory is not shared, like nodes in a computer cluster don’t share memory, you need message passing. For that we
have MPI, the message passing interface. Popular ones are OpenMPI, MPICH, Microsoft MPI (MS MPI), and Intel MPI.
Python uses MPI in modules such as mpi4py. There are other parallel paradigms, too, such as the Hadoop framework for
processing large volumes of data.

Let’s get those cores working first.

13.1 Python Threads

With multicore CPU’s, parallelization with Python Threads is easy. I was excited, until I watched David Beazley’s Youtube
talk about Python GIL (Global Interpreter Lock) You may also visit David Beazley about GIL. 54

54There are no-GIL interpreters, too, such as PyPy and Jython.

234

https://wiki.python.org/moin/ParallelProcessing
https://docs.python.org/3/library/threading.html
https://www.youtube.com/watch?v=Obt-vMVdM8s#t=164.777801
https://www.youtube.com/watch?v=Obt-vMVdM8s#t=164.777801
http://www.dabeaz.com/GIL/

threads.py

import threading as th

from time import process_time as T

def count(n):

while n>0:

n -= 1

N = 100000000

serial

tic = T()

count(N)

count(N)

toc = T()-tic

print(" serial: ",toc,"seconds")

#threaded

tic = T()

t1 = th.Thread(target=count,args=(N,))

t1.start()

t2 = th.Thread(target=count,args=(N,))

t2.start()

t1.join()

t2.join()

toc = T()-tic

print("threaded: ",toc,"seconds")

serial: 8.782534607 seconds

threaded: 8.617532933000001 seconds

Python threading is no good for CPU-based tasks. Threads may be useful for watching IO-based, slow tasks.

13.1.1 PyPy - a user-friendly no-GIL interpreter

PyPy @pypy.org is a user-friendly JIT interpreter - almost a drop-in replacement for CPython - and gives reasonable speed
improvements. The installation follows the familiar route. As root/admin, install pypy3 (pypy is pypy2, it’s for Python2) using

235

https://pypy.org/

a package manager, such as apt-get or dnf. Installation instruction may change, so it’s better search for “install pypy3” and
add your OS to the search line. Something like this:

$ sudo apt-get install pypy3

$ pypy3 -m ensurepip --user # install pip

$ pypy3 -m pip install numpy scipy matplotlib --user

These took some time. Now most of the Python examples should run. Faster, too, because pypy does JIT (see also Numba 11).

13.2 Python Multiprocessing

Obviously you can’t turn off GIL in CPython, so CPython can’t make full use of Python threads. But you can spawn multiple
CPython interpreters for multiple tasks. Two standard library modules do exactly that:

• multiprocessing offers detailed control of parallel execution.

• concurrent.futures is an interface to multiprocessing, available since Python 3.2:

– ThreadPoolExecutor uses a pool of threads to execute calls asynchronously - remember GIL.

– ProcessPoolExecutor uses a pool of processes to execute calls asynchronously.

236

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html

Since the API’s of thread and multiprocessing are practically identical, let’s modify threads.py,

multiprocesses.py

import multiprocessing as mp

from time import time as T

don't use process_time, it's meaningless in multiprocessing

def count(n):

while n>0:

n -= 1

N = 100000000

serial

tic = T()

count(N)

count(N)

toc = T()-tic

print(" serial: ",toc,"seconds")

#multiprocessing

tic = T()

t1 = mp.Process(target=count,args=(N,))

t1.start()

t2 = mp.Process(target=count,args=(N,))

t2.start()

t1.join()

t2.join()

toc = T()-tic

print("multiprocessing: ",toc,"seconds")

serial: 8.877176761627197 seconds

#multiprocessing: 4.42932391166687 seconds

Double the speed with two processes. Now we are getting somewhere!

237

13.2.1 How and what not to parallelize

I don’t want to play down the importance of parallel execution, but you should realize that not all tasks should be parallelized.
The code below is a textbook example of how to use a Pool of workers - and at the same time it is a textbook example of
a completely idiotic thing to do.

parallel_numpy_sqrt.py

computes the sqrt of a very many integers in parallel

import multiprocessing as mp

import numpy as np

from time import time as T

def main():

res = []

arg = np.arange(1000000)

for nproc in range(1,13):

if nproc==1:

tic = T()

root = np.sqrt(arg)

toc = T()-tic

else:

tic = T()

with mp.Pool(nproc) as pool:

root = pool.map(np.sqrt,arg)

toc = T()-tic

print(nproc,toc)

if __name__ == '__main__':

main()

PID USER %CPU %MEM TIME+ COMMAND

20348 vap 91.4 0.7 0:36.00 python3

20403 vap 7.3 0.7 0:00.22 python3

20404 vap 7.3 0.7 0:00.22 python3

20402 vap 6.6 0.7 0:00.20 python3

20405 vap 6.6 0.7 0:00.20 python3

20406 vap 4.0 0.7 0:00.12 python3

Observations on Python 3.10 in an 12-core workstation:

• Serial execution: 0.004 seconds. Parallel execution: 1.95 seconds. Parallel is almost 500 times slower.

• NumPy is very fast, it’s compiled C-code

• Starting a process has a large overhead (handing work to a running process has an overhead, too).

238

The parallel speed in the example was so miserable that there must be something else than overheads in it. First, prosesses
don’t share memory space, so multiprocessing.pool.map copies the whole, large list arg to every process. Sharing data
is someting I’ve never done, so I leave it be. But even copying the arrays around can’t be that slow, there is still something else
going on.

parallel_numpy_sqrt2.py

Testing how multiprocessing map passes arguments

import multiprocessing as mp

import numpy as np

from time import time as T

def fun(x):

print("x=",x)

return x

def main():

res = []

arg = range(10)

for nproc in [1,5]:

if nproc==1:

print("A single process")

tic = T()

root = fun(arg)

toc = T()-tic

else:

print(nproc,"processes using pool.map")

tic = T()

with mp.Pool(nproc) as pool:

root = pool.map(fun,arg)

toc = T()-tic

print(nproc,'took time',toc)

if __name__ == '__main__':

main()

A single process

x= range(0, 10)

1 took time 3.814697265625e-06

5 processes using pool.map

x= 1

x= 0

x= 4

x= 2

x= 5

x= 3

x= 7

x= 6

x= 8

x= 9

5 took time 0.01030731201171875

multiprocess.pool.map parallelizes execution but doesn’t vectorize anything.

This is why I got such a miserable parallel speed: serial NumPy vectorized and applied numpy.sqrt to the whole NumPy array,

239

but multiprocess.pool.map executed numpy.sqrt to every number in arg one by one.
I expected that a list of arguments would be chunked, and each chunk would be executed, if possible, vectorized in different

processes 55. It didn’t, multiprocessing actually de-vectorized everything! Very well, I can do this manually, I just expected
Python built-in’s to handle this easy scenario.

Remark: There is a module numpy.vectorize but as the doc says,

The vectorize function is provided primarily for convenience, not for performance. The implementation is essentially a for loop.

No need to use it.

13.2.2 Examples of concurrent.futures

Use a context manager to execute function(x) for x in an iterable object, e.g. a list:

import concurrent.futures as cf

def function(x):

return x**3

with cf.ProcessPoolExecutor() as executor:

result = executor.map(function, range(10))

print(list(result))

Again, computing cubes of array elements is not a clever parallel task, in reality you should use NumPy,

55CPU cores commonly have SSE, FMA, and AVX (AVX2) instruction sets to vector process at extreme speed.

240

import numpy as np

x = np.array(range(100))

result = x**3

Take the parallel example only as a proof of concept. The concurrent.futures code is pretty much the same as with
multiprocessing.Pool,

import multiprocessing as mp

def function(x):

return x**3

x = range(100)

with mp.Pool() as pool:

result = pool.map(function, x)

print(list(result))

Both use as many cores as there is, which may be a good thing in a desktop computer but not necessarily in a cluster.

241

A better task to parallelize is to find text in files. The glob module offers ”Unix style pathname pattern expansion”,

concurrent_findtxt.py

test if files *py contain word "numpy"

import glob

from time import sleep

import concurrent.futures

from itertools import repeat

def is_txt_in_file(args):

string, infile = args

res = string in open(infile).read()

sleep(1.) # delay added to make parallel execution observable

return res

if __name__ == '__main__':

files = glob.glob('*py')

search_pattern = 'numpy'

one search pattern, multiple files; use repeat()

args = zip(repeat(search_pattern),files)

with concurrent.futures.ProcessPoolExecutor() as executor:

for pyfile, status in zip(files, executor.map(is_txt_in_file, args)):

print(f"{pyfile} contains string {search_pattern}: {status}")

Notice that executor.map(function, item1, item2) would call function(item1) and function(item2), not function(item1,item2).
To map arguments ('numpy', file1), ('numpy', file2) ... as inputs, I used itertools.repeat() to get as many ’numpy’s
I need to pair with each file name. Try list(args) to see how zip(repeat(search_pattern),files) works.

242

An interesting aspect is to use generators:

concurrent_findtxt_generator.py

test if files *py contain word "numpy"

import glob

import concurrent.futures

from time import sleep

from itertools import tee, repeat

def is_txt_in_file(args):

string, infile = args

res = string in open(infile).read()

sleep(1.) # delay added to make parallel execution observable

return res

if __name__ == '__main__':

files = glob.iglob('*py') # generator

files1, files2 = tee(files,2) # two independent iterators

search_pattern = 'numpy'

one search pattern, multiple files; use repeat()

args = zip(repeat(search_pattern),files1)

with concurrent.futures.ProcessPoolExecutor() as executor:

result = executor.map(is_txt_in_file, args) # generator

for f, h in zip(files2, result):

print(f"{f} contains {search_pattern}: {h}")

Generator files1 will become exhausted - not in args = zip(repeat(search_pattern),files1) - but in is_txt_in_file()
that uses it to generate file names. itertools.tee() creates two generators, files1 and files2, so that I can use the latter
to generate me again the list of files.

243

Instead of map, you can submit tasks and get their results as_completed.

concurrent_submit.py

import concurrent.futures

import numpy as np

from time import sleep

from time import process_time as T

import os

print(f'Your machine has {os.cpu_count()} cpus/cores')

def cube(arg):

x,sl = arg

sleep(sl)

return x**3

if __name__ == '__main__':

xsl = [(x,np.random.random()) for x in range(10)] # (x,sleep time)

print('using map:')

with concurrent.futures.ProcessPoolExecutor() as executor:

for (x,sl), res in zip(xsl, executor.map(cube,xsl)):

print(f'{x}^3 = {res:5d}, sleep was {sl:.3f}')

print('using submit and as_completed:')

futures = {}

with concurrent.futures.ProcessPoolExecutor() as executor:

for arg in xsl:

future = executor.submit(cube, arg)

futures[future] = arg

for f in concurrent.futures.as_completed(futures):

res = f.result()

x,sl = futures[f]

print(f'{x}^3 = {res:5d}, sleep was {sl:.3f}')

244

The output could be

Your machine has 8 cpus

using map:

0^3 = 0, sleep was 0.961

1^3 = 1, sleep was 0.150

2^3 = 8, sleep was 0.062

3^3 = 27, sleep was 0.888

4^3 = 64, sleep was 0.760

5^3 = 125, sleep was 0.850

6^3 = 216, sleep was 0.208

7^3 = 343, sleep was 0.697

8^3 = 512, sleep was 0.864

9^3 = 729, sleep was 0.082

using submit and as_completed:

2^3 = 8, sleep was 0.062

1^3 = 1, sleep was 0.150

6^3 = 216, sleep was 0.208

9^3 = 729, sleep was 0.082

7^3 = 343, sleep was 0.697

4^3 = 64, sleep was 0.760

5^3 = 125, sleep was 0.850

3^3 = 27, sleep was 0.888

8^3 = 512, sleep was 0.864

0^3 = 0, sleep was 0.961

• map branches execution to multiple ”futures”, and returns the results
of the futures in the order you started the tasks.

• submit branches execution to multiple ”futures”, and as_completed

picks up the futures in the order they finish.

Printing a future gives outputs like
<Future at 0x7f0bacd38390 state=running>

or if there is no worker free for this future,
<Future at 0x7f0bacd38390 state=pending>

and when finished, the state changes to
<Future at 0x7f0bacd38390 state=finished returned int>

A practicality: I could have shortened the submit part to

futures = [executor.submit(cube, arg) for arg in xsl]

This is fine if result is all I need, but since tasks complete in an inorderly
fashion I would have no idea which arg gave what result. In the longer exam-
ple I used a dictionary to hold future:arg pairs. Since as_completed tells
which future finished, I can now go back and see what arg did it correspond
to.

Another practicality: After the job is done, the context manager automati-
cally calls Executor.shutdown; process cleanup is automatic.

245

13.3 Multiprocessing and Pool

Pool is a powerful feature in the multiprocessing module.

multi_pool.py

from multiprocessing import Pool

from time import sleep

def f(x):

sleep(2/(x+1))

print(x)

return x*x

if __name__ == '__main__':

x = range(101)

with Pool(4) as p:

res = p.map(f,x)

print(res)

This creates a pool of 4 workers; looking at the process list you see it’s mostly doing nothing:

0 S vap 3590 26052 3 80 0 - 105488 futex_ 16:50 pts/0 00:00:00 python3 multi_pool.py

1 S vap 3591 3590 0 80 0 - 50125 poll_s 16:50 pts/0 00:00:00 python3 multi_pool.py

1 S vap 3592 3590 0 80 0 - 50125 futex_ 16:50 pts/0 00:00:00 python3 multi_pool.py

1 S vap 3593 3590 0 80 0 - 50125 futex_ 16:50 pts/0 00:00:00 python3 multi_pool.py

1 S vap 3594 3590 0 80 0 - 50125 pipe_w 16:50 pts/0 00:00:00 python3 multi_pool.py

Notice that there are five processes: one running the show and four in the pool.

246

13.3.1 Safe locking with a context

Workers, threads or processes, may share resources but shouldn’t access them simultaneously: locking sets access limitations.
The non-simultaneity is guaranteed by a mutex, MUTual EXclusion. The idea is that each worker locks the resource while
accessing it.

However, it’s all too easy to lock the resource and fail to release is due to an exception. As always, if you want to be sure a
certain task is properly finished, you should use a context manager. Luckily, multiprocessing and threading has a context
Lock(), and in the function good_way() the context with lock makes sure the lock is always released, no matter how the
task exits.

Remark: Some sources claim there’s a method to inquire lock status of lock=Lock(), namely lock.locked(), but there’s no such thing. Try dir(lock) or

dir(Lock()), and you see the only methods are acquire() and release().

247

https://en.wikipedia.org/wiki/Mutual_exclusion

contextlock.py

#from threading import Lock

from multiprocessing import Lock

Set a lock and make sure it's properly released

def good_way(lock):

print('called good_way')

with lock:

raise Exception('god_way raised an exception')

Set a lock and release it in the end if no exception

def bad_way(lock):

print('called bad_way')

lock.acquire()

raise Exception('bad_way raised an exception')

lock.release()

if __name__=='__main__':

lock = Lock() # Lock is a context

funs = [good_way, bad_way]

for fun in funs:

print(u'\u2500'*80) # horizontal line

try:

fun(lock)

except Exception as exc:

print('Exception: ',exc)

print('Trying to acquire and release the lock again')

lock.acquire()

lock.release()

print('Got here')

248

Remark: Locking is one way to avoid the so-called Producer-Consumer problem (Wikipedia) shows what problems concurrency faces. The Producer
manufactures items and the Consumer consumes them but all this happens asyncronously. As the Wiki page explains, a poor solution would be to have a
consumer and a producer routine running syncronously. In addision, there are sleep and wake_up library routines. While awake, the consumer consumes and
falls asleep when items run out. If there are less than max number of items the producer wakes up and falls asleep once the stock is full. This solution easily
creates a race condition between producing and consuming, and may lead to a deadlock: nothing happens.

The consumer eats the last item and is about to fall asleep. Right at that moment food is out and the producer happens to wake up and makes
an item. The ensuing discussion ”hey, here is some food, wake up!” - ”I can’t, I’m not sleeping yet” has no end.

249

https://en.wikipedia.org/wiki/Producer-consumer_problem

13.3.2 Bohrium

Bohrium (source code @github.com) is a parallel replacement for NumPy written in Niels Bohr Institut, Copenhagen.

Bohrium provides automatic acceleration of array operations in Python/NumPy, C, and C++ targeting multi-core
CPUs and GP-GPUs. Forget handcrafting CUDA/OpenCL to utilize your GPU and forget threading, mutexes and
locks to utilize your multi-core CPU just use Bohrium!

If you manage to install bohrium, then yes, usage is that simple. Either replace import numpy as np with import bohrium as np

or just run the code as (8 core machine)

$ OMP_NUM_THREADS=8 python bohrium test.py

A quick test showed it really does run in parallel. If there are parts that Bohrium can’t handle, such as Matplotlib, it just falls
back to NumPy and you code still runs.

13.4 Subprocess: easy parallelism

There is a simple way to use the expressive power of Python and the speed of an external program. Start the external program
from within Python and use it’s output in Python. The Python module Python subprocess is made for that. First, to execute
shell command ls -la 56,

import subprocess

subprocess.run(["ls", "-la"])

A more general usage is also simple (you should provide command)

56subprocess module is overtaking modules os and spawn.

250

http://bohrium.readthedocs.io/
https://github.com/bh107/bohrium
http://docs.python.org/library/subprocess.html

import subprocess

proc = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)

proc.wait() # wait for command to finish

print(proc.returncode)

The doc hints how to get the shell command+options right (see shlex and wildcards @Stackoverlow). If in bash shell the
command is

$ du -sh *

then in Python this could be run as

subprocess_ex1.py

import subprocess as sp

import shlex

import glob

cmd = shlex.split('du -sh *')

cmd = cmd[:-1] + glob.glob(cmd[-1])

with sp.Popen(cmd, stdout=sp.PIPE) as proc:

print(proc.stdout.read().decode('ascii'))

The motivation to use the lastter is that now I can do all inside Python and add extra functionality as I please. The glob

module was used here to handle the wildcard *; usually this is done by the shell but now we have none; stdout is a byte
sequence (b'...'), decoded here to ascii characters. Notice that adding shell=True, for example

sp.Popen(cmd, stdout=sp.PIPE, shell=True)})

would run the command cmd through the shell defined in the SHELL environment variable (in my case, bash).
The reason why I’m talking about the subprocess module in the parallel section is that

251

https://stackoverflow.com/questions/7156892/wildcard-not-working-in-subprocess-call-using-shlex

You can trivially start multiple subprocess’s that run in parallel and control the output in Python

Note that this code starts multiple bash shell sleep processes, it’s not calling Python sleep() function. 57

subprocess_sleep.py

start multiple subprocesses *in parallel*

import subprocess as sp

from time import time as T

def sleepy(snoozetime):

proc = sp.Popen(['sleep',str(snoozetime)])

return proc

tic = T()

procs = []

nproc = 10

for i in range(nproc):

proc = sleepy(1.0)

procs.append(proc)

print(f'process {i} put to sleep for 1 second')

wait till they finish

for proc in procs:

proc.communicate()

toc = T()

print('all done in',toc-tic,'seconds')

This program will finish in about 1 second. It started ten embarrassingly parallel one-second jobs.

252

This was nothing fabulous, I could’ve done it on a one-liner in bash,

$ for i in {1..10}; do sleep 1 & done

or, as a bit more readable bash script,

for i in {1..10}

do

sleep 1 &

done

These run ten sleep processes on the background and return almost immediately. My point is that with subprocess I can
control all within Python, and have the full Python machinery available to manipulate the results.

57This code uses time.time to better reflect the result.

253

13.5 MPI Parallelism with mpi4py (MPI for Python)

MPI stands for Message Passing Interface, an interface for intercommunication of processes. This communication can happen
in-node or between nodes in a cluster. MPI is a reliable partner, it’s standardized and portable. The module mpi4py targets
High Performance Computing (HPC), and in 2009 it was rewritten in Cython from scratch.

Before communication takes place, Python objects are serialized using Python’s native pickle protocol (see section 5), and
afterwards data is deserialized. The small overhead of using the CPU and memory is tolerable, considering pickling is simple
and convenient.

254

https://mpi4py.readthedocs.io/en/stable/intro.html

Remark: Installing MPI on Windows 10
Instead of OpenMPI you’d probably want to choose Microsoft MPI now that you’re using their system. Good instruction how to install are here Nickson
Joram’s blog @Medium. This will get you going:

• Install the Visual Studio community version: link

• Install Microsoft MPI, download files msmpisetup.exe and msmpisdk.msi from link and execute.

• Launch the command prompt and type python. It will start the interpreter, or redirect you to MS-Store, and asks if you want to install Python 3.9.
You want.

• Start the Python interpreter from the command prompt to see that it works.

The rest is simple. In the command prompt,

C:\users\vap> pip install upgrade pip

C:\users\vap> pip install mpi4py

C:\users\vap> pip install numpy scipy matplotlib mpi4py

Test that mpiexec works and run, for example, my mpi4py sample MC_pi_mpi4pi.py

255

https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-world-program-in-visual-studio-code-2019-879776f6493f
https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-world-program-in-visual-studio-code-2019-879776f6493f
https://visualstudio.microsoft.com/downloads/
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi?redirectedfrom=MSDN

Programs using mpi4py commonly contain the following lines:

mpi4py_1.py

from mpi4py import MPI

comm = MPI.COMM_WORLD # communicator

size = comm.Get_size() # world size, that is number of MPI workers are around

rank = comm.Get_rank() # index of the process running this code

print(f'comm = {comm}')

print(f'size = {size}')

print(f'rank = {rank}')

Run through the Python interpreter and you won’t get anything exciting,

$ python mpi4py_1.py

comm = <mpi4py.MPI.Intracomm object at 0x153f339b1ab0>

size = 1

rank = 0

256

However, execute 4 processes in parallel,

$ mpiexec -n 4 python mpi4py_1.py

comm = <mpi4py.MPI.Intracomm object at 0x1478ee5aeab0>

size = 4

rank = 0

comm = <mpi4py.MPI.Intracomm object at 0x14bb0e2dbab0>

size = 4

rank = 3

comm = <mpi4py.MPI.Intracomm object at 0x154b599f3ab0>

size = 4

rank = 1

comm = <mpi4py.MPI.Intracomm object at 0x147349dc7ab0>

size = 4

rank = 2

Similar outcome is with the command

$ mpirun -n 4 python mpi4py_1.py # start 4 processes in parallel

The purpose of mpiexec or mpirun is to give each process within a communicator a distinct rank. In fact only mpiexec is
defined in the MPI standard, but I’ve never come across a system without mpirun. In the widely used OpenMPI package
mpirun is defined to be mpiexec. As the FAQ page explains,

“Specifically, they are symbolic links to a common back-end launcher command named orterun (Open MPI’s run-time
environment interaction layer is named the Open Run-Time Environment, or ORTE - hence orterun).”

257

https://www.open-mpi.org/

Remark: Intel has it’s own MPI. If you use conda, then you can create a virtual environment using intel channel,

$ conda create -n my_intel intelpython3_full python=3.7

$ conda activate my_intel

(my_intel) $

This installs mpi4py and the command mpirun from package impi_rt. I’m telling all this because if you now install OpenMPI on top of that with ***WARNING!
DON’T!*** (my_intel) $conda install openmpi it probably does install, with only a mild warning about inconsistent environment. The OpenMPI package
has overwritten mpirun, so your mpi4py installation and mpirun won’t work together any more. To cure this situation, do

(my_intel) $ conda remove openmpi

(my_intel) $ conda install --force-reinstall impi_rt

I’ve grown used to mpirun. In a SLURM batch queue system your resource reservation is automatically passed on to mpirun,
and you can send the job to the execution queue with just

$ mpirun python mpi4py_1.py # in SLURM, this starts as many processes as the SLURM script reserves

If you execute this command in a computer with no batch queue system it’ll consume all available resources.

258

Send ’Hello World’ to all processes

mpi4py_2.py

from mpi4py import MPI

comm = MPI.COMM_WORLD

size = comm.Get_size()

rank = comm.Get_rank()

print(comm)

print(f'size is {size}')

print(f'rank is {rank}')

if rank == 0:

msg = 'Hello, world'

dst = 1

print(f'rank {rank} sends message {msg} to rank {dst}')

comm.send(msg, dest=dst)

elif rank == 1:

mess = comm.recv()

print (f'rank {rank} got message {mess}')

The code will fail for a single process but it works for two or more,

$ mpirun -n 2 python mpi4py_1.py

rank 0 sends message Hello, world to rank 1

259

rank 1 got message Hello, world

The communicator and it’s size are common to all processes but they have individual ranks. Based on the rank we can
divide tasks.

260

Parallel Monte Carlo estimate of π

Monte Carlo computation of π is a canonical example. Pick random points in a 2x2 square centered at the origin, and count
how many hit the unit circle. The probability of hitting the unit circle is hits/tries = π12/22 = π/4, so there you have it. The
code is too long to show here, see MC pi mpi4py.py. Here are some ideas used in the code.

• Kick up the parallel comm, and get nproc = comm.Get_size() as shown earlier. I could’ve used the name size but
somehow find nproc more appropriate.

• You want to use all nproc processes to pick different sets of random points.

• Choose how many random points N you want to use in total.

• Calculate how many points each process should sample. Since N is usually not divisible by nproc, divide the odd jobs
evenly to processes. Jobs divided to processes and batches is the array ns, returned from taskdivider(). The
purpose of batches is given below.

• Distribute entries in ns to processes. This is done now using mpi.scatter().

• Each process calls compute_pi(ns). If, for example, ns=[101,100,100,100], then compute 4 numerical estimates of π,
and return them to calling routine.

Details of compute_pi():
np.random.random() returns random values in range [0,1], so 2*np.random.random() returns random values in range
[0,2], and shift those 2*np.random.random()-1 to get random values in range [-1,1]. I want n 2-dimensional points, so I
call 2*np.random.random((n,2))-1.

def compute_pi(ns):

"""

input: ns list of block sizes

output: pis len(ns) estimated pi values

method: pick n x n random points in a square area [-1,1] surrounding a circle radius 1

261

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/numerics/MC_pi_mpi4py.py

probability of hitting the circle is

P = (area of circle)/(area of square) = pi/(2*2) = hits/n => pi = 4*hits/n

"""

pis = np.zeros(len(ns))

for i,n in enumerate(ns):

points = 2*np.random.random((n,2)) - 1 # random points in square

count points inside the unit circle; 1 (True) for hits, 0 (False) for misses

hits = np.sum(np.linalg.norm(points,axis=-1) < 1)

pis[i] = 4*hits/n

return pis

The np.linalg.norm(points,axis=-1) < 1 is an array of booleans True and False, but in Python 3.x True is 1 and
False is 0, so I can compute their sum using np.sum().

• From the array of estimates for π, I can calculate the mean values and an error estimate using NumPy functions np.mean()
and np.std(). The latter computes the standard deviation, which is the statistical error in this case. For a single value
np.std() is 0, therefore I block tasks to nb batches.

comm.scatter() scatters data to workers,

ns = comm.scatter(ns, root=0)

scatters ns from rank 0 to the rest, and ns = ... makes them pick it up and call the received data ns. The opposite action is
comm.gather() which collects values from all workers. After calculations, call

pis = comm.gather(pi_est, root=0)

to collect the list pi_est of calculated estimates from all workers. Notice that only rank 0 has the list, other ranks have pis

equal None. 58

58The type of None is <class 'NoneType'>. Clever Python.

262

Collective calls
Logically, scatter() and bcast(), allgather, and alltoall are known as collective calls. If you want all workers to reveive
the same data, broadcast it using bcast(data, root=0). The call syntax is

comm.Scatter(data, recvbuf, root=0) # scatter data to workers

comm.Gather(sendbuf, recvbuf, root=0) # collect from workers

data= comm.bcast(data, root=0) # broadcast to all workers

comm.Reduce(value, value_sum, op=MPI.SUM, root=0) # sum up values from workers

Here MPI.SUM tells to reduce the sum, product would be reduced with MPI.PROD.

13.5.1 send/recv or Send/Recv

send/recv are made for sending/receiving general Python objects, therefore they are slow.
Send/Recv communicate contiguous NumPy arrays much faster.

if rank = SOURCE:

comm.send(data, dest=DEST, tag=TAG)

else:

data = comm.recv(source=SOURCE, tag=TAG)

TAG adds an extra identification layer on top of source and destination ranks. The recv function will wait for data that comes
from SOURCE and is tagged with TAG.

263

NumPy array MPI communication is an example of a so-called buffer-like object. In calls to Recv the receiving buffer
must be there in advance, so that it can receive data immediately,

if rank == SOURCE:

comm.Send(data_sent, dest=DEST, tag=TAG)

else:

data_reveived = np.array(...) # pre-define the array

comm.Recv(data_received, source=SOURCE, tag=TAG)

I used distinct names data_sent and data_received to emphasize that they aren’t the same arrays, although their sizes must
match:

The sending and receiving buffers must have the same size

The data_sent you Send must match in size the data_received in the Recv. A mismatch is easy to spot in short examples.

264

mpi4py_Send_Recv.py

#

run with

mpirun -np 2 python mpi4py_Send_Recv.py

#

from mpi4py import MPI

import numpy as np

from time import process_time as T

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

Nrep = 1000 # number of repeats

shape = (100,5) # shape of NumPy array to communicate

send/recv Python objects

if rank== 0: tic = T()

for _ in range(Nrep):

if rank == 0:

data_sent = np.random.random(shape)

comm.send(data_sent, dest=1, tag=11)

elif rank == 1:

data_received = comm.recv(source=0, tag=11)

if rank== 0: timing1 = T() - tic

Send/Recv NumPy array

if rank== 0: tic = T()

for _ in range(Nrep):

if rank == 0:

data_sent = np.random.random(shape)

comm.Send(data_sent, dest=1, tag=12)

elif rank == 1:

data_received = np.empty(shape, float)

comm.Recv(data_received, source=0, tag=12)

if rank==0:

timing2 = T()-tic

print(f'{Nrep} times MPI communicate NumPy array {data_sent.shape}')

print(f'send/recv took {timing1:.5f} seconds')

print(f'Send/Recv took {timing2:.5f} seconds')

#1000 times MPI communicate NumPy array (100, 5)

#send/recv took 0.00923 seconds

#Send/Recv took 0.00335 seconds

265

The example uses automatic MPI datatype discovery, and you can write simply

data_sent = np.random.random(shape)

comm.send(data_sent, dest=1, tag=11)

without telling that data_sent has type MPI.DOUBLE. A too small receive buffer, for example

if rank == 0:

data_sent = np.random.random((10,10))

comm.Send(data_sent, dest=1, tag=12)

elif rank == 1:

data_received = np.empty((5,5), float)

comm.Recv(data_received, source=0, tag=12)

will cause an exception mpi4py.MPI.Exception: MPI_ERR_TRUNCATE: message truncated. However, a too big receive buffer
is legitimate,

if rank == 0:

data_sent = np.random.random((10,10))

comm.Send(data_sent, dest=1, tag=12)

elif rank == 1:

data_received = np.empty((50,50), dtype=float)

comm.Recv(data_received, source=0, tag=12)

but the array data_received will contain carbage filled with np.empty() and no warning is issued. To avoid array size
mismatches mpi4py_Send_Recv.py had shape = (100,5) visible to all ranks.

266

Broadcasting a NumPy array

mpi4py_numpy_broadcast.py

from mpi4py import MPI

import numpy as np

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

data = np.arange(10, dtype=int)

print(f'data to be broadcasted: {data}')

else:

data = np.empty(10, dtype=int)

comm.Bcast(data, root=0)

check all got the data:

print(f'rank {rank} got {data}')

13.5.2 Shutting down MPI jobs after an exception

In case an exception is raised the MPI runtime should kill all child processes and shutdown with an error code. Exit is handled
by a call to MPI.COMM_WORLD.Abort or MPI_ABORT. However, in some MPI implementations, notably in mpi4py, a process may
be left behind, waiting for a communication from a dead process.

If you run the previous example with just one process, there’s no-one to receive the data. The failure occurs in a single
process case, so exiting that process is enough and no processes will be left behind. This is but a happy coincidence, exceptions
happen in multiprocess jobs, too.

Consider an exception in a two-process job. I could make a process call raise Exception('error here'), but it’s simpler

267

to just compute 1/0,

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

size = comm.Get_size()

assert size > 1

if rank == 0:

1/0

comm.send(None, dest=1, tag=5)

elif rank == 1:

comm.recv(source=0, tag=5)

If you run this code (call it test.py),

$ mpirun -np 3 python test.py

Traceback (most recent call last):

File "test.py", line 8, in <module>

1/0

ZeroDivisionError: division by zero

Abort() is never called, the code hangs and must be killed manually. This is especially annoying and harmful in a cluster
environment, because jobs left running in compute nodes after the main process has died take up resources the batch job system
thinks are free.
Aborting mpi4py

There’s a way to abort mpi4py processes on exceptions. Run the code with the -m mpi4py option,59

59See mpi4py.run.

268

https://mpi4py.readthedocs.io/en/stable/mpi4py.run.html

$ mpirun -np 3 python -m mpi4py test.py

Traceback (most recent call last):

File

File "test.py", line 8, in <module>

1/0

ZeroDivisionError: division by zero

--

MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD

with errorcode 1.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.

You may or may not see output from other processes, depending on

exactly when Open MPI kills them.

--

and the failed code graceful exited with MPI_ABORT.
A side note on Python. You must run the code as mpirun -np 3 python -m mpi4py test.py. This is not the same as

running mpirun -np 3 python test.py with import mpi4py in the file test.py. The reason is that

python -m mod mycode.py

treats mod as a script and executes it before interpreting mycode.py. On the other hand, import mod in a script only brings
everything in mod to your scripts namespace, without executing anything.

13.5.3 Non-blocking communication

So far all MPI communication I’ve talked about is blocking, meaning processes can’t proceed until the communication ends.
The ultimate blocking call is MPI.COMM_WORLD.Barrier(), which waits for all processes to arrive at the barrier.

269

Blocking can sometimes be avoided, and for that mpi4py has a set of non-blocking calls, adding i or I to the name of the
blocking sibling:

blocking send

comm.send(data, dest=1, tag=5)

data = comm.recv(source=0, tag=5)

non-blocking send is isend

req = comm.isend(data, dest=1, tag=5)

do_something_else()

req.wait() #

non-blocking recv is irecv

req = comm.irecv(source=0, tag=1)

data = req.wait()

The comm.isend and comm.irecv methods return request instances (hence I called the variable req). These request instances
must be completed with a blocking call to either req.test or req.wait. If you just want to inquire the status of the request
req without stopping, then req.test will return True if the operation has completed.

270

14 Python as a glue language

Motivation:
For a large part, programs are not about heavy computations but housekeeping. Lines after lines reading input data, fixing it,
analysis of output data, and finally saving and plotting results. While it’s possible to do all that in C/C++, it isn’t always
worth the effort. Python has excellent household skills, it’s simple and flexible, easy to test and to debug.

Even a Python API itself can be repetitive, boring, and unintuitive. But how low level control do you actually need? Then
go on and write an easy-to-use Python frontend - yes, a Python frontend to Python. This happened to old variants of Theano
and Tensorflow neural network environments. Keras could use either as a backend, and it was a lot easier and more fun to use!
The Keras approach was so successful that it was built into Tensorflow 2. PyTorch had two years of Tensorflow experience to
learn from, and the developers put a lot of effort to create an approachable API to begin with.

How about Combining Python and C/C++?

From now on I assume you have a C/C++ code you want to use in Python

If not, consider skipping this section. Program in Python and import Numba.

14.1 Python extensions and embedding Python

• Python extensions
are modules written in C/C++ or some other language. The modules can be imported to Python code using import module.
The extension can also be a shared library (library.so in Linux, DLL in Windows), loaded into Python interpreted using
extension API Cython or Python C API. Both NumPy and SciPy are Python extensions.

• Embedding Python
You can also embedd the Python interpreter in C/C++ or some other language. Embedding Python gives the host code
Pythonic flexibility and scripting capabilities.

271

Both extending and embedding Python can be done using the Python/C API. Writing C/C++ extensions using Python/C
API is documented here. This approach is used if you see in C/C++ code lines such as

#include <Python.h>

static PyObject *

func(PyObject *self, PyObject *args)

{...}

In my opinion, this isn’t a very elegant way. I don’t want to marry C/C++ and Python on this level.

Remark: One reason for not going through the Python/C API is that it’s so easy to program memory leaks. Every Python object has a reference count, a
counter telling how many objects reference to it. When that counter hits zero the object can be safely deleted freeing memory, because no-one can and will
use it ever again - that’s garbage collection. If you create another reference to an object the reference count increases, and if you fail to decrease that count
twice the object can’t ever be deleted. This reference counting problem induces memory leaks, extensively discussed in c-info.how-to-extend. If you want to
see what the reference count is, try

import sys

import numpy as np

a = np.array((10,10))

print(sys.getrefcount(a))

2

b=a

print(sys.getrefcount(a))

3

The first reference count 2 looks odd, shouldn’t it be 1? From web reference of sys.getrefcount(),

Return the reference count of the object. The count returned is generally one higher than you might expect because it includes the (temporary)
reference as an argument to getrefcount().

From the numerics point of view, Python extensions are more relevant. I will discuss calling C/C++ from Python using
SWIG @swig.org (Simple Wrapper Interface Generator), which makes the task of getting C/C++ and Python to work together
more enjoyable. Well, less painful.

272

https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/extending/index.html#extending-index
https://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html
https://docs.python.org/3/library/sys.html#sys.getrefcount
http://www.swig.org/

14.2 SWIG (Simplified Wrapper and Interface Generator)

This chapter is a stub, and reflects the fact that I haven’t used SWIG in real projects.

Why SWIG @swig.org ?60

• SWIG supports many languages: Python, Perl, Ruby, Tcl etc..

• If I had a well-tested C++ code base, I wouldn’t want to pollute it with non-C++ instructions. SWIG keeps the C++
and Python sides separated, and supports standard C++ features.

• SWIG was created to address limitations in C/C++, and the documentation mentions

– Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

– Testing is time consuming (the compile/debug cycle).

– Not easy to reconfigure or customize without recompilation.

– Modularization can be tricky. Security concerns, such as buffer overflows.

• The latest update is SWIG-4.1.1 from 2022, but it’s a mature code so I’m not worried.

14.2.1 SWIG examples

SWIG depends on C++ header files, not on the rest of the C++ source code

C++20 added modules, and headers may be there only for backward compatibility. Should I be worried?

I’m not sure about C++20 module support in SWIG. SWIG has %module, but it’s a completely different thing.

60SWIG core is by none other than David Beazley.

273

http://www.swig.org/

To tell SWIG how to read the headers you need a SWIG interface file, a file containing ANSI C/C++ declarations and
special SWIG directives. At this point you may want to consult the examples in the SWIG tutorial or the SWIG manual.

The tutorial part SWIG for the truly lazy suggest that you first try to include the C++ header file:

%module example

%{

/* Includes the header in the wrapper code */

#include "header.h"

%}

/* Parse the header file to generate wrappers */

%include "header.h"

Done that, you can use the interface file example.i to create the wrapper example wrap.cxx,

$ swig -c++ -python -py3 example.i

Best practice: Let the Python module distutils do the compilation and installation of Python extensions.

Since Python 3.10 distutils is marked deprecated and is replaced with setuptools. NumPy web page says (distutils
status @numpy.org “numpy.distutils has been deprecated in NumPy 1.23.0. It will be removed for Python 3.12; for Python
≤ 3.11 it will not be removed until 2 years after the Python 3.12 release (Oct 2025).” At the moment of writing Python 3.12
is being released. Should I be worried?

The module distutils takes care of the Python version-dependent features. In total, you need

1. The C/C++ code you want to embed (without int main())

2. A SWIG interface file (usual file suffix .i, like in interface.i)
Some benefits of not listing all header files in the interface:

274

http://www.swig.org/tutorial.html
http://www.swig.org/Doc1.3/SWIGPlus.html
https://numpy.org/doc/stable/reference/distutils_status_migration.html
https://numpy.org/doc/stable/reference/distutils_status_migration.html

• Limit wrapper generation only to functions that you actually need in Python

• No need to dig numerous header files to see how the SWIG Python interface is constructed

3. A distutils setup file (usually setup.py)

275

14.3 Cython

The web page Cython says that

Cython is an optimising static compiler for both the Python programming language and the extended Cython pro-
gramming language (based on Pyrex). It makes writing C extensions for Python as easy as Python itself.

See also quickstart quide.
A canonical example is finding prime numbers (picked from cython tutorial),

primes.pyx

def primes(int kmax):

cdef int n, k, i

cdef int p[1000]

result = []

if kmax > 1000:

kmax = 1000

k = 0

n = 2

while k < kmax:

i = 0

while i < k and n % p[i] != 0:

i = i + 1

if i == k:

p[k] = n

k = k + 1

result.append(n)

n = n + 1

return result

276

http://cython.org
https://cython.readthedocs.io/en/latest/src/quickstart/build.html
http://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

The file extension .pyx reveals breaking of Python source compatibility (e.g. the cdef int instructions).
In addition to the function primes.pyx you need a setup file for setuptools, the successor of distutils,

setup_primes.py

from setuptools import setup

from Cython.Build import cythonize

setup(

ext_modules=cythonize("primes.pyx"),

)

Compile the function,

$ python setup_primes.py build_ext --inplace

and import the module to Python,

>>> import primes

>>> primes.primes(10)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

14.3.1 Creating a standalone executable with Cython

Consider the prime number function and a main routine,

277

primesmain.py

import sys

def primes(kmax):

klim = 1000

try:

if kmax>klim: raise ValueError

p=[None]*kmax

result = []

k = 0

n = 2

while k < kmax:

i = 0

while i < k and n % p[i] != 0:

i = i + 1

if i == k:

p[k] = n

k = k + 1

result.append(n)

n = n + 1

return result

except:

print('too many primes (>%d)'%klim)

return -1

if __name__ == "__main__":

try:

if sys.argv[1:][0].isnumeric():

n = int(sys.argv[1:][0])

print(primes(n))

else:

raise ValueError

except:

print('usage: ',sys.argv[0],' number')

This can be run from the command line,

$ python primesmain.py 10

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

278

Cython can generate a 5729 lines of C-code from 33 lines of Python code,61

$ cython --embed -o primesmain.c primesmain.py

What’s embedded is the CPython interpreter. Compile the C-code, add paths to the header file Python.h ad link the Python
library,

$ gcc -I/usr/include/python3.11 -o primesmain primesmain.c -lpython3.11

Testing,

$ primesmain 10

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Cython can make your Python code faster, but you need to do at least two things:

• Type variables (with cdef int etc.) ← very important for speed

• Make sure arrays are correctly accessed from C

You may end up editing the code quite extensively, and in the end your Cython code may look nothing like Python. The
good news is that with minimal changes you get some speedup. For Cython benchmarks, see Fibonacci speed with Cython
@readthedocs (emphasizing that for Fibonacci, cacheing is far more important that cythonizing) and standard deviation with
Cython @readthedocs. The pages are from 2014, so take the results with a grain of salt.

Cython and C++

This is a long story. I suggest you read, for example, wrapping C++ @readthedocs. In the heart is again a setup.py file
for setuptools.

612023: 8375 lines.

279

http://notes-on-cython.readthedocs.io/en/latest/fibo_speed.html
http://notes-on-cython.readthedocs.io/en/latest/fibo_speed.html
http://notes-on-cython.readthedocs.io/en/latest/std_dev.html
http://notes-on-cython.readthedocs.io/en/latest/std_dev.html
http://cython.readthedocs.io/en/latest/src/userguide/wrapping_CPlusPlus.html

15 Julia

Julia (See @Wikipedia) is a new general purpose programming language, especially suited for scientific computing. The de-
velopment started 2012 by Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Version 1.0 was released on 8.
August 2018, version 1.9.3 was released August 24, 2023.

How to get Julia:

• Homepage https://julialang.org

• Downloads https://julialang.org/downloads

• Source code https://github.com/JuliaLang/julia

• Packages https://juliapackages.com/

A good place to start is Youtube videos from Juliacon 2022 and 2023.
Julia has lots of useful packages:

• Differential equations, Fourier transforms, iterative solvers, nonlinear dynamics etc.

• Visualization interface and toolset (Plots.jl)

• Interfaces for C, fortran, C++, Python, R, and Java
Call Julia from python: PyJulia. Call Python functions (PyCall). Call C functions directly.

• Deep learning, machine learning, and AI.

• Parallel and distributed computing

• Tasks (Coroutines) and Channels

• CUDA support

280

https://en.wikipedia.org/wiki/Julia_(programming_language)
https://julialang.org
https://julialang.org/downloads/
https://github.com/JuliaLang/julia
https://juliapackages.com/

A Deep Introduction to Julia for Data Science and Scientific Computing
contains a particularly nice summary of syntax in MATLAB, Python and Julia,
MATLAB-Python-Julia cheatsheet

The Debian benchmark game gives a hint of speed, Julia against C, and Julia against Python 3. Summary: C beats
Julia (sometimes just marginally). Julia beats Python in most cases by a very large margin. Bear in mind, though, that the
comparison was against bare Python, not using NumPy or SciPy. Nobody is supposed to use Python like that, but since NumPy
is using C, one would benchmark C against Python and C. Some of the C-codes use heavily AVX/AVX2 intrinsics62

The source codes are also available, so it’s a good place to see how common tasks can be coded in Julia.

15.1 Julia IDEs

15.1.1 Julia for Visual Studio Code

See julia-vscode.org or julia-vscode @github. Get Julia, then Visual Studio Code. and Choose Install in the VS Code

Marketplace (more instructions in github).
My Linux box installed VSCode with these commands given by linux @code.visualstudio.com:

$ sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc

$ sudo sh -c 'echo -e "[code]\nname=Visual Studio Code\nbaseurl=https://packages.microsoft.com/yumrepos/vscode\nenabled=1\ngpgcheck=1\ngpgkey=https://packages.microsoft.com/keys/microsoft.asc" > /etc/yum.repos.d/vscode.repo'

$ dnf -y install code

15.1.2 Adding Julia to Jupyter notebook or Jupyter lab

Once you have installed Julia, install the IJulia package, From Julia console,

62AVX stands for Advanced Vector Extensions, functions starting with __mm256_ and vector variables starting with _m256_. Microsoft Teams uses
AVX2 instructions to create a blurred or custom background behind video chat participants and for background noise suppression. AVX @ Wikipedia.

281

https://ucidatascienceinitiative.github.io/IntroToJulia/
https://cheatsheets.quantecon.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/julia-gcc.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/julia-python3.html
https://www.julia-vscode.org/
https://github.com/julia-vscode
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/setup/linux
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

julia> using Pkg

julia> Pkg.add("IJulia")

and start the Jupyter Notebook on the command line,

$ jupyter notebook

15.2 Calling Julia from Python

The project pyjulia @github provides Julia calls from Python,

$ python -m pip install julia

and in Python console

>>> import julia

>>> julia.install()

with some testing,

>>> from julia import Base

>>> Base.sin(90)

0.8939966636005579

>>> Base.sind(90)

1.0

282

https://github.com/JuliaPy/pyjulia

Remark: This may suggest that you run first

>>> from julia.api import Julia

>>> jl = Julia(compiled_modules=False)

That worked with Julia 1.8.0 and Python 3.10. Sometimes Python packages can’t keep up with Julia updates.

15.3 Julia: language highlights

• Static typing.
If you have a coded a function f(x) and a function call f(5.5), Julia will compile a version specialized and optimized for
Float64 type of arguments. C/C++ can do optimization only at compile time, just like Numba and JAX. The strength
of Julia is JIT, which compiles and optimizes code in run time.

• Easy to install - for C++ you’d need the whole toolchain.

• Multiple dispatch

• Metaprogramming support, from Lisp

• LaTex-style Greek letters

• Distributed computing in the language itself: using Distributed

• Static arrays are fast: using StaticArrays

• Short examples: julia-by-example

• A whole book full of Julia by Ben Lauwens: ThinkJulia: How to Think Like a Computer Scientist

Some Julia ideas are familiar from Python, like automatic closing a file; do block corresponds to Python context,

283

https://juliabyexample.helpmanual.io/
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html

open("output.txt", "w") do outfile

write(outfile, data)

end

Julia introduces tasks and channels. Similarly to coroutines in Python, tasks are executed in a single thread. The venerable
Fibonacci sequence could be 63

fibo.jl

function fib(c::Channel)

a = 0

b = 1

put!(c, a)

while true

put!(c, b)

(a, b) = (b, a+b)

end

end

Usage:

fib_gen = Channel(fib); # create a task

for i in 1:100

println(i," ",take!(fib_gen))

end

outputs Fibonacci numbers, until the 94th number is negative: too large integer.

63Example by A. Downey and B. Lauwens. ThinkJulia.jl.

284

https://benlauwens.github.io/ThinkJulia.jl/latest/book.html

The channel fib is waking up on demand. The call take!(fib_gen) takes the next number from the channel, where it was put
by put!(c,a) and later by put!(b,a). The values are updated with (a,b) = (b,a+b). The Julianic way is the Pythonic way.

15.4 Julia command prompt

Greek letters look nice,

julia> \beta # + press tab

julia> \pi # + press tab (prints greek pi and = 3.1415926535897...)

Trying to set π = 1 fails, ERROR: cannot assign a value to variable MathConstants.π from module Main

You can copy-paste Julia console codes, Julia automatically strips away the leading prompt julia>. Same as ipython strips
>>>’s.

Rational and complex number are there,

julia> a = 1//2 # typeof(a): Rational{Int64}; dig with numerator(a), denominator(a)

julia> a = 1+3im # typeof(a): Complex{Int64}

julia> a = complex(1,3) # same

Variable typing needs some knowledge of Julia types, a convenient way is to ask about them in the console,

julia> supertype(Float64) # AbstractFloat

julia> subtypes(Integer) # 3-element Array{Any}: Bool Signed Unsigned

julia> typeof(1.0) # Float64

julia> typeof(1) # Int64

285

Handy operations:

julia> a = 30

julia> b = 20

julia> minmax(a,b) # tuple (20,30)

julia> c = 10

julia> muladd(a,b,c) # a*b+c, 610

julia> 3 + true # 4

julia> x = 1.0

julia> sinpi(x) # 0.0 ; sin(pi*x), but more accurate

julia> sin(pi*x) # 1.2246467991473532e-16

I’m not sure if muladd(a,b,c) and a*b+c compile to the same assembly code, it’s up to the underlying JIT compiler LLVM.
Fused multiply-add (FMA) instructions are high performance.64

15.5 Julia arrays, matrices, references, and copies

julia> a = Array{Float64}(undef,2,2) # 2x2 Matrix Float64

julia> b = similar(a,Int) # array similar to a, but integers

julia> a = [1.0 2.0;2.5 3.5]

julia> b = a # b is a reference to a

julia> b[1,2] = 0 # changes both b and a

julia> c=copy(a) # c and a are separate

julia> a = [1,2,3,4] # 4-element Vector{Int64}

64Interested in digging assembly codes produced by fortran, C or Julia? Take a look at the blog post by Hendrik Ranocha Optimizing Trixi.

286

https://ranocha.de/blog/Optimizing_EC_Trixi/

julia> b = [1;2;3;4] # 4-element Vector{Int64}, same as [1,2,3,4]

julia> c = [1 2;3 4] # 2x2 Matrix{Int64}

julia> d = [1 2 3] # 1x3 Matrix{Int64}

julia> e = [3 4 5]' # 3x1 adjoint(::Matrix{Int64}) with eltype Int64

julia> d*d' # 1x1 Matrix{Int64}

Vector can be created from range using collect, 65

julia> a = collect(1:2:10) # 5-element Vector{Int64}: 1 3 5 7 9

Common are also

julia> a=zeros(2,2)

julia> a=ones(2,2)

julia> a=rand(2,2) # random elements in range [0,1)

julia> a=randn(2,2) # gaussian random elements

julia> b=repeat(a,2,2) # a copied around twice in both directions

15.6 Julia broadcasting

Julia broadcasting rules were designed with NumPy broadcasting in mind, although JIT speed is not as dependable on vector-
ization. For example

julia> a=rand(4,5); # 4x5 Matrix

julia> b=rand(4,1,5); # 4x1x5 Array

65Some type names have changed, the now 5-element VectorInt64 used to be called 5-element ArrayInt64,1.

287

julia> c=broadcast(*,a,b) # 4x5x5 Array, same as broadcast(*,b,a)

julia> c=a.*b # 4x5x5 Array, same as broadcast(*,a,b)

Many users just love the dot notation. NumPy would broadcast arrays like this:

python> import numpy as np

python> a=np.random.random((4,5)) # 4x5 Array

python> b=np.random.random((4,1,5)) # 4x1x5 Array

python> a*b # 4x4x5 Array

The reason for these ”discrepancies” (e.g. 4x5x5 vs. 4x4x5) is that

multidimensional arrays in Julia are in column-major order

meaning the left-most index changes fastest in moving from an element to the next one in memory. In contrast,

multidimensional arrays in NumPy are in row-major order

where the right-most index changes fastest. Therefore, a 4x5 array in Python ”means” a 5x4 array in Julia, and broadcasting
reflects this.

15.7 Julia array loop

These are the recommended ways

for a in A

Do something with the element a

end

for i in eachindex(A)

288

https://docs.julialang.org/en/v1/manual/arrays/

Do something with i and/or A[i]

end

289

15.8 Julia Automatic Differentiation (AD)

Automatic differentiation was already meantioned in discussing backpropagation in neural networks. Now we let Julia do the
work, see the manual pages juliadiff and ForwardDiff.jl. Remember that AD computes derivatives with machine accuracy,
something finite difference methods can’t do. The code aziz-diff.jl reflects this fact.

290

http://www.juliadiff.org/
https://github.com/JuliaDiff/ForwardDiff.jl

aziz-diff.jl

install package:

julia -e 'using Pkg; Pkg.add("ForwardDiff"); Pkg.add("Plots"); Pkg.add("PyPlot")'

run from Julia console:

include("aziz-diff.jl")

using ForwardDiff: derivative

using Printf

definition of the function in file aziz.jl in current directory

push!(LOAD_PATH,pwd()) # add current directory to module search path

using Aziz

alternative: you could

include("aziz.jl")

but then you'll need to use Aziz.aziz everywhere, unless you define aziz = Aziz.aziz

r = [0.01:0.5:10.0;]

V = aziz.(r)

Vp = derivative.(aziz, r);

@printf("%15s %15s %30s\n","r","V(r)","V'(r)")

for (a,b,c) in zip(r,V,Vp)

@printf("%15.5f %15.5f %30.20f\n",a,b,c)

end

r0 = 7.61

println("\ncomparing numerical der=(f(r+h)-f(r))/h and present AD result at r=$r0:\n")

Vp0 = derivative.(aziz, r0);

h = 0.1

a0 = aziz(r0)

while h > 1.e-14

global h

der = (aziz(r0+h)-a0)/h

@printf("h=%10.3e der=%25.20f AD = %25.20f der-AD=%25.20f\n", h, der, Vp0, der-Vp0)

h = 0.1*h

end

println("plotting...")

using Plots

pyplot() # pyplot backend

more points for plotting

r = [0.01:0.01:10.0;]

V = aziz.(r)

Vp = derivative.(aziz, r);

p = plot(r,V,label="V(r)",ylims=(-20,20))

p = plot!(r,Vp,label="V'(r)") # update previous plot

just to make the plot appear long enough to see it

display(p)

readline()

291

15.9 Julia Differential Equations

This is a tutorial solution for the Lorentz equations, Julia: solving a set of differential equations

diffeq.jl

#http://docs.juliadiffeq.org/latest/tutorials/ode_example.html

#Example-2:-Solving-Systems-of-Equations-1

using DifferentialEquations: ODEProblem, solve

function lorenz(du,u,p,t)

du[1] = 10.0*(u[2]-u[1])

du[2] = u[1]*(28.0-u[3]) - u[2]

du[3] = u[1]*u[2] - (8/3)*u[3]

end

u0 = [1.0;0.0;0.0]

tspan = (0.0,1000.0)

println("solving...")

prob = ODEProblem(lorenz,u0,tspan)

sol = solve(prob)

println("plotting...")

using Plots

pyplot() # pyplot backend, looks nicer

plot(sol,idxs=(1,2,3),linewidth = 0.05) # old version had deprecated vars=...

292

http://docs.juliadiffeq.org/latest/tutorials/ode_example.html#Example-2:-Solving-Systems-of-Equations-1

15.10 Julia StaticArrays

See StaticArrays.jl. Static arrays will speed up small array calculations, up to about 100 elements long. There the benefit can
be quite noticeable.

15.11 Julia Macros

Julia macros offer a LISP-style runtime interpreter, much more than #define in C++.

using BenchmarkTools

function f(x)

a = 0

for i in 1:1000

a+=sqrt(float(i*x))

end

end

@btime f(1.111); # timing and memory usage

@code_native f(1.111); # generated code in assembly, good for spotting speed traps

Both @btime and @time outputs are quite readable.

julia> @btime rand(10^6);

1.089 ms (2 allocations: 7.63 MiB)

julia> @time rand(10^6);

#0.001782 seconds (7 allocations: 7.630 MiB)

293

https://github.com/JuliaArrays/StaticArrays.jl

>julia> @which 2 + 2

+(x::T, y::T) where T<:Union{Int128, Int16, Int32, Int64, Int8,

UInt128, UInt16, UInt32, UInt64, UInt8} in Base at int.jl:87

julia> @which 1.0*3.4

*(x::Float64, y::Float64) in Base at float.jl:332

These just tell what method would be used and where the source is (line 87 in int.jl). Here T is the type, apparently any
kind of integer.

15.12 Julia Metaprogramming

See metaprogramming. A polynomial function could be

294

https://docs.julialang.org/en/v1/manual/metaprogramming/

poly1.jl

evaluates polynomial

p = sum_{i=1}^n a_i x^i

function poly1(x, a...) # ellipsis arbitrary length list

p = zero(x) # pick type from x

for i in eachindex(a)

p += a[i]*x^i

#println(a[i],"*",x,"^",i) # just to see what we sum up

end

return p

end

Example:

poly1(2.0,1,2,3) = 1*(2.0)^1 + 2*(2.0)^2 + 3*(2.0)^3

= 34.0

poly1(2.0,-1,0,1,2,3) = -1*(2.0)^1 + 0*(2.0)^2 + 1*(2.0)^3 + 2*(2.0)^4 + 3*(2.0)^5

= 134.0

Using Horner’s method it’s evaluated as

295

poly2.jl

evaluates polynomial

p = sum_{i=1}^n a_i x^i

using Horner's method, see https://en.wikipedia.org/wiki/Horner%27s_method

#

function poly2(x, a...)

p = zero(x)

for ai in reverse(a)

p = muladd(x,p,ai) # same as p = x*p + ai

end

return x*p

end

Example:

p(x) = a_1*x^1 + a_2*x^2 + a_3*x^3

= x*(a_1 + x*(a_2 + x*a_3))

poly2(2.0,1,2,3) = 1*(2.0)^1 + 2*(2.0)^2 + 3*(2.0)^3

= 2.0*(1 + 2.0*(2 + 2.0*3))

= 34

Writing the Horner’s method as a macro expression,

296

poly3.jl

evaluates polynomial

p = sum_{i=1}^n a_i x^i

using Horner's method, see https://en.wikipedia.org/wiki/Horner%27s_method

#

macro poly3(x, p...)

ex = esc(p[end])

#println(ex)

for pi in reverse(p[1:end-1])

ex = :(muladd(xx, $ex, $(esc(pi))))

#println(ex)

end

ex = :(xx*$ex)

Expr(:block, :(xx=$x), ex)

end

Example:

p(x) = a_1*x^1 + a_2*x^2 + a_3*x^3

= x*(x*(x*a_3+a_2)+a_1)

= x*muladd(x,muladd(x,a_3,a_2),a_1)

This leaves plenty of questions unanswered, but worry not. Without going to syntactic details, you can see how this works.
First uncomment the println lines and run

julia> include("poly3.jl")

julia> @poly3(x,a_1,a_2,a_3)

297

Yes, that’s right: don’t give any values to x, a_1, a_2, and a_3! This will end up in a an error message, but only after printing
what the expression ex is at every step. From that it’s easier to see what the macro is doing. Give it a try! A great way to
debug short metaprograms - and it works also in C++ template metaprogramming. More to Julia style, you can expand the

macro to see what it does,

julia> @macroexpand @poly3(x,a1,a2,a3)

quote

var"#525#xx" = Main.x

var"#525#xx" * Main.muladd(var"#525#xx", Main.muladd(var"#525#xx", a3, a2), a1)

end

This is more readable than the println method. Now you have tools to assertain that the macro expression works as expected.
Time to give the polynomials a benchmark run,

julia> using BenchmarkTools

julia> include("poly1.jl")

julia> include("poly2.jl")

julia> include("poly3.jl")

julia> @btime poly1(2.0,1,2,3,4,5)

1.402 ns (0 allocations: 0 bytes)

julia> @btime poly2(2.0,1,2,3,4,5)

1.402 ns (0 allocations: 0 bytes)

julia> @btime @poly3(2.0,1,2,3,4,5)

0.020 ns (0 allocations: 0 bytes)

In my machine, the poly3.jl version was 70 times faster than the other two. The one single faster execution saves you less
than a nanosecond, so unless you do it 109 times you won’t see the difference. Consider this as a fine example of fast code
without any real-life impact.

You can name the macro,

298

julia> horner5(x) = @poly3(x,1,2,3,4,5)

julia> horner5(2.0)

#258.0

Later we’ll see how such metaprograms are handled in C++. There are already quite a few Julia applications around. One
of them is Trixi.jl @github, an expandable numerical simulation library. Benchmarks of real world problems agains the HPC
Fortran code Fluxo show how good Julia can be. The JuliaCon 2021 video gives a nice overview, see Trixi @JuliaCon2021.

GPU programming benefits a lot from metaprogramming capabilities, see CUDA @juliahub.com.

299

https://github.com/trixi-framework/Trixi.jl
https://www.youtube.com/watch?v=hoViWRAhCBE
https://docs.juliahub.com/CUDA/oWw5k/2.2.1/tutorials/introduction/

15.13 Multiple dispatch

If you call Python method obj.calculate(args), the interpreter chooses calculate() to execute based on the type of the
object obj; this is single dispatch. In the code

class MyClass:

def calculate(self, args):

...

obj = MyClass()

obj.calculate(args)

the choice of dispatching calculate() is based on the first argument self - hence single dispatch. Some binary operations are
related to magic methods, such has + is __add__() and * is __mul__(); these are double dispatch. In a math expression
x+ y it hardly makes sense to attach the operation of addition to x, neither does it naturally belong to y.

What, then, is multiple dispatch? Multiple dispatch means that a method is chosen depending on the type and number of
all the arguments. For example,

julia> f(x::Int64, y::Int64) = 2x + y

f (generic function with 1 method)

julia> f(x::Float64, y::Int64) = 3x + 2y

f (generic function with 2 methods)

julia> @which f(1,2)

f(a::Int64, b::Int64) in Main at REPL[1]:1

julia> @which f(1.0,2)

f(a::Float64, b::Int64) in Main at REPL[1]:1

300

julia> methods(f)

2 methods for generic function "f":

[1] f(x::Int64, y::Int64) in Main at REPL[1]:1

[2] f(x::Float64, y::Int64) in Main at REPL[2]:1

Try methods(+) and you get 207 methods, all specialized to adding different kinds of data types. It only makes sense because
addition makes sense for many types of data.

301

Many kinds of geometrical objects have an area. In Julia it could be computed like this:

julia_area_dispacth.jl

abstract type Shape end

struct Circle

radius::Float64

end

struct Rectangle

width::Float64

height::Float64

end

Define methods to calculate the area of different shapes

area(shape::Circle) = * shape.radius^2

area(shape::Rectangle) = shape.width * shape.height

Tests

circle = Circle(3.0)

rectangle = Rectangle(4.0, 5.0)

println("Area of the circle: ", area(circle))

println("Area of the rectangle: ", area(rectangle))

In C methods are chosen based on their name, hence in GSL (Gnu Scientific Library) you meet FFT methods such as

302

int gsl_fft_complex_radix2_forward(gsl_complex_packed_array data, size_t stride, size_t n)

int gsl_fft_real_radix2_transform (double data[], size_t stride, size_t n)

so you have make up a distinct function name for different situations. C++ has function overloading, which means you can
write a single function

int fft_forward(args)

and let the compiler deduce what method to apply by looking at the arguments. However, C++ function overloading is done
at the compile time.

Despite the fact that Julia does compilation, it does it in run-time, and, as Stefan Karpinsky points out,66 a code like this
is possible:

66See answers in link @discourse.julialang.org. There are 133 of them and growing, so relax, it’s difficult to explain what multiple dispatch is, but
it’s simple to just use it.

303

https://discourse.julialang.org/t/claim-false-julia-isnt-multiple-dispatch-but-overloading/42370/17

julia_dispatch.jl

abstract type A end

struct B <: A end

struct C <: A end

f(a::A) = "it's an A"

f(b::B) = "it's a B"

f(c::C) = "it's a C"

g(a::A) = f(a)

println(g(B()))

println(g(C()))

output:

it's a B

it's a C

The syntax B <: A means B is a subtype of A. The result underlines the fact that a::A doesn’t mean a is type A, it’s a
hint to the compiler that variable a is expected to be of of type A or of any of A’s subtypes. A variable carries with it its type.
In static function overloading you would always execute f(a::A). In Julia, run-time typing is the thing, while compile-time
typing doesn’t happen at all. Note that you could write as well

f(a::A) = "it's an A"

f(a::B) = "it's a B"

f(a::C) = "it's a C"

As usual, there’s a way to write extra code in most languages to include multiple dispatch, for example in Python as modules
multipledispatch or multimethod, see example multiple_dispatch.py. These are Python library modules, whereas Julia has

304

http://users.jyu.fi/~veapaja/Python_C++_Numerics/Python_examples/basic/multiple_dispatch.py

multiple dispatch built in to the very core of the language. In Python multipledispatch or multimethod dispatch decisions are
made dynamically at runtime, which can be less efficient compared to Julia’s static dispatch. Also Python multipledispatch

or multimethod make the dispatch decision based on the first argument, which limits the possibilities compared to Julia, which
makes the dispatch decision based on all arguments.

305

The Expression Problem

The Expression Problem @wikipedia is a question about code reuse in a programming language. One would like to

• add new data types to existing methods

• add new methods to existing data types

without modifying or duplicating existing code. Leave out the word “data” if you wish.
Let’s write a table with data types as columns and methods as rows,

data type1 data type2
method1() calc 11 calc 12
method2() calc 21 calc 22
method3() calc 31 calc 32

Here calc_xx is existing, well-tested code base you don’t want to edit. Adding a new type means adding a column, adding a
new method means adding a row.

306

https://en.wikipedia.org/wiki/Expression_problem

Adding a type and a method in Python
In object-oriented languages, such as Python and C++, you could have classes with methods. In Python, you could have an
abstract base class Calc

from abc import ABC, abstractmethod

class Calc(ABC):

pass

class Type1(Calc):

def method1(self):

print('calc_11')

def method2(self):

print('calc_12')

def method3(self):

print('calc_13')

class Type2(Calc):

def method1(self):

print('calc_21')

def method2(self):

print('calc_22')

def method3(self):

print('calc_23')

Adding a new type is simple,

class Type3(Calc):

def method1(self):

print('calc_31')

def method2(self):

print('calc_32')

def method3(self):

print('calc_33')

How about adding a new method4()? You could inherit types and extend them,

307

class ExtType1(Type1):

def method4(self):

print('calc_14')

class ExtType2(Type2):

def method4(self):

print('calc_24')

We solved the expression problem after a fashion. The price is high, because from this point on we’d have to keep in mind that
ExtType1 supercedes Type1. There’s no method method4() in Type1 objects,

obj1 = Type1()

ob1.method4() # FAILS

A better solution would be to add the new method to the existing class by defining methods and injecting them to classes Type1
and Type2,

def method4_for_1(self):

print('calc_14')

def method4_for_2(self):

print('calc_24')

Type1.method4=method4_for_1

Type2.method4=method4_for_2

and now also ob1.method4() works, even if ob1=Type1() was created before adding method4()! Some call this process
affectionately monkey patching. You could also overwrite any of the old methods, but such a liberal attitude to overruling
previous decisions can be hazardous. Injecting a new method to an existing class has the price that relevant code may be
scattered in multiple files.

308

Adding a type and a method in C++
C++ is statically typed, so adding a new method to an existing class is harder. It can be done to classes that allow it using
the so-called visitor design pattern.67 Visitor pattern is double dispatch, the method to execute depents on what object defines
the visitor and on the object that calls the visitor.

Adding a type and a method in Julia
Julia multiple dispatch solves the expression problem. Julia functions have methods,

julia> f(x::Int) = 2x

f (generic function with 1 method)

julia> f(x::Float64) = 3x

f (generic function with 2 methods)

Adding a new type is simple,

julia> f(x::String) println(``a string it is'')

and so is adding a new method to existing type (String in this example),

julia> g(x::String) = println("g-string")

g (generic function with 1 method)

For example, measurements have usually error bars, x = 1.45±0.01, and the package Measurement adds that data type. You can
propagate data with error bars through an ODE solver (DifferentialEquations) and plot it (Plots). See julia-errorbars.jl.
It just works.

Julia shines in code reusability and there’s less need for boilerplate code.
To summarize, in Julia you have a language for very generic code.

67Visitor patterns can be coded in Python as well, but they aren’t needed: see injecting a method to existing class.

309

https://en.wikipedia.org/wiki/Visitor_pattern
http://users.jyu.fi/~veapaja/Python_C++_Numerics/julia_examples/julia-errorbars.jl

16 C++

16.1 A brief history of C++

• 70’s and 80’s:
- FORTRAN-77 fixed-sized tables annoy programmers
- Pascal becomes popular after Borland introduces a lightning fast compiler
- Dennis Ritchie creates C language with dynamic tables

• From 1979 on: Bjarne Stroustrup creates C++ as a sort of ”improved C” - but is it? The jury is still out. (The name
”C++” was coined in 1983)

• Characteristic to C++:
- strong typing of variables (supposedly) reduces programming mistakes
- Object-oriented programming possible, though not forced
data belonging together is collected together to an ”object”, that can be moved around as one big chunk.
- Compiled language, for speed.

• Early 90’s: No C++ standard, compiler manufacturers made their own decisions. C++ portability: None.

• 1998 : C++ Standard! A second birthday of C++
-An extensive standard library

• 2011 : C++11 Standard (working name was C++0x)
- Easier ways to do very common tasks
- C++ books written before about 2010 are better left to collect dust

A timeline of C++ can be found on the page ISO C++ committee.

310

https://isocpp.org/std/status

16.2 About these C++ lectures

First, I apologize that these C++ notes contain so many topics unrelated to fast numerics. Maybe some ideas will help you get
a job done, and that’s a good start. C++ is a multi-purpose language and was never intended to specialize on numerics, that’s
why it’s so easy to get lost in the jungle and find yourself tasting interesting mangos while looking for some bamboo.

I’m going to introduce some C++11 and C++17 features and it’s a whole lot different to what old C++ used to be. C++20
is now fully supported, and I should update these notes (again). The truth is, I’m falling behind in C++. As s general
goal, I try to avoid (naked) pointers and use references instead. I hope this course gives you self-confidence to write your own
C++ program that solves a numerical task using a chosen library and read and modify C++ programs.

I’m always impressed by the fact that the C++ std namespace zoo has over 1800 std::thing animals.68 According to news
@bbc.com,

Prof Webb found that people who have been studying languages in a traditional setting - say French in Britain or
English in Japan - often struggle to learn more than 2,000 to 3,000 words, even after years of study.

In fact, a study in Taiwan showed that after nine years of learning a foreign language half of the students failed to
learn the most frequently-used 1,000 words.

I take this as a proof that if you can learn the C++ std namespace, you can learn any language!

68See many of them in symbol index @cppreference.com.

311

https://www.bbc.com/news/world-44569277
https://www.bbc.com/news/world-44569277
https://en.cppreference.com/w/cpp/symbol_index

16.3 Easy tasks

Python 3:

print('Hello, world!')

Python + NumPy + SciPy
is a very powerfull combination

Eigenvalues and eigenvectors of a random 5x5 matrix:

import numpy as np

import scipy.linalg as la

A = np.random.randint(0, 10, (5, 5))

print("matrix A = \n",A)

e_vals, e_vecs = la.eig(A)

print ("eigenvalues : \n",e_vals)

print ("eigenvectors : \n",e_vecs)

how-can-scipy-be-fast-if-it-is-written-in-an-interpreted-
language-like-python

312

http://www.scipy.org/scipylib/faq.html#how-can-scipy-be-fast-if-it-is-written-in-an-interpreted-language-like-python
http://www.scipy.org/scipylib/faq.html#how-can-scipy-be-fast-if-it-is-written-in-an-interpreted-language-like-python

16.4 Online sources for C++ programmers

• In Finnish: www.ohjelmointiputka.net/oppaat.php
Kattaa myös Python, C, ja PHP kielet
(Mureakuha kaatui kilpailuun. Sivustojen suhteista kirjoitettiin mehevästi Putkan 10v sivuilla)

• www.cplusplus.com

• www.learncpp.com

• www.greenteapress.com/thinkcpp/ (Book, 2012)

• Online courses at www.edx.org, free and non-free

Don’t read old C++ books. Anything written before 2011 should be taken with a grain of salt.
Be systematic with your style. When to use capital letters and when to use underscores is up to you. Some coders stick
to the so-called Hungarian style, where m_xxx signify member function called xxx, m_ixxx add this to return an int etc. And
some coders call this the idiotic style.

Think carefully what to put in header files. About style and good C++ practices, I recommend Bjarne Stroustrups home
page www.stroustrup.com. After all, he created the language, so he may have a solid opinion.
Be sceptic about benchmarks. Especially so if the tests were run by the code developers themself. They may have run
the benchmarks using an outdated CPU architecture to hide that their code cannot use AVX or FMA, and they don’t want
to compare with codes that can. Comparisons that show how a library is faster than MKL may have prevented multithreaded
execution, because that’s where MKL excels. Run your own benchmarks.

16.5 C++ in Matlab or Octave

You can call a compiled C or C++ programs from Matlab using MEX files (Matlab executable files). Matlab can access C/C++
library routines and may work through a numerical bottleneck faster. See instructions in write-cc-mex-files.html.

Octave is a free Matlab-lookalike, with an almost identical syntax but different internals. Octave has interface to several
languages, including C++. The compiled files used in Octave are called oct-files, see instruction in oct-files.

313

http://www.ohjelmointiputka.net/oppaat.php
https://www.ohjelmointiputka.net/putka10v/kuha.php
http://www.cplusplus.com
https://www.learncpp.com/
http://www.greenteapress.com/thinkcpp/
https://www.edx.org/
http://www.stroustrup.com
http://www.mathworks.se/help/matlab/write-cc-mex-files.html
https://www.gnu.org/software/octave/doc/interpreter/Oct_002dFiles.html#Oct_002dFiles

16.6 C or C++ in Python 3

See part 1 of these lecture notes: Extending Python 3 with C++, Cython, ctypes.

17 A really brief introduction to C++

Example: Main program

main1.cpp

#include <iostream> // here cout is defined

int main()

{ // ALL BEGINS

int i,j; // integers i and j

i=5; // set values to i and j

j=20;

int k=i+j; // define k on the fly

std::cout<<"k="<<k<<"\n"; // output to screen

} // ALL ENDS

#include <iostream> using the standard input/output streams library
using namespace std; make visible all keywords defined in std namespace
int main() the main program is a function (and can have arguments), returns an integer

The function main() can end with
return 0;

or
return (0);

so that the function main() gives out the integer 0. Out where? Hmm, to the operating system. Safe to leave out entirely.

314

https://docs.python.org/3/extending/extending.html
http://cython.org/
https://docs.python.org/3/library/ctypes.html

17.1 The meaning of #include <iostream>

The preprosessor directive #include <iostream> tells the compiler to make available all that’s defined in the C++
standard library header iostream. 69.

Two ways to include headers:

#include <iostream> // part of standard library

#include "myheader.h" // a home-made header

The difference is the header search path, the latter uses the current path first, after that the include path. To see what headers
were included, try

$ g++ -M code.cpp

and to include a PATH using

$ g++ code.cpp -I PATH

69Take a peek at what headers exist and what’s in them : www.cplusplus.com/reference

315

\protect \relax $\@@underline {\hbox {h}}\mathsurround \z@ $\relax ttp://www.cplusplus.com/reference/

You get pretty far with these headers:

• #include <iostream> : input and output
cout, cin, cerr, clog - c for screen console.

• #include <iomanip> : formatted output; if you like printf() forget this.

• #include <cmath> (C++) or #include math.h (C or C++) : mathematical functions
sin, cos, log, sqrt, pow... x2 is coded pow(x,2)

• #include <complex> : complex numbers

• #include <fstream> : file handling (also ofstream, ifstream,...)

• #include <string> : character strings

• #include <random> : (pseudo)random numbers

• #include <functional> : function objects

Three styles to write a double precision function:

fun1.cpp

double f(double x){

...

}

fun2.cpp

double f(double x)

{

...

}

fun3.cpp

double f(double x) {...}

Here the argument x was chosen to be a double.

316

Example: Function defined before main()

fun_before.cpp

#include <iostream>

#include <cmath>

double f(double x) {

return sin(x)*cos(x*x);

}

int main()

{

double x,y;

x=2.333;

y=f(x);

std::cout<<"f("<<x<<")="<<y<<"\n";

}

f(2.333)=0.482627

The compiler knows all it needs to know about the function at the point when f() is met in main().

317

Example: Function defined after main()

fun_after.cpp

#include <iostream>

#include <cmath>

double f(double);

int main()

{

double x,y;

x=2.333;

y=f(x);

std::cout<<"f("<<x<<")="<<y<<"\n";

}

double f(double x)

{

return sin(x)*cos(x*x);

}

When the compiler meets f() inside main(), it wants to know what it takes as arguments and what it returns. Therefore
you need to provide it with a sneak peak

double f(double);

called prototype or function declaration; You have to give the prototype also if the function is defined in another file.
Failing to declare a function results the error message fun_after.cpp:9: error: 'f' was not declared in this scope.
Here we encounter the concept of scope.

C++11 standard made an addition, the return type of a function can be declared like this:

318

auto f(double) -> double; // trailing return type

Pretty useless in this example. You may appreciate how this helps the compiler, if you think of how the return types of class
methods become clear only after going through all the types of the arguments. There is another use of ->: foo->bar means
(*foo).bar.

17.2 Scope

The scope tells the range of visibility. In which parts of the program is an object defined, and also who may know the thing
even exists70. The basic ideas are global objects (visible everywhere), and local objects (visible in a limited scope). The scope
limits are curly brackets, boundaries of a block:

double z; // I'm visible to anyone - mess me up at will

int main()

{

double x; // I'm visible between {...}

...

}

double function f(double k)

{

double x; // I'm not the same x as in main()!

z=10; // but I'm the one and only global z

{

A local loop variable exist only in the loop

70Sounds modern, invented in the 50’s.

319

...

unsigned j = 5;

for(unsigned i=0;i<10;++i){if(i==j) break;}

cout<<"i=j when i="<<i<<endl; // WON'T WORK

When the program leaves the loop, the variable i ceases to exist. The last line is not allowed.

17.3 Simple file operations

C++ idea: create a stream, either for writing (ofstream) or for reading (ifstream)

o as out, i as in, and f as file.

To a stream we stuff things using the operator << and read with the operator >>.
The console output cout and the console input cin are streams.

Example: Write to a file

fileio.cpp

#include <iostream>

#include <fstream>

int main () {

std::ofstream myfile("output");

myfile << "Text to file output"<<"\n";

myfile.close();

}

This declared and opened a stream in the one line with ofstream

320

ofstream myfile("output");

The file output contains now the text ”Text to file output”, and the file is closed with

myfile.close();

The object (instance) myfile of the class ofstream has a method (member function) close().

18 C++ Classes

A class is a collection of data and methods to manipulate the data that somehow belong together. It’s just an abstract type, a
bit like int only tells what an integer is. You need an object (same as: instance of a class), a manifestation of the class.
A class Bird may have an object crow, which tells the compiler that ”a crow is a bird”.

18.1 Private and public data, methods

The method comp_energy() is conveniently a class method, a member function.

class ClassName{

// private things

public:

// public things

// and member functions, used to manipulate and show contents of private date

}; // this line may already contain objects of this class

For example,

321

class SystemState{

double E; // energy

public:

void comp_energy(); // compute energy

double energy()const {return E;}; // read energy

} state1,state2;

This defines the class and immediately constructs two objects state1 and state2. You can do this later as well, SystemState state1;

To work, the class SystemState still needs the definition of the method comp_energy(). If it’s short, it can be defined in
situ, on the spot in side the class (as we did for energy()), but you are free to define it later:

// member function of class SystemState

void SystemState::comp_energy(){

E=3.12515e-10; // just anything for testing

}

The variable E used by the method is exactly the same E as in the object, not just any double E ! Now the energy of the state
can be computed and read,

int main()

{

state1.comp_energy(); // compute state1 energy

cout<<state1.energy()<<endl; // print state1 energy

return 0;

}

This introduced one benefit of a class, data encapsulation, which means that data can be protected from inadvertent
changes or hackers. Just make it private and give only carefully chosen methods the permit to touch the data. Secondly, upon
improving the code you can improve the methods without disrupting the workings of the rest of the code.

322

A class has properties that can be inherited, meaning another class can inherit the properties and methods of a parent
class. Smart base classes can be inherited and you can recycle code. In the C++ language itself a lot of things are inherited,
for example ofstream header file inherits this chain of mre general purpose headers:

ios base← ios← ostream← ofstream

On the bottom there is a general-purpose class ios_base.

323

Example: Define a Car class and instantiate a few cars

car.cpp

// How to create a Car class with member function get_color()

#include <iostream>

class Car

{

std::string color; // private member

public:

std::string get_color() const {return color;};

Car(std::string col) {color=col;} // constructor

~Car(){std::cout<<"Car demolished\n";} // destructor

};

int main()

{

Car cadillac("black_and_white"); // create a Car with a color

Car ferrari("red");

std::cout<<"cadillac is ";

std::cout<<cadillac.get_color()<<"\n"; // get cadillac's color

std::cout<<"ferrari is ";

std::cout<<ferrari.get_color()<<"\n";

Car buick(cadillac); // copy cadillac to buick: all properties

std::cout<<"buick is ";

std::cout<<buick.get_color()<<"\n";

}

cadillac is black_and_white

ferrari is red

buick is black_and_white

Car demolished

Car demolished

Car demolished

color is a member of Car; It’s not declared public, so it’s private.
get_color() is only means to read the car color,

cout<<buick.color<<endl; // error

car.cpp:5:10: error: ’std::string Car::color’ is private

324

Notice, how the class Car has a function with the very same name as the class itself:
Car()

is a class constructor, used to create an object (a Car) and to give it some properties. This constructor is used if and only if
the color is given in parenthesis. The compiler looks how we try to create a Car and find a match from the list of possible ways
to constructor a Car.

Object is a manifestation of a class, a thing that has all the properties defined in the class:

Car lada("black"); // Car is a class, lada is an object

Meaning ”lada is a Car and it’s black”. When the compiler comes to this line, it fetches a constructor in the class Car answering
the needs, a function that looks like this:

Car(string)

Such a function exists, so the compiler will create a black lada. It may become as a surprise, that constructor of a colorless Car
fails:

Car volvo;

fails, because Car has no constructor

Car()

This would be the default constructor, one made by the compiler if no other constructor is specified - after all, a class must
have some constructor to be useful at all. The only thing a default constructor does, is to reserve some space for an object,
nothing else. C++ language specifies that

If you give a constructor for a class, the default constructor vanishes

This is happened in the example: there was no longer any colorless Car constructor.
Objects can be copied,

325

Car buick(cadillac);

and buick picks the color from the cadillac.
Wait a moment, what function did the copying? It was the copy constructor, provided by the compiler automatically. As
you guessed, there is a method called destructor, which deletes an object. It has the tilde sign,

~Car(){cout<<"Car demolished\n";}

Compilers create this automatically, then it’s called a default destructor. You can also provide one yourself, and include a
clear message when an object is destroyed.

To summarize, a class has a set of building methods:
(add the prefix ”default” if you let the compiler create a method)

constructor how an object would be created
copy constructor how an object is copied (resulting two similar objects with different name)
copy assignment (=) makes a copy from right to left
move constructor tells how the information of an object is transfered to another

the object essentially steals the resources of the other object, leaving it in default state
move assignment pilfer the resources on the right and gives them to the left
destructor tells how an object should be destroyed

C++ has a rule of five, saying that if you need to write your own destructor, chances are you need to provide all five,

destructor
copy constructor
move constructor
copy assignment operator
move assignment operator

because none of the default version generated by the compiler meet the needs of your class.

70A better constructor would use an initialization list.

326

18.2 Member function qualifiers const and noexcept

C++ has ”compiler directives”, qualifiers that facilitate code optimization and help to catch object misusage during compile
time.

Class MyClass {

::

public:

void member1() const; // does not change any data member of the class (except mutable)

void member2() noexcept; // does not throw any exceptions

void memder3() const noexcept; // neither throws nor changes data members (unless mutable)

:::

}

Here ”throw” is a mechanism of making exceptions, errors or warnings, later discussed in section 33. The qualifier noexcept
potentially leads to faster code (section 27). If a function cannot fail it’s safe to use noexcept.

327

18.3 Example of a data structure

If you need to write serious simulation code with coordinates and distances, use a library that provides vectors and fast linear
algebra. This example is for light-duty use only.

Example: A class for a 3D point and distance between points

class_points.cpp

#include <iostream>

#include <cmath>

namespace co{

// Class for 3D coordinates

class Point{

public:

double x,y,z;

};

double distance(const Point &, const Point &);

}

int main()

{

co::Point point1 = {0.0,0.0,0.0}, point2={1.0,2.0,1.0};

// move point1 a bit

point1.x = 1.0; // public data member accessed directly

std::cout<<"distance = "<< co::distance(point1, point2) <<"\n";

}

// Euclidian distance between two points

double co::distance(const co::Point &c1, const co::Point &c2){

return (sqrt(pow(c1.x-c2.x,2) + pow(c1.y-c2.y,2) + pow(c1.z-c2.z,2)));

}

The function distance() has a very common name, therefore it was embedded to the namespace co. This makes clear
that co::distance() clearly calls that particular function. Namespaces were invented to prevent name conflicts, in a larger
code base there could be another distance() defined elsewhere.

328

Before you start writing a simple data structure, check first the C++ Standard Library. If the structure is there use it,
don’t re-invent the wheel. For example, a pair of practically anything is std::pair<type1,type2>.

Example: Creating pairs std::pair using std::make_pair

pairs_of_anything.cpp

// using std::pair to make pairs of almost anything

#include <iostream>

#include <vector>

int main()

{

std::pair<int,int> iipair;

iipair= std::make_pair(10,12);

std::cout<<iipair.first<<" "<<iipair.second<<std::endl;

std::pair<int,double> idpair(1,120.324);

std::cout<<idpair.first<<" "<<idpair.second<<std::endl;

// vector of pairs (int,vector)

std::vector< std::pair<int,std::vector<double>> > ivpairs;

std::vector<double> v{10.1,20.2,30.3,40.4}; // testing vector

for(int i=0; i<10;++i) ivpairs.push_back(std::make_pair(i,v));

for(auto i:ivpairs) {

std::cout<<"i="<<i.first<<" vector=";

for(auto j:i.second) std::cout<<j<<" ";

std::cout<<std::endl;

}

}

Remember tuple from Python? std::tuple (tuple @cplusplus.com) is a generalization of std::pair.

329

http://www.cplusplus.com/reference/tuple/tuple/

19 Templates - Generic instructions and algorithms

Templates are one of the best things C++ has to offer. C++ templates do the same as Python’s universal functions - and
more.71

A template is an abstract model of what to do

C++ libraries use templates to achieve excellent performance and multi-purpose applicability. Some methods
are so common, that you hardly think they are templates:

• std::sort() is a template to sort arguments - many kinds of arguments, not just numbers

• std::pair() is a template to combine two things - many kinds of things

• std::swap() is in a template to swap two things of the same type - many kinds of things

The vector contained of integers is vector<int>. The angular bracket is for template parameters, they define what type
of objects the container holds. std::vector<int> x tells the compiler to search the std namespace and find a model for a
vector, and bring one to life - instantiate - using int as data type and call the container x.

Basic templates are simple. Suppose you have a function that is written for double’s,

void f(double x){

// do something with x

}

Then you realize this procedure should work also for int’s and string’. You can overload f (section 24),

void f(int x){

// do something with x

}

void f(string x){

// do something with x

}

71A series of articles An-Idiots-Guide-to-Cplusplus-Templates give more insight to templates.

330

http://www.codeproject.com/Articles/257589/An-Idiots-Guide-to-Cplusplus-Templates-Part-1

This is fine until you realize the algorithm in f() is so good it can be applied for many more data types. At this point the
function overloading must give way to some kind of ”general function overloading”, a function template.

template <typename T>

void f(T x){

// do something with x

}

Here T is the type of x. A template is never omnipotent, for example there are type T objects that cannot be printed with
std::cout; upon a failed attempt you will be greeted with a long compiler error message.

For a more serious example, see basic/simple_template.cpp and basic/static_assert.cpp. The latter shows how to
check types in compile time and to detect if a wrong template is used by mistake.

19.1 Variadic functions and templates

Some functions should accept a variable number of arguments. Logically, there should be a variadic template with any
number of template parameters,

template <typename ...Ts>

Here ... is called ellipsis. Variadic templates were designed by Douglas Gregor and Jaakko Järvi. The standard library has
the variadic template std::tuple.

Remark: There are several attempts to code a type-safe printf in C++, for example by Andrei Alexandrescu (see type-safe printf discussion @stackoverflow).

Boost has worked on the issue quite a while, see on choices to be made in printf.

331

http://stackoverflow.com/questions/17671772/c11-variadic-printf-performance
http://www.boost.org/doc/libs/1_65_1/libs/format/doc/choices.html

Example: Variadic template to sum squares of numbers.

variadic_template.cpp

// Any number of arguments to sum_of_squares()

#include <iostream>

#include <cmath>

using std::cout;

using std::pow;

auto sum_of_squares() {return 0; }// end of recursion

template <typename T,typename ...Ts>

auto sum_of_squares(T first, Ts ... rest)

{

return pow(first,2) + sum_of_squares(rest ...); // recursive

}

int main()

{

cout<<sum_of_squares(1,2)<<"\n";

cout<<sum_of_squares(1,2,3,4,5)<<"\n";

cout<<sum_of_squares(1.1,2.2,3.3)<<"\n";

cout<<sum_of_squares(1,2.1,3.1)<<"\n";

}

For more examples, see https://en.wikipedia.org/wiki/Variadic template. Remarkably, there’s absolutely no run-time overhead:

variadic templates are expanded at compile-time. In contast, in C language variadic functions are resolved at run time.

332

http://en.wikipedia.org/wiki/Variadic_template

20 C++ Standard Library

C++ Standard Library comes with all C++ compiler suites. What, then is the Standard Template Library (STL) many people
talk about? I rise my hands here. I’ve figured out this much: The STL existed before the Standard Library, and parts of it seem
to be now in the Standard Library. People talk about STL and mean the Standard Library and also talk about the Standard
Library when they mean STL. As an end user of the C++ products, I couldn’t care less, and have taken the pragmatic
approach to accept it’s a library that comes with the compiler suite. I call them both as the C++ Standard Library. Period.

On late hours I simply think that
STL means Standard Template Library (official)
STL means STandard Library (inofficial, my own idea to save my boiling brain)

The Standard Library contains also the C Standard Library, so you are able to use some C features as well. But not all of
C, notably C++ programmers avoid naked pointers to the extreme, and they are never really needed in C++. Some parts are
templates (multi-purpose models), such as

• containers are collections of objects
vector, stack, deque, list, map, . . .

• iterators are for going through elements of containers
begin(), end()

vector<> v;

v.end()v.begin()

v.begin() points to the begin of the container v
v.end() points to one step past the end of the container v.

Why one step past the end? It was chosen like that because of cleaner loops:

for(auto it=v.begin();it<v.end()) {...}

333

• algorithms are frequently needed ways to process data
sort, find, min_element, max_element, reverse, . . .

Example: Swap two numbers using std::swap

std_swap.cpp

#include <iostream>

#include <utility>

int main()

{

using namespace std;

double a = 5;

double b = 10;

cout <<"before "<< a<<" "<<b<<endl;

swap(a,b);

cout <<"after "<< a<<" "<<b<<endl;

}

before 5 10

after 10 5

Someone familiar with C might be concerned about what values a and b have after the call to swap. How are the arguments
passed to the function and what comes back?

21 C++ References

I’ll start with the so-called ”lvalue references” - we’ll come to that detail later.
The three basic ways to pass data to functions are:

• Pass by value

334

void dothis(int); // function prototype

...

c=15;

dothis(c); // work with number 15, not with c; cannot change contents of c

• (C++) Pass by reference

void dothat(int&); // function prototype

...

c=15;

dothat(c); // work with c, can change contents of c

• Pass a pointer

void doodd(int *); // function prototype

...

c=15;

doodd(&c); // works with the pointer to c; can change c at will

By looking at just the function call there is no way to tell if the argument is passed-by-value or passed-by-reference! Only the
function prototype (declaration) reveals which it is. In practice you end up guessing whether a function can change the contents
of variable c: dothis(c) doesn’t, but dothat(c) does!

21.1 Why would a reference be safer than a pointer?

Imagine that the memory of a computer is a stack of boxes.
A pointer int ∗c means ”take integer c from upmost box”. Mistakes can happen:

335

• The box may have a wrong number or not an integer but a mouse trap (real number)

• The box can be bottomless (contains a pointer to the box below)

• The box doesn’t exist (points outside the allowed memory space)

A programmer is let to do all this without the compiler ever noticing any bad deeds. Running the program gives odd results. I
once wrote a program that was supposed to do a simple calculation - and it printed ”Full Moon tonight”.

C++ reference to variable c,
int& c

is like a cord or a thin rope tied to the integer c. There is no place for mistake, the end of the cord always has c, because there
is no way to detach the cord and tie it to anything else. In other words,a C++ reference cannot be detached from its variable.

c

int& c

Amuse yourself with these almost relevant examples:

Pass by value (C or C++):
Write the numbers 5 and 10 on a piece of paper, show it to you college and tell him/her to copy the numbers to his/her own
piece of paper in reverse order. Swap failed: your paper still holds 5 and 10, not 10 and 5

Pass by reference (C++):
Write the numbers 5 and 10 on a piece of paper, hand it to you college without letting go of the paper. Tell him/her to swap

336

the numbers on your paper, then pull the piece of paper back. Swap achieved! Robustness: Your college immediately sees if
your hand is empty or there are no numbers on the paper.

Pass by pointer (C or C++):
Write the numbers 5 and 10 on a piece of paper and tell your college the paper is in a specific drawer. Tell him/her to swap the
numbers written on the paper and to put it back to the drawer, Swap achieved! Robustness: your college picks a wrong piece
of paper from the drawer and wonders why you want to swap two telephone numbers.
Remarks:

1. If you have many colleges and/or 10000 numbers, copying them around may take a lot of time and paper.

Prefer passing references, it’s fast and economical.

2. For the swap to function properly, you can’t pass numbers 5 and 10 by value; that is, copies of the values.
Two working ways:

• C++ style: swap is called with references, swap(a,b); (This is ineffective code due to copying)

swap_reference.cpp

void swap(int& a,int& b){

int c;

c=a; a=b; b=c;

}

• C style: swap is called with pointers, swap(&a,&b);

337

swap_pointer.cpp

void swap(int *a,int *b){

int c;

c=*a; *a=*b; *b=c;

}

One benefit of passing by value is that the original value is safe, only a copy is sent out. In C++ you can give the reference
const qualifier, to protect it from changes. Caveat: I’ve heard some libraries ignore this qualifier.

21.1.1 Unsafe references

Alas, a reference is not completely safe. It’s still possible to shoot yourself in the leg.
A dangling reference is one way to (mis)use an address of an object after the object has ceased to exist.

338

Example: Dangling reference

dangling_reference.cpp

// Unsafe code example

// run with valgrind -q a.out

#include <iostream>

int & get_number()

{

int n1 = 100;

int & r_n1 = n1;

return r_n1;

}

int main()

{

int number = get_number();

std::cout<<"number is "<<number<<"\n";

}

n1

r_n1 = int& n1 r_n1

back in main():inside get_number():

Think where the reference r_n1 is referring to. The line

int& r_n1 = n1;

tells r_n1 is a reference to an integer, which is n1. Nothing wrong with that, but n1 is a local variable, so it’s no longer alive
after you exit the function get_number(). After returning to main(), the reference r_n1 points to where n1 used to be! What
makes dangling references perilous, is that sometimes the reference happens to dangle over the right spot.

Example: A dangling reference that the g++ compiler will notice

339

dangling_reference3.cpp

// Unsafe code example

// g++ warns at complile time

#include <iostream>

int & get_number()

{

int n1 = 100;

return n1;

}

int main()

{

int number = get_number();

std::cout<<"number is "<<number<<"\n";

}

You don’t necessarily need a function call to get a dangling reference. Example basic/dangling_reference2.cpp shows
what happens if you store the reference to a vector element and then resize the vector. There is no guarantee the stored reference
is pointing to a valid location any more.

valgrind -q a.out often detects such memory problems.

My own valgrind user advice:

Any message from valgrind -q a.out means your code has a bug.

340

21.2 lvalue and rvalue

In 2010 things changed a lot. As Kornel Kisielewicz @Stackoverflow aptly puts it,

The whole massacre began with the move semantics. Once we have expressions that can be moved and not copied,
suddenly easy to grasp rules demanded distinction between expressions that can be moved, and in which direction.

Move semantics is about moving objects, as opposed by copying them. Forgive me for cutting corners, read the previous post or
c11-tutorial-explaining-the-ever-elusive-lvalues-and-rvalues by Danny Kalev. The question to ask is: can the thing be moved
from one memory location to another, and does it have an identity?
Expressions, program statements that have a value, have long or short lifetimes. Long-living expressions have an identity
(named entities), while short-living expressions die soon and have no identity.

• lvalue is locator value, a name of a memory location.
In double x = 10.0; x is the name of a memory location holding a double, so it’s an lvalue . More technically, an
lvalue is either a non-movable expression or one with identity. Either one that lives long, or one that cannot be moved.

• rvalue is a value in a memory location.
In double x = 10.0; the number 10.0 is an rvalue . More technically, an rvalue is a movable expression or one without
identity. It may be also a temporary object about to die: evaluating x=(a*c)+b the compiler may create a temporary to
hold the result of a*c.

Obviously it doesn’t make sense to try something like 10.0 = x;. lvalue is like a drawer, and rvalue is like a solid object.
You can put a solid object into a drawer, but you can’t put a drawer into a solid object.

341

https://stackoverflow.com/questions/3601602/what-are-rvalues-lvalues-xvalues-glvalues-and-prvalues
http://blog.smartbear.com/development/c11-tutorial-explaining-the-ever-elusive-lvalues-and-rvalues/

21.3 rvalue references and rvalue references

The next question is, how to refer to an lvalue or to an rvalue ? You need rvalue references and rvalue references.

• lvalue reference
Marked with a single ampersand &, for example int& a, same as int &a and int & a. 72

• rvalue reference
Marked with a double ampersand &&, for example int&&. But some &&’s aren’t rvalue references; keep reading.

Why rvalue references? Take a look at the Robin-Hood code on the next page. It has the function rich() that returns a plain
number 500, an rvalue . 73 I overloaded print_ref(), so that you can see what type of expression the argument is,

argument int&

500

argument int&&

500

The latter is an rvalue reference, it’s the type of rich(), which returned

return 500;

72Which one to use, int &a or int& a?. A matter of taste. In int& x, y it would appear as if there’s a type int& that applies to both x and y,
which is not the case. In this case int &x, y looks better. However, it’s confusing to declare mixed types on the same line.

73It’s a bit odd Robin Hood code, because the rich has an inexhaustible amount of money.

342

robin_hood.cpp

// Robin Hood code in C++

//g++ -Wextra -std=c++14 -Wpedantic -g robin_hood.cpp

#include <iostream>

int rich(){

return 500; // "rich gives out 500 gold coins"

}

void print_ref(int &x){

std::cout<<"argument int &\n";

std::cout<<x<<"\n";

}

void print_ref(int &&x){

std::cout<<"argument int && \n";

std::cout<<x<<"\n";

}

int main()

{

int poor = rich();

print_ref(poor);

print_ref(rich());

}

343

21.4 One-liners of lvalue and rvalue references

I recite the excellent examples in what-is-a-rvalue-reference by Varun and let the compiler have it’s say:

344

http://thispointer.com/what-is-a-rvalue-reference/

lvalue_rvalue_reference.cpp

#include <iostream>

int getData(){

return 9;

}

int main(){

int x = 10;

int & lvalueRef = x; // lvalueRef is a lvalue reference

std::cout<<lvalueRef<<"\n"; // output: 10

//int & lvalueRef2 = (x+1); // Error - lvalue Reference Can't point to rvalue

//invalid initialization of non-const reference of type 'int&' from an rvalue of type 'int'

int && rvalueRef = (x+1); // rvalueRef is rvalue reference

std::cout<<rvalueRef<<"\n"; // output: 11

//int & lvalueRef3 = getData(); // Error - lvalue Reference Can't point to rvalue

//invalid initialization of non-const reference of type 'int&' from an rvalue of type 'int'

const int & lvalueRef4 = getData(); // OK but its const

int && rvalueRef5 = getData();

std::cout<<rvalueRef5<<"\n"; // output: 9

}

345

21.5 The strange T&& and the Perfect Forwarding Problem

Let’s walk the road to the T&& notation paved by Scott Meyers and Eli Bendersky.

Task: Write a wrapper function wrapper() that perfectly forwards all arguments to any function f().

In Python it was simple, just pass arguments as (*args, **kwargs). In C++ everything has to be typed, and it’s passing
the types correctly that is the tricky bit. 74 Try a simple wrapper,

// try one

template <typename T1, typename T1, typename T3>

void wrapper(T1 x, T2 y, T3 y){

f(x,y,z);

}

Then you realize that this will always call f by value, so the arguments x,y,z are copied over. This is no good if your function
is f(int& x, int& y, int& z). Clever you are and modify you code,

// try two

template <typename T1, typename T1, typename T3>

void wrapper(T1& x, T2& y, T3& y){

f(x,y,z);

}

However, this won’t work if you call f with rvalues, for example f(1.0,3.0);. The compiler complains about an invalid
initialization of non-const reference from an rvalue. It cannot make a reference required by T1& x that points to number 1.0,
because 1.0 doesn’t provide a memory location to point to.

74C++ is considered to be weakly typed, because in strongly typed languages conversions between different types are forbidden.

346

You could cure the problem by adding a const to an argument. To any argument. At this stage you smell something
burning. You would have to write overloaded wrapper functions for all possible combinations, in this case

wrapper(T1& x, T2& y, T3& z)

wrapper(const T1& x, T2& y, T3& z)

wrapper(T1& x, const T2& y, T3& z)

wrapper(T1& x, T2& y, const T3& z)

wrapper(const T1& x, const T2& y, T3& z)

wrapper(const T1& x, T2& y, const T3& z)

wrapper(T1& x, const T2& y, const T3& z)

wrapper(const T1& x, const T2& y, const T3& z)

This gets impossible with increasing number of arguments, and things only gets worse once you add the possibility of rvalue
references, more qualifiers.

Solution
Introduce std::move and std::forward.

Before getting carried away, Scott Meyers reminds that

std::move moves nothing and std::forward forwards nothing. They do a type cast.

C++ solves the perfect forwarding problem with the type cast std::forward:

template <typename T1, typename T2, typename T3>

void wrapper(T1&& x, T2&& y, T3&& z) {

f(std::forward<T1>(x), std::forward<T2>(y), std::forward<T2>(z));

347

}

But how does std::forward solve the perfect forwarding problem? First, T&& is not always an rvalue reference. There are
cases where one does type deduction. This recycling of && is widely considered unfortunate, but we have to live with it. Scott
Meyers calls T&& an universal reference, some call it a forwarding reference. To make sense out of a thing like &&& one
has a rule:

Reference Collapsing rule: & always wins.
T is T
T& is T&
T&& & is T&
T& && is T&
T&& && is T&&

These rules seem odd, but they work:

wrapper(1.0,int& y,int&& z); // rvalue, reference, rvalue reference

// will call

f(std::forward<double &&>(1.0), std::forward<int& &&>(y), std::forward<int && &&>(z));

// will reference-collapse to

f(double&& 1.0, int& y, int&& z); // rvalue reference, reference, rvalue reference

std::move is a single-minded, Robin-Hood cast:

poor = std::move(rich); //rich becomes an rvalue

// ''movable'', property ready to be stolen.

// std::move does this always.

348

poor = std::move(another_poor); // really *always* , a single-minded cast

Here std::move(another_poor) makes everything in another_poor movable, and poor = ... does the moving.

22 C++ Smart pointers

Sometimes numerical libraries require pointer arguments. C++ has no automatic carnage collection, therefore naked C-style
pointers lead easily to memory leaks. C++11 added smart pointers, pointers wrapped with information about their expected
lifetime.

349

A unique_ptr<T> is a non-copiable pointer to type T object, and there can be only one pointing to that object. The pointer
gets automatically deleted once it’s scope ends, and memory is released.

unique_pointer.cpp

#include <iostream>

#include <memory>

class Resource

{

public:

Resource() { std::cout << "Resource acquired\n"; }

~Resource() { std::cout << "Resource deleted\n"; }

void use() { std::cout<<"Resource use\n"; }

};

void test()

{

// allocate memory from the heap:

auto res = std::make_unique<Resource>(); // One way

// std::unique_ptr<Resource> res{new Resource()}; // Another way

std::cout<<"test using Resourse\n";

res->use();

std::cout<<"about to exit test()\n";

}// smart pointer automatically deleted here

int main()

{

std::cout<<"calling test()\n";

test();

std::cout<<"returned from test()\n";

}

350

If you need to pass a unique_ptr to a function, you need to move it using std::move(), which also gives away the ownership
of the unique_ptr to the function.

unique_pointer_moving.cpp

#include <iostream>

#include <memory>

class Resource

{

public:

Resource() { std::cout << "Resource acquired\n"; }

~Resource() { std::cout << "Resource deleted\n"; }

void use() { std::cout<<"Resource use\n"; }

};

void test2(std::unique_ptr<Resource> res)

{

std::cout<<"test2 using Resourse\n";

res->use();

std::cout<<"about to exit test2()\n";

} // smart pointer automatically deleted here

void test()

{

// allocate memory from the heap:

auto res = std::make_unique<Resource>(); // One way

// std::unique_ptr<Resource> res{new Resource()}; // Another way

std::cout<<"test using Resourse\n";

res->use();

// pass pointer to test2

// test2(res); // error: use of deleted function ... <= there's no copy constructor for unique_ptr

test2(std::move(res));

// smart pointer already deleted in test2

std::cout<<"about to exit test()\n";

}

int main()

{

std::cout<<"calling test()\n";

test();

std::cout<<"returned from test()\n";

}

351

A shared_ptr<T> can be copied, and it keeps a reference count (remember the reference count in Python?) use_count()

of how many copies are around. Once the last copy leaves it’s scope the pointer is deleted and memory is released. A
shared_ptr<T> passed as a function argument (test2()) limits the ways how the function can be called; it also lends the
ownership of the shared_ptr<T> to the function. There’s no point of passing a shared_ptr<T> to a function unless it will
manipulate the smart pointer. The function test2() misuses the shared pointer, instead you can pass a reference as in test3().

shared_pointer.cpp

#include <iostream>

#include <memory>

class Resource

{

public:

int value;

Resource() { std::cout << "Resource acquired\n"; }

~Resource() { std::cout << "Resource deleted\n"; }

void use() { std::cout<<"Resource use; value "<<value<<"\n"; }

};

std::shared_ptr<Resource> test1()

{

// allocate memory from the heap:

// std::shared_ptr<Resource> res(new Resource); // one way

auto res = std::make_shared<Resource>(); // another way

std::cout<<"test1() using Resource\n";

res->use();

res->value = 1;

std::cout<<"about to exit test1()\n";

return res;

}

void test2(std::shared_ptr<Resource> res)

{

std::cout<<"test2() using Resource res\n";

res->value = 2;

res->use();

std::cout<<"about to exit test2()\n";

}

void test3(Resource& res)

{

std::cout<<"test3() using Resource res\n";

res.value = 3;

res.use();

std::cout<<"about to exit test3()\n";

}

int main()

{

std::shared_ptr<Resource> shared_res2;

{

auto shared_res1 = test1();

std::cout<<"returned from test1()\n";

std::cout<<"shared_res1 use_count = "<<shared_res1.use_count()<<"\n";

std::cout<<"copying shared resource\n";

shared_res2 = shared_res1;

std::cout<<"shared_res1 use_count = "<<shared_res1.use_count()<<"\n";

} // pointer shared_res1 is not destroyed, because shared_res2 needs it

{

test2(shared_res2);

std::cout<<"returned from test2()\n";

}

std::cout<<"shared_res2 use_count = "<<shared_res2.use_count()<<"\n";

test3(*shared_res2);

}

A weak_ptr<T> is rarely used. It is like a shared_ptr<T>, except it doesn’t increase the reference count and may therefore
point to a deleted resource. It’s can be passed to a function that can create a shared_ptr<T> from it by locking the resource,

352

thus adding the reference count by one.

23 C++ Standard Library: A closer look

23.1 std::vector container

std::vector containers are flexible and minimize the risks of dynamic memory allocations.
But they are not math vectors.

Example: Create an empty container and push a few elements to it.

353

vector.cpp

// Create empty vector container and push data in

#include <iostream>

#include <vector>

#include <cmath>

using namespace std;

int main()

{

vector<double> x;

for(unsigned i=0;i<6;i++){

x.push_back(pow(i,2)); // push i^2 to vector x

cout<<"i="<<i<<" x="<<x[i];

cout<<" size of x="<<x.size()<<endl;

}

cout<<"final size ="<<x.size()<<"\n";

cout<<"final capacity ="<<x.capacity()<<"\n";

}

final size =6 size of the container increased automatically

final capacity =8 more space reserved than needed, just in case you extend the vector

354

23.1.1 Iterators

Iterators point to elements of a container.

355

Example: Print all elements of a std::vector using iterator

vector2.cpp

// print all but 2 elements of

// a vector container using iterator (it)

#include <iostream>

#include <vector>

#include <cmath>

using namespace std;

int main()

{

vector<double> x;

// push i^2

for(unsigned i=0;i<6;i++){

x.push_back(pow(i,2));

}

// all but the last two elements: iterator

for(auto it=x.begin(); it!=x.end() - 2; it++){

cout<<*it<<' ' ;

}

cout<<endl;

// all elements: range-for loop

for(auto elem:x) cout<<elem<<' ';

cout<<endl;

}

// output:

// 0 1 4 9

// 0 1 4 9 16 25

Same in Python:

if __name__=="__main__":

x = [i**2 for i in range(6)]

print(x[:-2])

print(x)

356

auto is a message to the compiler: ”deduce the type yourself”. Use often.

In the example auto spared you from typing the ugly type

vector<double>:: iterator it; // type of an iterator

One way to fill a std::vector is std::fill; it’s very fast if you need to reset an existing std::vector 75,

std::vector<double> y(5);

std::fill(y.begin(), y.end(), 1.0); // math: y=(1.0,1.0,1.0,1.0,1.0)

std::fill (y.begin()+1,y.end()-2,2.0); // math: y=(1.0,2.0,2.0,1.0,1.0)

To create a std::vector and set values the cleanest ways are

std::vector<double> y(5,1.0); // math: y=(1.0,1.0,1.0,1.0,1.0)

std::vector<double> y{1.0,1.0,1.0,1.0,1.0} // Universal initialization

C++ lets you initialize almost anything with the universal initialization \{\}.
C++ has also a range-for loop:

std::vector<double> y(100);

for(auto & elem:y) {elem=1.0}; // notice the & : use reference to elements!

The loop goes through all elements of y without you worrying about how many there are.

Be careful with the ampersand &:

75Can you do algebra with the length of a std::vector?
x.resize(0) sets the length to zero, so x.size() is 0. OK, but x.size()-1 is 18446744073709551615, not -1 !
Lengths have type unsigned and those can’t store negative numbers.

357

for(auto elem:y) {elem=1.0}; // this does nothing at all!

for(auto elem:y) {cout<< elem<<" ";}; // this works (but doesn't try to change y)

23.1.2 Storing objects into std::vector

Example: std::vector storing objects

vector_of_class_objects.cpp

// g++ -std=c++11 vector_of_class_objects.cpp

#include <iostream>

#include <vector>

#include <cmath>

class WaveFunction{

public:

double energy;

std::vector<double> density;

};

int main()

{

std::vector<WaveFunction> basis; // a vector of WaveFunctions

WaveFunction wf;

for (int i=0;i<10;++i){ // make a 10 wavefunction basis

wf.energy = i*i;

for (int j=0;j<5;++j) wf.density.push_back(sqrt(j)*i);

basis.push_back(wf);

wf.density.clear();// REMEMBER THIS or wf.density keeps growing

}

// output for testing

for (auto wf: basis) { // wf goes through elements of basis

std::cout<<" energy = "<<wf.energy<<"\n";

std::cout<<"density = ";

for (auto den: wf.density) std::cout<<den<<" "; // den goes through a density in wf

std::cout<<"\n";

}

}

358

A std::vector can hold with almost any type of data. Here the container contains object of the self-made typeWaveFunction
(blue boxes), and a number (energy) and a std::vector (density).

density

energy

density

energy

density

energy

density

energy

basis

...

These are exactly the same thing:

class WaveFunction{

public: // class: all is private by default

double energy;

vector<double> density;

};

struct WaveFunction{

double energy; // struct: all is public by default

vector<double> density;

};

359

23.1.3 Sneak peak: overloading operator <<

If you have made up your mind about how you want objects printed, you can overload the << operator.
Example: Clean output of an object using overloaded <<

better_vector_of_class_objects.cpp

// g++ -std=c++11 better_vector_of_class_objects.cpp

#include <iostream>

#include <vector>

#include <cmath>

#include <iomanip>

class WaveFunction{

double energy;

std::vector<double> density;

public:

WaveFunction(double energy_, std::vector<double> density_): energy{energy_},density{density_}{};

friend std::ostream& operator<< (std::ostream& os, const WaveFunction& rhs)

{

os<<std::fixed<<std::setprecision(8);

os<<"energy = "<<std::setw(15)<<rhs.energy<<" density = ";

for (auto den: rhs.density) os <<std::setw(15)<<den<<" ";

os<<"\n";

return os;

}

};

int main()

{

std::vector<WaveFunction> basis; // a vector of WaveFunctions

std::vector<double> dens; // to fill density data

for (int i=0;i<10;++i){ // 10 wavefunction basis (any number is ok)

for(int j=0;j<5;++j) dens.emplace_back(sqrt(j)*i); // 5 density values (any number is ok)

basis.emplace_back(i*i,std::move(dens));

}

// output for testing

}

We’ll come back to this later, just note the line
friend std::ostream& operator<< (std::ostream& os, const WaveFunction& rhs)

360

23.2 Heterogeneous types stored in std::vector

Old C++ coders say std::vector containers can’t hold but one type of data, because C++ is a statically typed language.
People found a way around this limitation by hiding types inside types. This was done in Boost/variant.hpp, and since
C++17 we have std::variant.

Here’s an example from Andy G’s Blog gieseanw@wordpress.com. Define a variable that can hold three types of data:76

std::variant<int, double, std::string> myVariant;

myVariant = 1; // initially it's an integer

and a visitor handler for each of the data types (this is called a visitor pattern),

struct MyVisitor {

void operator()(int& _in){_in += _in;}

void operator()(double& _in){_in += _in;}

void operator()(std::string& _in){_in += _in;}

};

Finally, invoke visitors using std::visit,

std::visit(MyVisitor{}, myVariant);

and you’re done.
Another example of std::variant by Filipek @cppstories.com. Again, a visitor is defined for each type, 77

76The blog shows how to define an easy-to-use heterogeneous container which is faster than the std::vector implementation.
77Interesting applications: state machines, computing roots of a function when there are one, two or none, and more.

361

https://www.boost.org/doc/libs/1_64_0/doc/html/variant.html
https://en.cppreference.com/w/cpp/utility/variant
https://gieseanw.wordpress.com/2017/05/03/a-true-heterogeneous-container-in-c/
https://www.cppstories.com/2018/06/variant/

vector_variant.cpp

#include <iostream>

#include <vector>

#include <variant>

class Triangle{

public:

void Render() { std::cout << "Drawing a triangle!\n"; }

};

class Polygon{

public:

void Render() { std::cout << "Drawing a polygon!\n"; }

};

class Sphere{

public:

void Render() { std::cout << "Drawing a sphere!\n"; }

};

int main(){

std::vector<std::variant<Triangle, Polygon, Sphere>> objects {

Polygon(), Triangle(), Sphere(), Triangle()

};

auto CallRender = [](auto& obj) { obj.Render(); };

for (auto& obj : objects)

std::visit(CallRender, obj);

}

Visitors that do a similar operation are most welcome, since they all collapse to a template.

362

C++ shows it’s verbal talent in explaining the compiler what we want the code to do,

std::any // type that can be anything (656 lines of code in libstdc++)

std::monostate // empty state type for std::variant

std::holds_alternative // test what the currently active type is

I have no idea when and how to use std::any, so I can’t help you there.

363

23.3 Moving, not copying

Moving objects instead of copying them is a big thing in C++. Moving is a Robin Hood operation,

poor=std::move(rich);

pilfers rich from it’s resources and hands them to poor. Way more effective than copying money or gold!
As mentioned earlier, std::move(rich) does not actually move rich, it’s a cast that makes it movable. With std::move

you tell the compiler that now an object has resources that can be robbed. In other words, std::move is for turning lvalues to
rvalues (see section 21.2) so that you can call the move constructor. The move constructor is the ”Robin Hood code”.

A move constructor and a move assignment look like this:

X::X(X&& other); // move constructor

X& X::operator=(X&& other); // move assignment operator

You can be even more dramatic. If objects of a class should never be copied, you can forbid copying by
deleting the copy constructor and the copy assignment:

class NoCopy {

// ...

NoCopy(const NoCopy&) = delete;// forbid copying

NoCopy& operator=(const NoCopy&) = delete;

};

The next lengthy example tries to elucidate situations when an object is copied and when moved. For transparency, the
copy and move constructors as well as the copy and move assignments print out a message, so you can see which one is invoked.

364

Example: Copying and moving

365

move_constructor.cpp

#include <iostream>

#include <vector>

class X{

public:

int count;

std::vector<double> vec;

X() = default ; // constructor

X(int count_, std::vector<double> vec_): count{count_},vec{vec_} {} // constructor

~X() noexcept = default; // destructor

auto operator = (X& rhs) & -> X& {

vec = rhs.vec;

count = rhs.count;

std::cout << "-- copy assignment called --\n";

return *this;

}

X (const X& rhs) : vec(rhs.vec), count(rhs.count) {

std::cout << "-- copy constructor called --\n";

}

auto operator = (X&& rhs) & noexcept -> X& {

vec = std::move(rhs.vec);

count = std::move(rhs.count);

rhs.count = 0; // no way to delete integer

// rhs.vec = {}; // resizes x to 0 length, but done already

std::cout << "-- move assignment called --\n";

return *this;

}

X(X&& rhs) noexcept : vec(std::move(rhs.vec)), count(std::move(rhs.count)) {

std::cout << "-- move constructor called --\n";

}

};

int main() {

X x1{3,{1,2,3}}; // initialize count to 3, vec to (1,2,3)

std::cout<<"line: X x2 = x1;\n";

X x2 = x1;

std::cout<<"line: X x3(x1);\n";

X x3(x1);

std::cout<<"line: X x4 = std::move(x1);\n";

X x4 = std::move(x1);

std::cout<<"line: X x5(std::move(x2));\n";

X x5(std::move(x2));

X y1{99,{100,200,300}}, y2;

std::cout<<"line: y2 = y1;\n";

y2 = y1;

std::cout<<"line: y2 = std::move(y1);\n";

y2 = std::move(y1);

}

$ a.out

line: X x2 = x1;

-- copy constructor called --

line: X x3(x1);

-- copy constructor called --

line: X x4 = std::move(x1);

-- move constructor called --

line: X x5(std::move(x2));

-- move constructor called --

line: y2 = y1;

-- copy assignment called --

line: y2 = std::move(y1);

-- move assignment called --

366

Try adding some tests after the last move assignment:

std::cout<<y2.vec[0]<<std::endl; // OK

std::cout<<y1.vec.size()<<std::endl; // 0, OK

std::cout<<x1.vec.size()<<std::endl; // 0, OK

std::cout<<y1.vec[0]<<std::endl; // Segmentation fault, as expected

std::cout<<x1.vec[0]<<std::endl; // Segmentation fault, as expected

Move assignment has the line rhs.vec = {};, which made y1.vec zero length. We really moved resources.

std::move makes an object movable, but it doesn’t guarantee it will be moved.

std::move sets a move permission, but it’s not forcing anything.

367

23.4 std::valarray and std::array

std::vector is not a mathematical vector, it’s an expandable list. None of the common math vector operations are defined for
std::vector. This led one to introduce to C++ the class std::valarray (not a container!). Recent compilers should produce
as fast code with std::valarray as with std::vector, because they use the very efficient expression template technique.
The closest relative to std::valarray is in the Boost library, std::valarray ≈ boost::ublas::vector. Use std::array if
you know the (maximum) size at compile time.

A speed comparison of a few containers and how to fill them is in file bigarray_speedtest.cpp. Compiled with

$ g++ -Ofast -march=native -mtune=native bigarray_speedtest.cpp

and using N=107. It’s convenient to define a macro,

#define MAXN 10000000

:::

std::array<int,MAXN> bigarray; // FIXED SIZE

data type space reservation setting k:th element timing (s)
raw array new arr[N] arr[k] = k 0.972
std::vector init to size N arr[k] = k 1.32
std::vector init to size 0 push_back(k) 4.97
std::vector init to size 0, reserve(N) push_back(k) 3.18
std::vector init to size 0, reserve(N) emplace_back(k) 3.18
std::valarray init to size N arr[k] = k 3.19
std::array fixed size N arr[k] = k 0.009

The fixed-size std::array was 100 x faster than the fastest dynamically allocated array!
What you loose in flexibility you gain in speed.

368

Be aware, that std::array may be stored in stack. You may need to increase the stacksize, in bash 78

$ ulimit -s unlimited

The std::vector method reserve() can be used with the methods puch_back() and emplace_back(). However, don’t
make space for the std::vector in the constructor and then push_back(), you’re extending the std::vector! This is fine,

std::vector<int> v;

v.reserve(2);

v.push_back(11);

v.push_back(22);

// OK, v is (11,22)

but this isn’t,

std::vector<int> v(2);

v.push_back(11);

v.push_back(22);

// NOT OK, v is (0,0,11,22)

78I had stacksize 8192, way too small! Segmentation Fault was imminent.

369

23.5 Give an alias to a type with using

IMHO the lack of built-in numerical data structures, such as vectors and matrices, prevents C++ to be a perfect language for
numerics. I face a dilemma: How to code vectors and matrices? A few options:

1 Should I stick to std::valarray, std::array, or std::vector and live with the deficiences?
In a small project, that needs to be more portable than numerically less ambitious: Yes.
In a serious numerical project: No.
Go to option 3.

2 Should I write a class for a math vector myself?

NEVER write your own classes for math vectors or matrices.

You may see C++ numerics cources in the web and books telling you how to make a matrix class. Don’t fall to the trap,
you’ll make mistakes, waste time and get a slow program. Sure, these are deceivingly simple tasks at a first glance, but
once you hit the speed bumps you can hear your tailpipe clank to the floor.
Go to option 3.

3 Should I use a ”vector” or ”matrix” from an external (external to C++ standard) library?

YES. But not directly, utilize using

With using (or typedef) you can give a name to your own data structure.
Write the code so that the decision about the data type is in one place, in case you change your mind.

using new_name = existing_type;

370

23.6 Heavier usage of aliases

Let’s assume the namespace lib_one defines vectors and matrices from a library. You can define

namespace my{

namespace lib = lib_one; // namespace alias; library_one provides vector and matrix

using d_data_t = double;

using i_data_t = int;

template<typename T> // template alias

using vector = lib::vector<T>;

template<typename T> // template alias

using matrix = lib::matrix<T>;

using d_vec = vector<d_data_t>;

using d_mat = matrix<d_data_t>;

using i_vec = vector<i_data_t>;

using i_mat = matrix<i_data_t>;

}

and your code uses, for example,

d_vec x;

d_mat m;

i_vec iv;

If you change your mind and want to use long data types and lib_two instead, then just edit two lines,

371

namespace lib = lib_two;

using i_data_t = long;

without touching anything else. Be cautious, lib_one::vector and lib_two::vector may be incompatible.

372

23.7 Stream iterators (read on spare time)

Stream is an object representing an I/O (input/output) channel. Streams are considered one of the best qualities of C++ by
C++ programmers - and one of the worst by C programmers. A stream iterator is something that goes through a stream. 79

Think of the following task: Write a program that reads an arbitrary string of characters from the keyboard. Sounds simple,
but in many programming languages this is very lengthy to do safely. Remember, user may hit any key and and keep on hitting
for a month. Below is a C++ suggestion.

Example: Read characters to a std::vector

streamiter1.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

vector<string> s;

// input from standard input (cin)

copy(istream_iterator<string>(cin), //from

istream_iterator<string>(), //end

back_inserter(s)); //to

// output to standard output (cout)

copy(s.begin(),s.end(), // from

ostream_iterator<string>(cout," ")); // to

cout<<endl;

}

Use the keyboard to give characters and press ctrl-d when you are done. Here std::copy is an algorithm and I’m going to
tell more about algorithms next.

79istream = stream in, ostream= stream out

373

23.8 Algorithms and utilities

The C++ Standard Library has many useful methods, search algorithms, sorting algorithms etc. The list is long, please visit
the pages

www.cplusplus.com/reference/algorithm
www.cplusplus.com/reference/utility

Examples:
If v and w are std::vector containers, and it is an iterator of that container type, then

it = std::max_element(v.begin(),v.end());

returns the iterator it that points to the largest element, the largest element is *it.

std::sort(v.begin(),v.end());

sorts the container

std::swap(v,w);

swaps the contents of containers v and w. C++ has this in the header <utility>.

374

http://www.cplusplus.com/reference/algorithm
http://www.cplusplus.com/reference/utility

23.8.1 About std: min_element, max_element, find, sort, reverse

Example: C++ Standard Library algorithms: minimum, maximum and search of an element

algo_minmax.cpp

// Finding elements from a vector container

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

namespace my{ // utility to print out a vector

template<typename T>

void vector_out(const std::vector<T> v){

for(auto x:v) std::cout<<x<<" ";

std::cout<<"\n";

}

}

int main(){

std::vector<double> v{1.4,1.6,0.2,1.8,0.1,1.5}; // or do many push_back's

std::cout<<"original vector\n";

my::vector_out(v);

std::cout<<"minimum element = "<<*min_element(v.begin(),v.end())<<"\n";

std::cout<<"maximum element = "<<*max_element(v.begin(),v.end())<<"\n";

// find element with some value

auto it = find(v.begin(),v.end(),0.2); // I'd prefer find(v,0.2)

if(it==v.end())

std::cout<<"failed to find value\n";

else {

std::cout<<"found value "<<*it<<"\n";

// reverse some elements

std::cout<<"reverse starting from "<<*it<<"\n";

std::reverse(it,v.end()); // I'd prefer std::reverse(it)

my::vector_out(v);

}

std::cout<<"sorting...\n";

std::sort(v.begin(),v.end());

my::vector_out(v);

}

375

Iterators may look a bit messy, but they are easily hidden from view. Especially, if all you want is the number where the iterator
points at.

Example: C++ Standard Library algorithms: another version of minimum search

easyusemin.cpp

// Finding min element; trying to simplify usage

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

namespace my{

double min_element(const std::vector<double> & v){

// no explicit iterator! We need only *(iterator)

return *(std::min_element(v.begin(),v.end()));

}

}

// calling routine is clean and simple:

int main(){

std::vector<double> v{1.7,1.3,2.8,4.1};

std::cout<<"minimum element = "<<my::min_element(v)<<std::endl;

}

Be cautious when coding specialized versions of C++ Standard Library algorithms. The namespace my protects my own
version of min_element.

376

23.8.2 std::swap is a template

Previously given swap using reference variables is for swapping one type of things only. What if we want to swap two real
numbers or two other type of variables? Terribly boring to write each variable type it’s own version of swap.

Write a template. Actually it’s been done already, std::swap looks like this. Like many standard library codes, this too
were refurnished in C++11. The user sees only the improved performance.

Example: std::swap template in <utility>

swap_template.cpp

#include <utility>

template <typename T> void swap(T& a, T& b)

{

T c(std::move(a)); a=std::move(b); b=std::move(c);

}

template <class T, std::size_t N> void swap(T (&a)[N], T (&b)[N])

{

for (std::size_t i = 0; i<N; ++i) swap(a[i],b[i]);

}

// C++98 version was

//{

// T c(a); a=b; b=c;

//}

You can check that this compiles,

$ g++ -c swap_template.cpp

377

typename T is equivalent to class T, the C++ standard defines this
void swap swap returns nothing; no point in writing result = std::swap(a,b); // nonsense

T c(std::move(a)) create type T object c and move the contents of a to object c
std::move make sure you use the correct move function from the std namespace
std::move(a) fix a to a movable object (one whose contents can be stolen).

What can be swapped with this template:
(C++11): ”Type T shall be move-constructible and move-assignable (or have swap defined for it)”
C++11 introduced move semantics, and replaced copy (T c(a)) for move (T c(std::move(a))).

378

Many C++ Standard Library algorithms are compact and efficient.
Example: C++ Standard Library permutation algorithm

algo_permutations.cpp

// Using C++ Standard Library algorithm next_permutation

//

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

namespace my {

template<typename T>

struct State{

T i;

std::vector<T> v;

State(T ind,std::vector<T> vec) {i=ind; v=std::move(vec);}

void print(){

std::cout<<"state # "<<i<<" (";

for(auto x:v) std::cout<<x<<" ";

std::cout<<")"<<std::endl;

}

};

}

int main () {

std::vector<my::State<int>> states;

std::vector<int> vec={0,1,2,3,4};

std::sort(vec.begin(),vec.end()); // make sure next_permutation starts ok

int i = 1;

do {

states.push_back(my::State(i,vec));

i++;

} while (next_permutation (vec.begin(),vec.end()));

for (auto s:states) s.print();

}

// state # 1 (0 1 2 3 4)

// ...

// state # 120 (4 3 2 1 0)

379

The loop

do {

...

} while(next_permutation (vec.begin(),vec.end())

goes on until the test while (true) changes to while (false).

380

A physics example: Generate all many-body states with a fixed number of spin-1/2 fermions.
Each spin state can hold 0 or 1 fermions (Pauli rule). If you have 4 spin states and 2 fermions, possible states are (0011),(0101),(0110),(1001),(1010),(1100),
making 6 many-body states.

381

Example: Fermion states by permutation

algo_fermion_states.cpp

// Finding fermion basis states using next_permutation

#include <iostream>

#include <vector>

#include <algorithm>

#include <iomanip>

namespace my {

template<typename T>

struct State{

T i;

std::vector<T> v;

State(T ind,std::vector<T> vec) {i=ind; v=std::move(vec);}

void print(){

std::cout<<"state # "<<std::setw(10)<<std::left<<i<<std::left<<" = ";

for(auto x:v) std::cout<<x;

std::cout<<std::endl;

}

};

}

int main () {

const int Nstates=8; // single-particle states

const int N=5; // number of fermions

std::cout<<"All "<<N<<"-fermion states for a system of "<<Nstates<<" single-particle states\n";

std::vector<my::State<int>> states;

std::vector<int> vec(Nstates,0); // 0 occupation by default

for (int i=0; i!=N; ++i) {vec[i]=1;} // occupy single-fermion states

std::sort(vec.begin(),vec.end()); // make sure next_permutation starts OK

int i = 1;

do {

states.push_back(my::State(i,vec));

++i;

} while (next_permutation (vec.begin(),vec.end()));

for (auto s:states) s.print();

}

382

All 5-fermion states for a system of 8 single-particle states

state # 1 = 00011111

state # 2 = 00101111

state # 3 = 00110111

...

state # 56 = 11111000

Electrons can have spin up (↑) or down (↓). For example 110010 could stand for (11)(00)(10) as occupations of up-down pairs,
(↑↓)(00)(↑). Each state has only zeroes and ones, so binary coded states could also be used. The line

std::sort(vec.begin(),vec.end()); // make sure next_permutation starts OK

is a safety precaution to make sure all permutations are found. Starting from an unsorted std::vector, such as 10101011,
wouldn’t permute through all possible states.

383

23.9 Function returning a tuple

I got so used to tuples in Python that I now find it hard to keep from using them.
Example: Function returns a tuple

384

function_returns_tuple.cpp

#include <iostream>

#include <tuple>

#include <type_traits>

template <typename T>

auto f(T x){

auto posneg = (x>0)?" is positive":" is negative"; // ternary

auto isint = (std::is_integral<T>::value)?" and an integer":", but not an integer";

return std::tuple{x,posneg,isint}; // or return std::make_tuple(i,posneg,isint);

}

int main(){

for(int i=-5; i<6; ++i){

auto [a,b,c] = f(i); // C++17 structured bindings

std::cout<<a<<b<<c<<std::endl;

}

double x;

for(int i=-5; i<6; ++i){

x = i*1.234;

auto [a,b,c] = f(x);

std::cout<<a<<b<<c<<std::endl;

}

}

385

C++17 made handling of tuples so much easier, that C++ begins to look like Python! For example,
Example: Tuples since C++17

tuples.cpp

#include <iostream>

#include <tuple>

#include <string>

int main(){

std::tuple<int,float,std::string> mytuple={1,3.1415,"one pie"};

// structured bindings

auto & [a,b,c] = mytuple; // get references to tuple members

std::cout<<a<<" "<<b<<" "<<c<<std::endl;

// std::tie with std::ignore

float j;

std::string k;

std::tie(std::ignore,j,k) = mytuple;

std::cout<<j<<" "<<k<<std::endl;

// same with structured bindings

auto [dummy,a2,a3] = mytuple; // no warning about unused variable

std::cout<<a2<<" "<<a3<<std::endl;

// testing ...

auto [aa,_,cc] = mytuple;

std::cout<<"_="<<_<<std::endl;

}

To my knowledge, C++ committees have not decided how to mark an ignored tuple element in structured bindings. The last
lines demonstrate how using a lone underscore _ as a dummy variable in structured bindings may lead to interesting behaviour;
now _ equals 3.1415.

386

There are several ways to define the output type of a function f():

1. Use decltype

decltype(f(1)) res;

This does not make a function call f(1) at run-time, the type is deduced at compile-time. In the sample code this will
fix res to tuple (int, string, string).

2. Set the return type yourself

std::tuple<int, string, string> res;

3. Use auto with a dummy call to f(),

auto res = f(1);

This makes a function call f(1) at run-time.

4. Define res on the fly,

auto res = f(i);

387

23.10 Header guards and namespace encapsulation

This section demonstrates how to write a function for home-made statistics, with C++ Standard Library algorithms and
without. This is just for demonstration, there are much better statistical library routines than this. Here we push numbers to
a std::vector and compute the statistical mean and standard deviation of the data in the function get_stats().

Let’s start with a header. Headers are for the compiler, with some information to you.

Example: First attempt as a header for get_stats() The preprosessor directives

#ifndef MYHEADER_HPP

#define MYHEADER_HPP

...

#endif

make up a header guard. They make sure this piece of code is not processed more than once.

• Header guards avoid circular inclusions, leading to a ”too many include files” error.

• Header guards lead to shorter compile times.

C++20 added modules, which don’t need anything like this.

To use this header, stored in the file myheader.hpp, put in the beginning of the program the line

#include "myheader.hpp"

This line may well be in many program units, hence the header guard: ifndef stands for ”if not defined”. If MYHEADER_HPP
is not defined, define MYHEADER_HPP and process the rest. The next time the compiler tries to #include "myheader.hpp" , it
already has MYHEADER_HPP set and doesn’t process the file.

A non-standard, but widely supported way to avoid the lengthy guard is to put this to source code use

388

// non-standard header guard IN SOURCE CODE, NOT IN HEADER

#pragma once

// more source code

This is polular, because the naming of macros in \ifndef has to be unique to work properly.
The file suffix \textbf {.hpp} is one way to tell that this is a header file, not to be processed unless include’d. In C one

has the suffix \textbf {.h}, and it will also do in C++. In C++ the common practise is to put to headers only
function declarations.

What if get_stats() is part of a huge pile of code, where another get_stats() happens to exist, with the same type of
arguments? You get an ambiquity error also called name collision. Let’s use namespace encapsulation. Define our
own namespace, where get_stats() lives, so that we can be sure which of the many get_stats() should be invoked.

A remark about style and good habits: refrain from taking the whole std namespace unnecessarily,

using namespace std; // don't do this

namespace mydefs

{

...

}

This is impolite, because if you ever give this header to a college to be used in his/her code, the poor fellow gets the whole std
namespace, wanted or not. This easily leads to to name collisions, if the college was not carefully protecting his/her cute and
short function names, such as get().

Namespace encapsulation saves the day, something like myclasses::vector is clearly not a std::vector.

389

23.11 Formatted output with <iomanip>

Keep the numerical output readable, avoid mixing columns like this,

x y z

1.542234 12.4234 0.1213

13.0 4.234 1.00

In science, the underlying method itself may limit the accuracy of the result, so it’s a bad practice to publish 6 decimals if the
method is reliable only up to 2 decimals.

Typically, you’d want to set the width of the field (say, 10), the output form (say, fixed), and the number of decimals (say,
6):

std::cout<<std::fixed<<std::setprecision(6); // 6 decimals

std::cout<<std::setw(10)<<"x"<<std::setw(10)<<"y"<<std::setw(10)<<"z"<<''\n''; //field width is 10

std::cout<<std::setw(10)<<x<<std::setw(10)<<y<<std::setw(10)<<z<<''\n'';

This is awful, but at least the same formatting works also with writing to a file; it’s a stream just as std::cout.

std::ofstream output("data.out");

output<<std::fixed<<std::setprecision(6);

output<<std::setw(10)<<x<<std::setw(10)<<y<<std::setw(10)<<z<<"\n";

data.out:

1.542234 12.423400 0.121300

13.000000 4.234000 1.000000

390

See numerics/output_formatting.cpp for more examples. Beware, that after formatting some setting are still on (fixed),
while some are immediately forgotten (setw)!
C has the famous printf function, which is quite readable, but not considered a good C++ practise. I suggest that if you are
already good with printf use it. 80

23.12 std::complex: complex numbers and arithmetics

Example: Basic operations with complex numbers

80Pros of a stream object is type safety, the compiler can (always?) tell if a data type cannot be sensibly dealt with, and flexibility, it works the
same way on screen and on file.

391

complex_ex.cpp

#include <iostream>

#include <complex>

int main()

{

std::complex<double> c1,c2;

c1 = std::complex<double>(1.5,2.2);

c2 = std::complex<double>(1.0,3.3);

std::cout<<"c1="<<c1<<"\n";

std::cout<<"c2="<<c2<<"\n";

// real(c2) or c2.real()

std::cout<<"real(c2)="<<real(c2)<<"\n";

std::cout<<"imag(c2)="<<imag(c2)<<"\n";

std::cout<<"c1+c2="<<c1+c2<<"\n";

std::cout<<"c1*c2="<<c1*c2<<"\n";

std::cout<<"conj(c1)="<<conj(c1)<<"\n";

std::cout<<"c1/c2="<<c1/c2<<"\n";

}

In math, the multiplication of complex numbers is

x = a+ i b y = c+ i d

xy = ac− bd+ i(ad+ bc) .

So how does the compiler know that if x and y are type std::complex, then x*y means this operation? It’s called operator
overloading, but let’s first take a look at the simpler function overloading.

392

24 Function Overloading, Optional Arguments and Default Arguments

Function overloading in C++ means you can assign different, but related tasks under one function name. This is
nothing new, in math the exponent of a real number x is exp(x) and the exponent of a complex number c is exp(c). Even
exp(M) of matrix M is under the same name exp().

C-language has no function overloading, only math functions have been overloaded. Designers of C++ have apparently a
different opinion of what’s good practise.

Which function to execute is determined by the argument types and number.
Reason: The compiler must be able to tell which function version to compile.

For example, f(int i), f(double x) and f(int i, int j) can be used for overloading.
Function overloading makes two things possible:

• Optional arguments may or may not be set in the function call.
For example, estimate(x)may do a slightly different calculation than estimate(x,a). No need to call them estimate1(x)

and estimate2(x,a).

• Default arguments: unless given, the argument has its default value.
Imagine the boredom and messy program if you always have to call the function
myfun(x,y,alpha,beta,gamma);

with all five arguments even though you know you in most cases have alpha=1;beta=5;gamma=14.5;. In C++ you can
set these values as defaults, and call the function simply
myfun(x,y);

Important difference:

- Optional arguments are used in the function only if they are present.
Their presence or absence causes different code to be executed

- Default arguments are always used in the function and they must have some values, default or given.

393

Example: Function arguments a and b are optional

function_overload.cpp

// Function integ() can do two different things, depending on arguments

#include <iostream>

double integ(void) {

std::cout << "no args to integ, integrating from 0 to 1"<<"\n";

return (1.0); // just test

}

double integ(double & a,double & b) {

std::cout << "two args to integ, integrating from "<<a<<" to "<<b<<"\n";

return (2.0);// just test

}

int main(){

double a=5,b=10;

integ();

integ(a,b);

}

no args to integ, integrating from 0 to 1

two args to integ, integrating from 5 to 10 Example: Functions second argument is by default 1.0

394

function_overload2.cpp

// Function fun has a default value 1.0 for the second parameter b

#include <iostream>

double fun(double a, double b= 1.0); //IMPORTANT LINE

int main(){

double a=5,b=10;

fun(a);

fun(a,b);

}

double fun(double a,double b) {

if(b==1) {

std::cout <<"a="<< a<<" default case b=1"<<"\n";

}

else {

std::cout <<"a="<< a<<" not default case, b="<<b<<"\n";

}

return (1.0);// just test

}

a=5 default case b=1

a=5 not default case, b=10

Default argument is given a value only in the function declaration.

This can make the default value hard to find! 81

81Technically, it’s possible to set default values in function definition, but I strongly advice you not to. Your code will not be.

395

25 Operator overloading

In section 23.12 we learned, that the complex number multiplication is done correctly by the * operator. The way this was
achieved is operator overloading: an operator can be told to do a slightly different operation depending on the data type.

Operator overloading can greatly improve code readability

Operator overloading is something you don’t necessarily have to learn yourself, but you will appreciate it if someone has
done a good job overloading operators. As an example, without overloading, adding two complex numbers c1 and c2 would
read something like this:

c3 = add(c1,c2);

With overloaded + operation it reads

c3 = c1 + c2;

The compiler does change the + to a function call, but it’s out of sight. The code is readable and just like math.

If you overload an operator, make sure it works as expected

396

This is related to

The law of least astonishment : The program should behave in a way that least astonishes the user. 82

Here is a story of a code that didn’t obey that law:

One day I was surfing the net to find examples on how operators can be overloaded. I came across one that overloaded
the + operator for complex numbers. Upon testing, I found that the sum c3 = c1 + c2 really is computed correctly.
I thought the implementation was ok and used it in my code. Then I was astonished to get wrong results! No, not
because c3 was computed wrong, no-hou. It was because I didn’t come to think that the operation c3 = c1 + c2

was changing also the value of c1! It did, and in the code that followed c1 had a wrong value.

A classic piece of bad code is this attempt to use a macro for squaring:

// BAD CODE, *Never* use #define, this is just for educational purposes

#define SQUARE(x) ((x)*(x))

int a=2;

int b=SQUARE(a++); // you would think this squares 2 and *then* increments it by one

// No. The result is (2)*(3)=6.

There are some rules and limitations to operator overloading:

• Think of operators as functions with one or two arguments, called unary and binary operators, respectively. If your
operation needs two arguments, take one existing binary operator and overload that.

• You can’t invent new operators
(”my_clever_new_operator” is no good)
Only some of the existing ones can be overloaded:

82Steve Oualline, How Not To Program in C++.

397

+ - * / % ^ & | ~ !

= < > += -= *= /= %= ^= &=

|= << >> <<= >>= == != <= >= &&

|| ++ -- , -> [] () new delete

• The order of execution prevails (∗ is executed before +)

You may find tempting to overload an operator to compute powers, because the math form xy and the function call pow(x,y)
look so very different. Resist the temptation and use pow.

fortran operator overloading
In C++ you can’t invent your own operators. In fortran you can overload existing ones if you apply it to your own data type, but if you apply it to an existing data type you
must invent a new operator! Working on 2D tables double A(:,:),B(:,:), where the data type exists, you must invent an operator, such as .x. :

! fortran

interface operator(.x.)

module procedure multMatrix

end interface operator(.x.)

...

function multMatrix(lhs,rhs) result(res)

and use it as D=A.x.B.x.C. It’s also simple to create you own matrix type and overload * ,

! fortran

type matrix

double, pointer:: data(:,:)

end type Matrix

interface operator(*)

module procedure multMatrix

end interface operator(*)

...

function multMatrix(lhs,rhs) result(res)

and write D=A*B*C. but then you have to dig the data from the objects (in fortran it’s percent sign, as in A\%data).

398

25.1 Overloading << to print class objects

Example: Operator << overloaded to print class objects

399

myclass_overload.cpp

// How to overload << to print a self-made class object

#include <iostream>

#include <vector>

#include <iterator>

#include <iomanip>

#include <fstream>

class MyClass

{

double a,b;

std::vector<double> v;

public:

// universal initialization

MyClass(double a_,double b_,std::vector<double> v_): a{a_},b{b_},v{v_}{}

// overload << for MyClass objects; make << a friend to grant access toprivate data

friend std::ostream& operator <<(std::ostream& , const MyClass&);

};

std::ostream& operator<<(std::ostream & os, const MyClass& obj)

{

using namespace std;

os<<fixed<<setprecision(8); // some I/O manipulation

os<<"a="<<obj.a<<" b="<<obj.b<<endl;

os<<"v=";

for(auto ele:obj.v) os<<ele<<" ";

return os;

}

int main()

{

using namespace std;

MyClass obj{2.2,3.1,{1.0,2.0,3.0}}; // universal initialization

cout<<obj<<endl; // screen output uses overloaded <<

ofstream out("MyClass.out");

out<<obj<<endl; // file output uses overloaded <<

}

This overloaded operator << can also write to a file

Without overloading cout<<testclass cannot work, because there is no standard way to print the contents of a vector

400

container. Overloading << is lengthy, but once done you have a clean output of objects of a self-made class without any explicit
calls to an output function in your main program. This may sound a small achievement, but in numerics you learn to appreciate
clean formulas. Assume you have a matrix A, vectors a, b and c, and hte job is to compute c = Ab+ a. With overloading, this
will at best look likes

c=A*b+a;

which is easier to decipher than a nested function call,

c=vec_add(matrix_multiply(A,b),a);

Glad you asked! The overloaded operator << is compiled with a certain logic.
Operation cout<<obj for MyClass obj means:

• Compiler finds what class the object cout belongs (that’ll be ostream)

• Compiler finds the method << from the class ostream and prepares to call it with arguments (cout,obj). This translates
to something not completely unlike (ostream.<<)(cout,obj)

• Compiler goes through the methods (ostream.<<) to find a function with arguments (ostream&, MyClass&) or one
without the ampersand &. It can find one, we just wrote such a method :

std::ostream& operator<<(std::ostream &, const MyClass&)

The friend attribute gives << grants to access the private data members of obj (for printing).

401

26 C++ Standard Library: more algorithms

26.1 std::for_each

The algorithm std::for_each performs a given operation to all elements. As arguments you give the beginning, the end and
what to do.

Example: std::for_each and printing (some) elements of a std::vector

vector_print_foreach.cpp

#include <iostream>

#include <vector>

#include <algorithm>

void doubleout(double y) { std::cout << " " << y; }

int main () {

std::vector<double> x{1.1,2.2,3.3};

std::cout << "x vector: \n";

// for_each (x.begin(), x.end(), doubleout);

std::for_each (x.begin(), x.begin()+2, doubleout);

std::cout<<"\n";

}

This applies doubleout() to all elements. In general, the applied function can be anything, as long it’s declared anything(double x),
i.e., it must eat doubles.

402

26.2 When to use std::for_each ?

Now you may wonder what more std::for_each has to offer than the range-for loops. After all, you can print all elements of
a container more neatly with a range-for loop:

Example: Range-for loop and printing all elements of a std::vector

vector_print_range_for.cpp

#include <iostream>

#include <vector>

using namespace std;

void doubleout(double y) { cout << " " << y; }

int main () {

vector<double> x{1.1,2.2,3.3};

cout << "x vector: \n";

for(auto elem:x){

doubleout(elem);

}

cout<<endl;

}

This is just as good as the std::for_each example, and compiles faster!
This is where for_each shines:

• Access only part of the elements

for_each(x.begin(),x.begin()+2,doubleout()); // output two values from the beginning

• Access all elements or some elements and use anything a class can contain

Example: std::for_each can do things range-for loops can’t

403

for_each_limited.sum.cpp

#include <iostream>

#include <vector>

#include <algorithm>

struct LimitedSum {

void operator()(int i) { if (i > 1) sum += i;}

int sum{0};

};

int main() {

std::vector<int> x{1,2,3,4};

LimitedSum lim = std::for_each(x.begin(), x.end(), LimitedSum());

std::cout << "Limited sum = " << lim.sum << "\n";

}

Notice how we access the member of the class LimitedSum after a call to std::for_each: The return value of for_each
is the very same class object that the function object in the argument is. Function objects are discussed more in chapter
27.3.

Without storing the return value we had no access to the data member sum. See the details on the next page.

26.3 std::for_each in detail

One way std::for_each can be implemented is this:

404

foreach_template.cpp

// std::for_each works essentially like this

#include <utility>

template<class Iter, class Func>

Func for_each(Iter first, Iter last, Func f)

{

while (first!=last) {

f (*first);

++first;

}

return std::move(f);

}

The third argument f can be a class - as long as f(*first) is defined! This hints that the name of a class can sometimes
be used the same way as a function; they are called function objects.

for_each argument third is class Func f, and the return value is the same f

The ”pass-by-value feature”
Notice also how the third argument is passed by value, as class Func. This means the argument object Func has a one-way
ticket, it does not return as an argument. Instead, the function gives it out as a return value. So in as argument, out as a
return value. Example: If you send in a function object and change something in that object, you have to use the return value
object. The example numerics/foreach_functor2.cpp shows the principle, it computes the cosines of elements (done by the
function object) and collect their sum as a data member in the object.

Parallel for_each
The gcc has the file .../parallel/for_each.h, which gives away that for_each can be parallelized: All elements are pushed
separately though the same function, so why not do it in parallel.

The page Draft of Technical Specifaction tells just how draft the parallel part was in 2015:

405

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4407.html

This kind of put me off and I had to go for coffee. I’m really thankful that things have improved since! We’ll return to
parallel C++ later. Promise.

26.4 The std::generate algorithm

One way to generate values to a container.

Example: Fill a std::vector with random numbers

406

generate_random_vector.cpp

#include <iostream>

#include <algorithm>

#include <vector>

double double_random() {

// poor random numbers 0...1

return rand()*1.0/RAND_MAX; // avoid int/int !

}

int main() {

std::vector<double> v(20);

// fill vector with random numbers

std::generate(v.begin(), v.end(), double_random);

// output

for(unsigned i=0; i<v.size(); ++i){

std::cout<<i<<" "<<v[i]<<"\n";

}

}

The next chapter takes a look at why generate may be dangerous for random number generation.

26.5 C++ Standard Library algorithms - take care of copies

As the previous example showed, std::generate is a nice way to fill a container with random numbers. There is a potential
risk, however. The functioning of std::generate is equivalent to this:

template<class ForwardIt, class Generator>

void generate(ForwardIt first, ForwardIt last, Generator g){

407

while (first != last) {

*first++ = g();

}

}

The third argument is Generator gen, and Generator is a class. The generator is passed by value, so a copy of g is
used. The compiler creates a copy of g using the copy constructor of the class Generator.

std::generate may copy the third argument. std::for_each may copy of the third argument.

⇒ The random number generator is copied, too.
Why not copy a random number generator (rng)? A rng is just another program. Given a seed, it can produce a nearly

random number sequence. The sequence depends only on the seed, the algorithm is deterministic and the same seed gives
exactly the same number sequence. That’s why it’s often called a pseudo random number generator. If you copy the rng, you
have two identical ”number mills”. If you compare the two number sequences they produce, you find that within each sequence
the numbers are (almost) random, but the numbers in the two sequences are badly correlated. Turning the crank of two similar
mills in a simulation code can give you exciting, but wrong, results. 83

Every generator, that is not giving a constant output, must have a state. In other words, a generator that can give non-
constant output has to remember where it is. A clock that cannot keep track of time is a stopped clock. Copying a stateful
generator has to be done with care.

26.6 C++ Standard Library algorithms - stateful objects and std::ref

Algorithms std::for_each() and std::generate() are not useless in context of stateful objects. There is a simple remedy to

the copy problem: For stateful objects, use a reference wrapper

83Ah. why not give the generator a new seed and get a new random sequence, different from the other? That way you would have several number
mills with different seeds. Bad idea. The rng algorithms have been tested to produce a number sequence random only in relation to numbers within
the same sequence. The basic problem is that the seeds that determine the sequences are not random. Ok, why not run one mill with a ”mother
seed” to give you seeds for many rng’s? That too, has not been tested to give sufficiently random results. Algorithmic generation of (pseudo) random
numbers is a tricky thing.

408

std::vector v(100);

std::generate (v.begin(), v.end(), std::ref(gen)); // gen is stateful object

std::ref is a helper function to generate a std::reference wrapper, meaning (see std::ref or std::reference_wrapper)
std::ref(10) is std::reference_wrapper<int>

Example: Fill a std::vector with unique id numbers from an id generator.

409

http://en.cppreference.com/w/cpp/utility/functional/ref
http://en.cppreference.com/w/cpp/utility/functional/reference_wrapper

generate_id_vector.cpp

#include <iostream>

#include <algorithm>

#include <functional>

#include <vector>

class IdGen{

int id; // object's state

public:

IdGen(): id(0) {std::cout<<"constructed an IdGen\n";}; // constructor

int operator()(void) {return(id++);} // functor

}idgen;

int main() {

std::vector<int> v(20),w(20);

std::generate(v.begin(), v.end(), std::ref(idgen)); // try these *without* std::ref

std::generate(w.begin(), w.end(), std::ref(idgen));

std::cout<<"v = \n";

for(auto x:v) std::cout<<x<<" ";

std::cout<<"\n";

std::cout<<"w = \n";

for(auto x:w) std::cout<<x<<" ";

std::cout<<"\n";

}

27 A few things that may speed up your code

You may be interested to check out Wiki: C++ Performance improving features. If you are a good programmer, find out
what ”Move Semantics” and ”Perfect Forwarding” mean in C++, and dive into the pool of ”Smart Pointers”. Read books and

410

http://en.wikibooks.org/wiki/Optimizing_C++/Writing_efficient_code/Performance_improving_features

postings by Scott Meyers!

27.1 noexcept: no-throw quarantee

Recommendation: Use frequently in numerical code
If your function never throws an exception, the keyword noexcept may let the compiler to optimize your code more. 84 If it

does throw, your code will terminate - Ha, you lied! Still, noexcept is one of the very latest features of C++, so don’t believe
just any blog posts, just give it a try. Usage:

void myfunction() noexcept

{

//...

}

27.2 constexpr: compile-time constant expressions

Recommendation: Use frequently in numerical code
Not quaranteed to give any speedup, but an interesting concept. Computation of factorials recursively can be traditionally

done like this:

// Common way to compute a factorial

int factorial (const int n) {

int fact = 1 ;

if (n <= 1)

return 1 ;

else

84We return to throw-catch in chapter 33.

411

http://www.aristeia.com

fact = n*factorial (n - 1) ; // recursion

return fact ;

}

C++ is able to perform tasks during compilation, coded as template metaprogramming or with constexpr.

long int constexpr factorial (int n)

{

return n > 0 ? n * factorial(n - 1) : 1; // one return statement is allowed

}

int main()

{

constexpr long int fact13=factorial(13); // 13! is computed in compile time

...

}

If you look at the assembly code after compilation (g++ -S code.cpp and look at code.s) you see that indeed fact13 is set
equal to 6227020800.

The constexpr qualifier tells the compiler, that the expression can be be evaluated at compile time.

Evaluation of numerical constants defined with the const qualifier may be deferred to run-time. One way to see the difference
is to add a std::cout<<... in the constexpr function. If the result is stored to a const, the code will compile, but if the result
is stored to a constexpr the code won’t compile and gives error: call to non-constexpr function std::basic_ostream.

Remark: The const qualifier means that, once initialized, the value cannot be changed. constexpr is more than const, it’s a constant expression. Functions
declared constexpr can compute the allocator template parameter of e.g. std::list<>
(see stackoverflow:difference-between-constexpr-and-const).

If you know C++ metaprogramming and Haskell, you might be interested to read What Does Haskell Have to Do with C++?

The factorial can be computed with template metaprogramming - just for demonstrative purposes:

412

http://stackoverflow.com/questions/14116003/difference-between-constexpr-and-const
http://bartoszmilewski.com/2009/10/21/what-does-haskell-have-to-do-with-c/

factorial_meta.cpp

// Template metaprogram

#include <iostream> // just for testing

template<int N>

struct Factorial {

static const long value = N * Factorial<N-1>::value;

};

template<>

struct Factorial<1> {

static const long value =1;

};

int main()

{

const long fact13 = Factorial<13>::value;

std::cout<<fact13<<std::endl;

}

This is as simple as template metaprograms get. The key is to follow how templates cause instantiation of other templates:

1. The number 13 is fed to Factorial as a template argument

2. The compiler instantiates the template Factorial<13>

3. Factorial<13> tells to instantiate the template Factorial<12>, which tells to instantiate Factorial<11> and so on.

4. Finally, Factorial<1> is instantiated, and the compiler notices that there is a template specialization corresponding
to argument <1>: the recursive instantiation ends and the value is set to 1.

Compilers can’t handle very deep recursive instantiation, and the data type long can’t hold large factorials anyhow.85

85long is the same as long int. There’s also long long.

413

27.3 Function objects (functors)

Recommendation: Use frequently in numerical code
Function objects, or functors for short, are popular in numerics. You can define a function in a class that is not a

method (member function). This function is called when the class name is used as a function name.
Example: A function object to compute sin(x), cos(x) and tan(x)

functor.cpp

// Function object - functor

#include <iostream>

#include <cmath>

#include <functional>

class TrigFuns{

public:

void operator()(double x) {

std::cout<<"x="<<x<<std::endl;

std::cout<<"sin(x) cos(x) tan(x)\n";

std::cout<<sin(x)<<" "<<cos(x)<<" "<<tan(x)<<std::endl;

}

};

int main()

{

TrigFuns trig;

trig(20.0);

std::invoke(TrigFuns(),10.0);

}

Here trig is an object, but used as if it were a function - hence it’s a function object. I used the std::invoke (see 27.5)
to execute the ”bare” function object.

414

Why use a function object? Why not an ordinary function?

1) Function objects are not passed as pointers, so the compiler can easily inline them (insert to its place). It’s simple to
wrap the function in a class and make it a function object,

functor_to_function.cpp

#include <iostream>

#include <cmath>

// Functor:

class Func{

public:

double operator()(double x) { return sin(x);}

};

// free function:

void apply(Func g,double x) {std::cout<<g(x)<<std::endl;}

int main()

{

Func f;

apply(f,10.0);

}

2) A class can contain data members, such as counters, accessible only to class methods. A function object can easily perform
complicated tasks. For example, a function object can compute the cosine of all input and, simultaneously, compute the
sum of these cosines - this is done in numerics/forarch_functor2.cpp.

415

Example: A function object used with std::for_each

foreach_functor.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <cmath>

class TakeCos{

public:

void operator()(double& x){ x=cos(x); } // function object

};

int main () {

std::vector<double> x{1.1,2.2,3.3};

std::cout << "vector x : ";

for(auto e:x) std::cout<<e<<" ";

std::cout<<"\n";

for_each(x.begin(), x.end(), TakeCos());

std::cout << "vector cos(x) : ";

for(auto e:x) std::cout<<e<<" ";

std::cout<<"\n";

}

If the task is this simple, or it’s supposedly used only here, it’s more convenient to use a lambda, introduced later in chapter
35.

416

27.4 Five ways to pass a function to a function

Passing a a function to a function is a deceivingly innocent task. In Python functions are just like any other objects and you
can kick them around as you wish. In C++ things are lot more complicated. The goals are:

The compiler should be able to optimize as much as possible
The code should not be too verbose; less is better
Preferably avoid naked pointers

Let’s first consider what callable objects - things that can be used as functions - we have:

• Functions and pointers to functions

• Objects created by std::bind (section 28.1)

• Lambdas (section 35)

• Function objects (classes that overload the function call operator (), section 27.3)

I give a few ways and comment on each. Examples of each style is in the file numerics/function_to_function_speed_test.cpp.

1) Pass the function as a function pointer:

double integrate(double (*f) (double), double a, double b){

// integrate function f(x) from a to b

}

// usage:

res = integrate(f,1.0,2.0);

Function pointers have been around quite a while, but they are nevertheless efficient. The run-time overhead is
very small, but the applicability is limited; obviously you can’t pass all callable objects as a pointer. You can pass a
non-capturing lambda thusly:

417

auto f = [](double x) {return x*2;}; // lambda with the name f, captures nothing

double (*ptr)(double) = f; // ptr points to the lambda

// ptr(x) is the same as f(x)

but you can’t get a pointer to a capturing lambda,

int par = 1.0;

auto f = [par](double x) {return par*x*2;}; // lambda with the name f, captures par

double (*ptr)(double) = f;

// gcc gives an error:

// error: cannot convert

// 'main()::<lambda(double)>'to 'double (*)(double)' in initialization

86

2) Pass the function using the class template std::function

Class template std::function is a general-purpose polymorphic function wrapper.

Recommendation: use std::function only if your function is determined at run-time

double integrate(const std::function<double(double)> &f, double a, double b){

// integrate function f(x) from a to b

:::

}

86There exists code that converts capturing lambdas to function pointers, for example Viorel @wordpress.com.

418

https://deviorel.wordpress.com/2015/01/27/obtaining-function-pointers-from-lambdas-in-c/

// usage:

res = integrate(f,1.0,2.0);

If the function has been declared earlier, you can let the compiler deduce the types (now double(double))

double integrate(const std::function<decltype(f)> &f, double a, double b)

std::function is a general-purpose function wrapper with a significant run-time overhead and it may do dynamical
allocation. It can be a bit slow, but it’s omniponent. It can take also member function pointers.

3) Pass the function using a function template.

Recommended method:
Use a function template if your function is known at compile-time.

template <typename T>

double integrate (T&& f, double a, double b) {

::: // use f() as usual

}

// usage:

integrate(f, 1.0, 2.0);

Recent compilers can inline this if it’s profitable, and any callable object can be passed without any overhead.
The generated code is very fast, because the compiler knows the passed function at compile-time.

It also works with lambdas, for example

419

integrate([](double x){return 1.0/(1.0+x);} , 0.0, 10.0);

also with a capturing lambda,

double p=1.0;

integrate([p](double x){return p/(p+x);} , 0.0, 10.0);

4) Pass the function as a template parameter.
To my eye the code looks strange, but, nevertheless, it’s valid C++:

template<double f(double)>

double integrate(double a, double b){

::: // use f() as usual

}

// usage:

integrate<f>(1.0, 2.0);

5) Pass the function using a function_view, function_ref or ”an impossibly fast C++ delegate”.

There are auxiliary C++ codes that try to provide a generic, callable object view. The point is that std::function owns
the callable, meaning it has to make a copy, so a code that don’t own the callable should be more efficient.

The basic idea has been re-invented and coded several times over. There is one in Yakk @Stackoverflow, in LLVM compile
infrastructure project @github, and in The impossibly fast C++ delegates by Sergey Ryazanov and fast delegates by Don
Clugston.

One implementation of a function view is by Vittorio Romeo. However, this is not without flaws (it may view an already
destroyed temporary), and Implementing function view is harder than you might think by Jonathan implements a safer
code under the name function_ref.

420

http://stackoverflow.com/a/39087660/598696
https://github.com/llvm-mirror/llvm/blob/master/include/llvm/ADT/STLExtras.h#L80
https://github.com/llvm-mirror/llvm/blob/master/include/llvm/ADT/STLExtras.h#L80
https://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates
https://github.com/dreamcat4/FastDelegate
https://github.com/dreamcat4/FastDelegate
https://vittorioromeo.info/index/blog/passing_functions_to_functions.html
http://foonathan.net/blog/2017/01/20/function-ref-implementation.html

27.5 C++17 calls with std::invoke

Probably std::invoke won’t speed up you code, but it facilitates coding. It provides a coherent way to call member functions,
lambdas, function objects etc. The time-honored way to call a function object is

struct PrintNum {

void operator()(int i) const {

std::cout << i << '\n';

}

pn = PrintNum();

pn(5);

// PrintNum(5); // error, no matching function for call to PrintNum::PrintNum(int)

With std::invoke, there is no need to create a PrintNum object,

struct PrintNum {

void operator()(int i) const {

std::cout << i << '\n';

}

std::invoke(PrintNum(),5);

You may wonder: ”Why do we need std::invoke, we can call these callables without it?”. True, but with std::invoke you
don’t have to know what kind of callable comes in. You can std::invoke and it will be called. Especially calling a member
function is tricky.

You may also wonder: ”Are std::function and std::invoke related?”. The C++ reference has examples of both, I just
put them to the same code to make comparison easier; see std_invoke.cpp; it’s too long to fit here.

421

27.6 Cache data

Don’t recompute the same data over and over again. Use cached values. This memoization became familiar in the Python
part of these lecture notes, where it was implemented as a decorator. C++ has no decorators (at least, not yet), but surely
memoization is possible. There is no standard way, but universal memoization is possible; see for example here and here.

27.7 Use emplace_back() instead of push_back()

Recommendation: Use always if available
The difference is that

• push_back() will contruct the container element someplace else and move it to the end of std::vector

• emplace_back() will contruct the container element in-situ at the end of the std::vector

The extra moving done by push_back() takes longer, so the latter simply has to be faster. The difference used to be larger,
but compilers evolve: In 2017 the following test run gave timings push_back():151 ms vs. emplace_back():134 ms. Nothing
spectacular in this case. 87

It’s important that emplace_back() can forward parameters to contructor! You don’t have to construct the value of
the std::vector element, you just tell how it should be made.

Notice how one aliases std:vector,

template <typename T>

using vec = std::vector<T>;

87In an older version I recycled the same container v after calling v.clear(): Not a fair comparison.

422

http://cpptruths.blogspot.fi/2012/01/general-purpose-automatic-memoization.html
http://www.bigoh.co.uk/c++/2016/02/06/memoization.html

This is called templated alias, works for templates like std::vector.
Example: push_back() vs. emplace_back() speed test

emplace_vector.cpp

#include <iostream>

#include <cmath>

#include <vector>

#include <chrono>

// templated alias to vector<>

template <typename T>

using vec = std::vector<T>;

struct MyThing{

int idat;

vec<double> x;

MyThing(int idat_, vec<double> x_) noexcept : idat{idat_},x{x_}{}

};

int main(){

using clock = std::chrono::steady_clock;

using std::chrono::milliseconds, std::chrono::duration_cast;

const int N=1000000;

auto t0 = clock::now();

std::vector<MyThing> v;

for (auto i=0;i<N;++i){

v.push_back(MyThing(i,vec<double>{1.0,2.0,3.0,4.0,5.0,6.0}));

}

auto t1 = clock::now();

auto d = duration_cast<milliseconds>(t1-t0);

std::cout <<"vector push_back took: "<<d.count() << " ms\n";

std::vector<MyThing> w;

t0 = clock::now();

for (auto i=0;i<N;++i){

w.emplace_back(i,vec<double>{1.0,2.0,3.0,4.0,5.0,6.0});

}

t1 = clock::now();

d = duration_cast<milliseconds>(t1-t0);

std::cout <<"vector emplace_back took: "<<d.count() << " ms\n";

}

423

Example: emplace_back() can construct with parameters.

emplace_parameter_arguments.cpp

//

// emplace_back with parameter arguments

//

#include <iostream>

#include <cmath>

#include <vector>

struct MyClass{

double value;

MyClass(const double & par,double phi) noexcept : value{par*sin(phi)} {}

};

int main(){

const int N=1000000;

const double par=3.866;

std::vector<MyClass> v;

for (auto i=0;i<N;++i){

v.emplace_back(par,i*M_PI/N); // forward parameters to constructor

}

std::cout<<"first 10 values:\n";

for (auto it=v.begin();it<v.begin()+10;++it) std::cout<<(*it).value<<" ";

std::cout<<"\n";

}

424

27.8 Prefer the methods of containers over generic algorithms

Container-specific algorithms can take advantage of the container properties. Sometimes generic algorithms are not available at
all. For example, the list container has no random access iterator, so std::sort won’t work. Instead, there is a sort method
in list:

include <iostream>

include <list>

int main(){

std::list<int> mylist={1,5,3,2,6,4} ;

mylist.sort() ; // calls the sort member function

for (auto el: mylist) {cout<<el<<endl;}

}

27.9 Expression templates (read on spare time)

This chapter gives you an idea how complicated it is to master C++ and why I never will.

The take-home message is: use good math libraries.

The basic idea behind expression templates is to use operator overloading to build parse trees

Expression templates were used by Todd Veldhuizen in his matrix library Blitz++ in mid 90’s, ever since applied in practically
all numerical C++ libraries (see Todd Veldhuizen: ”Techniques for Scientific C++”). 88 Early expression templates were only
able to cure one bad C++ side effect, namely that one should not create temporaries in every corner. 89 But this

88Blitz++ still works behind scenes: Last time I looked, SciPy (Scientific Python) module used parts of the Blitz++ library.
89Valarray tries to avoid intermediates (temporaries) using ”proxy” objects. Most libraries prefer the expression template technique due to its

generality.

425

only taught C++ codes to behave the way any reasonable code should. Since then we have learned quite a bit and realized that
avoiding temporaries is not the only essence in speed.

What’s this ”avoid temporaries”-fuss all about? C++ has this wonderful thing called operator overloading. The problem
is that if you apply is straightforwardly, the compiler easily creates temporaries. Consider how the addition operator can be
translated to function calls:

D = A+B+C means add(A,B)+C, so set temporary M=add(A,B), finally set D = add(M,C)

If A,B,C and D fill the fast cache memory, then the intermediate result M ”drops” something out of cache to slow RAM - 10x
slower or more. Another example is adding three vectors, but using only one component,

D[0] = (A+B+C)[0];

You can easily expand this the most effective way,

D[0] = A[0]+B[0]+C[0];

but if you’re not careful, the compiler adds up the whole million elements to make A+B+C, puts it to D and only then looks for
D[0]!
Continue reading if you the previous discussion didn’t drop out of your cache.
Templates can help to avoid temporaries. If a compiler meets a line of code it can’t immediately recognize, it starts looking
for a suitable template (”model”). Finding one, it instantiates the template, i.e. brings it alive. This template can itself
instantiate other templates and so on. Apart from instantiating another template, a template can instantiate another copy
of itself (recursive template). This recursion is in the heart of many expression templates. For identification, templates have
template parameters, which tell exactly what kind of model to instantiate: 90

90Excuse me for mixing template parameters and template arguments. I guess the former is a placeholder in the template definion and the latter
is what’s put there in a certain instantiation? I honestly don’t know any better.

426

template <parameters>

blaablaa(){...}

Letting templates instantiate new templates lets one express the addition of objects as a tree:

+

+

A B

C

Let A,B,C,D be class Array objects. Then the tree could be

Array A, B, C, D;

D = A + B + C;

first + should translate as expression X<Array,plus,Array>() + C;

second + should translate as expression X<X<Array,plus,Array>,plus,Array>();

Here X is a vertex for objects ”left” and ”right” the operator ”plus” in between. The code advanced/recursive_template.cpp
shows how such a tree structure X<X<Array,plus,Array>,plus,Array> is created. The example advanced/expression_template.cpp
computes the sum of elements in a std::vector using expression templates.

Expression templates can delay the evaluation until the ”=” sign is reached (lazy evaluation)

The compiler goes through the whole tree at compilation time, instantiating vertices X, as many as needed. Reaching the
end it knows exactly what is needed (such as only D[0]).

Operations should return expressions, not results.

427

Expressions are something that can be further manipulated during compilation.
Compiling the code with a recursive template essentially generates changes to the code, or ”the code changes itself”. This is

the essence of template metaprogramming: templates can generate new code during program compilation. Alas, compilation
takes longer.

28 Generation of (Pseudo) Random Numbers

A random number generator is a program, that, given a seed (say 23525176471263), produces a sequence of numbers that
appears random. It’s like a number mill: In goes the seed and out comes flour of random numbers. Always the same output.

Stages to invoke C++ random number generation @ cppreference:

1) Include the headers

#include <random>

#include <functional> // if you use std::function

2) Choose the random number algorithm

std::mt19937 gener; // Mersenne twister

Only the given name gener appears from now on, so editing this single line is sufficient to switch to another generator
(linear_congruential_engine, subtract_with_carry_engine),

std::linear_congruential_engine gener;

428

http://en.cppreference.com/w/cpp/numeric/random

3) Choose from available distributions - there are many
uniform_real_distribution (parameters: start and end)
normal_distribution (parameters: mean value and variance).
Uniform distribution unif_dist U[0,1) is created like this (the name unif_dist is my own):

std::uniform_real_distribution<double> unif_dist(0,1);

and a normal distribution like this (again the name normal_dist is my own):

std::normal_distribution<double> normal_dist(0,1);

4) Give the generator a seed only once (the suffix u means unsigned)

gener.seed(4835267u); // same sequence every time you run the code

or pick the seed from the system clock

gener.seed(static_cast<uint_fast32_t> (std::time(0)); // at least 32 bits

// different sequence every time you run the code (if time(0) has changed)

or rely on std::ramdom_device (not without problems, see a discussion in cpps-random device.html)

gener.seed(std::random_device{}());

5) EITHER (i) std::bind the generator and the distribution together:

429

http://www.pcg-random.org/posts/cpps-random_device.html

auto normal_random = std::bind(normal_dist, gener); // do this once

and use it like this to get a single random number r

double r = normal_random();

OR (ii) get the random number directly from a call to distribution(generator) :

double r = normal_dist(gener);

28.1 Simplify function calls with std::bind

Before continuing with random numbers, lets look what auto normal_random = std::bind(normal_dist, gener) did: It
created a function normal_random() that means ”call normal_dist with argument gener”.

Example: std::bind is versatile

430

bind_example.cpp

// How to use bind to

// a) change the order of arguments

// b) turn a 3 argument function to a 2 argument function

//

#include <iostream>

#include <functional>

void f(const double & x,const double & y,const double & z)

{

std::cout<<"called f with arguments "<<x<<" "<<y<<" "<<z<<std::endl;

}

int main()

{

using namespace std::placeholders; // for _1, _2

f(1.1,2.2,3.3);

// a) change the order of arguments with bind:

auto invf=std::bind(f,_3,_2,_1); // bind return type is std::function

invf(1.1,2.2,3.3);

// b) create a two-argument function from f

auto g=std::bind(f,_1,_2, 333.3); // bind 3rd argument to fixed value 333.3

g(10.1,20.2);

}

The next examples are a set of easy-to-use helper functions to initialize a generator and get uniform distribution (unirand()),
normal distribution (gaussrand and gaussrand2()) or exponentially distributed (exprand()) random numbers. The goal was
to hide all inconveniences to numerics/random.cpp, so that the bread-and-butter code is clean and simple,

double random = myrandom::RNG::gauss()

431

Example: C++ random number generation

random.hpp

#ifndef RANDOM_HPP

#define RANDOM_HPP

#include <random>

namespace myrandom{

class RNG{

std::mt19937_64 gen; // generator

uint_fast64_t myseed; // seed

public:

RNG(void);

RNG(uint_fast64_t);

uint_fast64_t get_seed();

double unif();

double gauss();

double gauss(double, double);

double normal();

double normal(double, double);

double exp();

};

}

#endif

432

random.cpp

#include "random.hpp"

#include <functional>

#include <iostream>

// constructors:

myrandom::RNG::RNG(): myseed{std::random_device()()} {

std::cout<<"RNG: seed from std::random_device\n";

std::cout<<"RNG: seed = "<<myseed<<"\n";

gen.seed(myseed);

}

myrandom::RNG::RNG(uint_fast64_t seed_) : myseed{seed_}{

std::cout<<"RNG: custom seed "<<seed_<<"\n";

gen.seed(seed_);

}

// member functions:

uint_fast64_t myrandom::RNG::get_seed(){

return myseed;

}

double myrandom::RNG::unif(){

static std::uniform_real_distribution<double> unif_dist(0,1);

return unif_dist(gen);

}

double myrandom::RNG::gauss(){

static std::normal_distribution<double> norm_dist(0,1);

return norm_dist(gen);

}

double myrandom::RNG::gauss(double a, double s){

static std::normal_distribution<double> norm_dist(a,s);

return norm_dist(gen);

}

double myrandom::RNG::normal() {return gauss();}

double myrandom::RNG::normal(double a, double s) {return gauss(a, s);}

double myrandom::RNG::exp(){

static std::exponential_distribution<double> expo_dist;

return expo_dist(gen);

}

433

28.2 Return to std::generate: the member function predicament

In chapter 26.4 we saw how to use the std::generate algorithm and in chapter 26.5 we found a way to use standard library
algorithms without copying the generator function object that will be called. In the examples so far, these generator functions
have all been free functions - in reality that’s rarely the case. I’m going to use IdGen as a test class, what I have in mind is a
C++ built-in random number generator in a member function of the self-made class RNG in files random.hpp and random.cpp.

Working with a class, there are several ways to use std::generate

• If the class IdGen defines a function object), you can

– Use the function object directly as a generator function,

std::generate(v.begin(),v.end(), IdGen());

– create an object of the class and use the as a generator function,

IdGen idgen;

std::generate(v.begin(),v.end(), idgen);

If you want to generate unique id numbers, you have to prevent std::generate from copying the generator. You
can’t do that on IdGen(), only to the object idgen:

std::generate(v.begin(),v.end(), std::ref(IdGen())); //Error

std::generate(v.begin(),v.end(), std::ref(idgen)); //OK

The class IdGen does not have a unique integer id to keep track off.
For that unique id you need an object of the class IdGen and prevent copying it.

This is demonstrated in the following code.

434

generate_functor.cpp

#include <iostream>

#include <algorithm>

#include <vector>

#include <functional>

class IdGen{

int id;

public:

IdGen(): id{0}{std::cout<<"constructed an IdGen with initial id="<<id<<"\n";}

int operator()(void){return (id++);};

};

int main(){

std::vector<int> v(5),w(5);

std::cout<<"call std::generate with class name IdGen()\n";

std::generate(v.begin(), v.end(), IdGen());

for (auto vv:v) {std::cout<<vv<<" ";}

std::cout<<"\n";

std::generate(w.begin(), w.end(), IdGen());

for (auto ww:w) {std::cout<<ww<<" ";}

std::cout<<"\n";

std::cout<<"call std::generate with std::ref(idgen), class IdGen object idgen\n";

IdGen idgen;

std::generate(v.begin(), v.end(), std::ref(idgen));

for (auto vv:v) {std::cout<<vv<<" ";}

std::cout<<"\n";

std::generate(w.begin(), w.end(), std::ref(idgen));

for (auto ww:w) {std::cout<<ww<<" ";}

std::cout<<"\n";

}

435

• If you want to use a member function of the class IdGen as a generator function you need to dig deeper.
Consider this variant of IdGen:

class IdGen{

int id;

public:

IdGen(): id{0}{std::cout<<"constructed an IdGen with initial id="<<id<<"\n";}

int get_id() {return id++;}

};

You need an object, e.g. IdGen idgen;, and that object has a working id generator idgen.get_id(). Using that in a
std:generate should be easy,

std::vector<int> v(5):

std::generate(v.begin(),v.end(), idgen.get_id); // Error

but it doesn’t compile: error: invalid use of non-static member function ’int IdGen::get_id()’. Since std::generate
can take in function objects, we need a way to turn the member function get_id() into one.

First working solution: use std::bind Several web pages suggest this,

IdGen idgen;

generate(v.begin(), v.end(), std::bind(std::mem_fun(&IdGen::get_id), &idgen));

What an ugly beast! I found that in gcc also this works, without std::mem_fun,

436

IdGen idgen;

generate(v.begin(), v.end(), std::bind(&IdGen::get_id, &idgen));

Notice also: no std::ref() needed. Details - only if you are in for an adventure:
First of all, std::mem_fun(&IdGen::get_id) is supposed to turn the member function IdGen::get_id() to a function
object. Great, but it’s not quite enough,

generate(v.begin(), v.end(), std::mem_fun(&IdGen::get_id)); // Error

won’t compile. The algorithm wants a directly callable function object, one that can be called simply f(), but std::mem_fun
returns a pointer to the member function which is not directly callable. In other words, the call that is tried is
(&IdGen::get_id)(), which is ill-formed:

int id = (&IdGen::get_id)(); // Error

You need std::bind, which creates a call wrapper and binds the member function pointer made by std::mem_fun to the
specific object:

int id = bind(mem_fun(&IdGen::get_id), &idgen)(); // OK

These problems have been recognized (Proposal: Make Pointers to Members Callable). Note added: There’s also
std::mem_fn. 91

91Unwillingness to break old code makes programming language vocabulary grow in every ”improvement”. In spoken languages, youngsters don’t
give a (here is placeholder in std::placeholders for a four-letter word) whether oldtimers understand them or not! Result: effective word
recycling.

437

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0312r0.pdf

Example: A member function as a generator function in std::generate

generate_member_function.cpp

#include <iostream>

#include <algorithm>

#include <vector>

#include <functional>

class IdGen{

int id;

public:

IdGen(): id{0}{std::cout<<"constructed an IdGen with initial id="<<id<<"\n";}

int get_id() {return id++;}

};

int main(){

IdGen idgen;

std::vector<int> v(5),w(5);

auto gen = std::bind(&IdGen::get_id, &idgen);

std::generate(v.begin(), v.end(), gen);

for (auto vv:v) {std::cout<<vv<<" ";}

std::cout<<"\n";

std::generate(w.begin(), w.end(), gen);

for (auto ww:w) {std::cout<<ww<<" ";}

std::cout<<"\n";

}

Output:

438

0 1 2 3 4

5 6 7 8 9

439

Second working solution: use a lambda
Lambdas are your best friends every time you need to use standard algorithms.
Recommended way:

440

generate_member_function_lambda.cpp

#include <iostream>

#include <algorithm>

#include <vector>

class IdGen{

int id;

public:

IdGen(): id{0}{std::cout<<"constructed an IdGen with initial id="<<id<<"\n";}

int get_id() {return id++;}

};

int main(){

IdGen idgen;

std::vector<int> v(5),w(5);

auto gen = [&idgen](){return idgen.get_id();};

std::generate(v.begin(), v.end(), gen);

for (auto vv:v) {std::cout<<vv<<" ";}

std::cout<<"\n";

std::generate(w.begin(), w.end(), gen);

for (auto ww:w) {std::cout<<ww<<" ";}

std::cout<<"\n";

}

441

Example: Using std::generate with class RNG random number generator

generate_random_vector_lambda.cpp

// compile: g++ generate_random_vector_lambda.cpp random.cpp

#include <iostream>

#include <algorithm>

#include <vector>

#include <fstream>

#include <iomanip>

#include "random.hpp"

int main(){

std::vector<double> v(5), w(5), big(1e5);

myrandom::RNG rng ;//(23142566);

std::cout<<"seed is "<<rng.get_seed()<<"\n";

std::generate(v.begin(), v.end(), [&rng](){return rng.unif();});

for (auto vv:v) {std::cout<<vv<<" ";}

std::cout<<"\n";

std::generate(w.begin(), w.end(), [&rng](){return rng.unif();});

for (auto ww:w) {std::cout<<ww<<" ";}

std::cout<<"\n";

std::generate(big.begin(), big.end(), [&rng](){return rng.normal(3.0,.1);});

std::ofstream out("big");

for (auto b:big) {out<<std::fixed<<std::setprecision(30)<<b<<"\n";}

out.close();

}

442

29 Boost and Ordinary Differential Equations (ODE’s)

Boost library has served as a test bench for ideas, some have made their way to the C++ standard. Boost extends the C++
standard library with algorithms, special functions, differential equation solvers and many more.
The documentation is

http://www.boost.org/doc/libs/

and the math part is in
http://www.boost.org/doc/libs/?view=category_Math

The examples are thorough, e.g. how to use your own vector type is shown here (version 1.65.1). As long as your data structure
conforms with a standard or a Boost container, you can just throw it into Boost. Especially the library odeint for solving
ordinary differential equations is comprehensive.

Boost is almost entirely a header-only library : nothing to compile. If you have admin rights, installing and using Boost
is trivial using he package manager. If not, just download boost and unpack it to, say, directory $HOME/boost. Some ODE
sample codes are now in $HOME/boost/libs/numeric/odeint/examples/, and can be translated like this (assume bash shell):

$ export BOOSTDIR=$HOME/boost

$ export SAMPLES=$BOOSTDIR/libs/numeric/odeint/examples/

$ g++ -std=c++11 -O3 -I$BOOSTDIR -I$SAMPLES $SAMPLES/chaotic_system.cpp

Boost has a seasoned library for solving ODEs. A typical ODE solution goes along this route:

1. If your equation is n, that is second order or higher, you first separate it to n coupled first order differential equations
(details in 34.3).

2. Choose the integration algorithm, the stepper, that solves the next point, given a starting point:

• Fixed-step-size routines: Simple and fast, accuracy of the solution is your responsibility.

• Adaptive-step-size routines: Try to reach an accuracy goal (absolute and relative error limit).

443

http://www.boost.org
http://www.boost.org/doc/libs/
http://www.boost.org/doc/libs/?view=category_Math
http://www.boost.org/doc/libs/1_65_1/libs/numeric/odeint/examples/my_vector.cpp
http://www.boost.org/doc/libs/1_59_0/libs/numeric/odeint/doc/html/index.html

Boost calls the current values the ”state”, which contains {x(t), x′(t), ...}. Hence the type state_type.

boost_ode_simple.cpp

#include <iostream>

#include <boost/numeric/odeint.hpp>

#include <fstream>

using state_type = std::vector<double> ;

using stepper_type = boost::numeric::odeint::runge_kutta4<state_type> ;

/* Solves x''(t) = -x(t) - gam*x'(t), split to coupled

x'(t) = y(t)

y'(t) = -x(t) - gam*y(t)

notation: x(t)=x[0], y(t)=x[1], x'(t) = dxdt[0], y'(t) = dxdt[1]

*/

void harmonic_oscillator(const state_type &x, state_type &dxdt, const double /*t*/)

{

const double gam=0.15;

dxdt[0] = x[1];

dxdt[1] = -x[0] - gam*x[1];

}

int main()

{

stepper_type stepper;

state_type x ={1.0,2.0} ; // initial values, x(0) = 1, x'(0) = 2

// integrate all the way to final time:

//integrate_const(stepper , harmonic_oscillator , x , 0.0 , 100.0 , 0.01);

//cout<<"final point "<<x<<endl;

// use method do_step to follow the solution step by step

std::ofstream out("ode.dat");

const double dt = 0.01;

for(double t=0.0 ; t<100.0 ; t+= dt)

{

stepper.do_step(harmonic_oscillator , x , t , dt);

std::cout<<t<<" "<<x[0]<<" "<<x[1]<<"\n";

out<<t<<" "<<x[0]<<" "<<x[1]<<"\n";

}

out.close();

}

444

boost_ode_adaptive.cpp

// solve y'(t) = -t*y , condition y(0) = -2

// Adaptive integration using Boost::numeric::odeint

// compile :

// g++ --std=c++11 boost_ode_simple.cpp

#include <iostream>

#include <iomanip>

#include <vector>

#include <boost/numeric/odeint.hpp>

using state_type= std::vector<double>;

using stepper_type= boost::numeric::odeint::runge_kutta_cash_karp54<state_type>;

namespace my{

using std::cout;

void system(const state_type& y, state_type& dydt, const double t)

{

dydt[0] = -t*y[0];

}

void output(double t, double y, double exact){

cout<<std::fixed<<std::setprecision(16);

static bool first=true;

if(first) {

cout<<std::setw(20)<<"t"<<std::setw(20)<<"Boost solution";

cout<<std::setw(20)<<"exact solution"<<std::setw(20)<<"error\n";

first = false;

}

cout<<std::setw(20)<<t<<std::setw(20)<<y<<std::setw(20)<<exact<<std::setw(20)<<y-exact<<"\n";

}

}

int main()

{

const double e_abs=1e-15,e_rel=1e-15; // absolute and relative error goal

auto stepper = boost::numeric::odeint::make_controlled<stepper_type>(e_abs, e_rel) ;

state_type y ={-2.0} ; //condition y(0)=-2 gives y(t) = -2.0*exp(-0.5*t*t)

const int n=50; // solve 50 points

const double t1 = 0.0, t2=10.0;

const double dt = (t2-t1)/(n-1);

for(int i = 0; i<n ; ++i)

{

auto t = t1+i*dt;

auto exact = -2.0*exp(-0.5*t*t);

my::output(t,y[0],exact);

auto steps =integrate_adaptive(stepper, my::system, y, t, t+dt, 0.01);

// cout<<"steps "<<steps<<endl; // how many sub-division steps were needed

}

}

445

Such a simple my::system begs to be replaced with a lambda:

auto steps =integrate_adaptive(stepper,

[](const state_type& y, state_type& dydt, const double t)// lambda

{dydt[0] = -t*y[0];} // lambda

, y, t, t+dt, 0.01);

This same ODE will be solved using GSL in chapter 34.3.

30 Linear algebra - which library to use?

Basically, the answer is BLAS and LAPACK, written in Fortran and available in www.netlib.org. The C-versions (CLAPACK,
CBLAS) are heavily used in GSL. Optimized BLAS and LAPACK libraries are delivered by Intel OneAPI MKL, and AMD
AOCL (AMD Optimizing CPU Libraries). Linux comes by default withOpenBlas, which owes a lot to GotoBlas2 by Kazushige
Goto. These all low-level linear algebra libraries, and not very use friendly. I recommend you pick a C++ header-only
library that can use optimized BLAS and LAPACK as a backend.

Header-only libraries only need to be copied to your machine.
Include the library path in compilation, that’s all that it takes.

Header-only libraries are (arguably) platform independent, but there are some problems as well.92 Here are a few C++ linear
algebra libraries you might find useful, they use generic programming and expression templates:

• Boost ublas. The collection boost::ublas has BLAS levels 1-3 functionality for dense, packed and sparse matrices. On
the left is an example of a Hermitian matrix @boost.org, on the right an example how I might use it. I like a tighter
layout, and hide uninteresting library choises from main().

92See, e.g., Header-only @Wikipedia).

446

http://www.netlib.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.e38ebpMKL
https://developer.amd.com/amd-aocl/
http://xianyi.github.io/OpenBLAS/
http://www.boost.org/doc/libs/1_77_0/libs/numeric/ublas/doc/index.html
https://www.boost.org/doc/libs/1_77_0/libs/numeric/ublas/doc/hermitian.html
https://en.wikipedia.org/wiki/Header-only

boost_hermitian.cpp

#include <boost/numeric/ublas/hermitian.hpp>

#include <boost/numeric/ublas/io.hpp>

int main () {

using namespace boost::numeric::ublas;

hermitian_matrix<std::complex<double>, lower> ml (3, 3);

for (unsigned i = 0; i < ml.size1 (); ++ i) {

for (unsigned j = 0; j < i; ++ j)

ml (i, j) = std::complex<double> (3 * i + j, 3 * i + j);

ml (i, i) = std::complex<double> (4 * i, 0);

}

std::cout << ml << std::endl;

hermitian_matrix<std::complex<double>, upper> mu (3, 3);

for (unsigned i = 0; i < mu.size1 (); ++ i) {

mu (i, i) = std::complex<double> (4 * i, 0);

for (unsigned j = i + 1; j < mu.size2 (); ++ j)

mu (i, j) = std::complex<double> (3 * i + j, 3 * i + j);

}

std::cout << mu << std::endl;

}

my_boost_hermitian.cpp

#include <boost/numeric/ublas/hermitian.hpp>

#include <boost/numeric/ublas/io.hpp>

namespace herm{

using namespace boost::numeric::ublas;

template <typename T>

using lower = hermitian_matrix<T, lower>;

template <typename T>

using upper = hermitian_matrix<T, upper>;

}

int main () {

using dtype = std::complex<double>; //only complex

herm::lower<dtype> ml(3,3);

for (unsigned i=0; i<ml.size1();++i) {

for (unsigned j=0; j<i; ++j)

ml(i,j) = (3*i+j,3*i+j);

ml(i,i) = (4*i,0);

}

std::cout<< ml<<std::endl;

herm::upper<dtype> mu(3,3);

for (unsigned i=0; i<mu.size1();++i) {

mu(i,i) = (4*i,0);

for (unsigned j=i+1;j<mu.size2(); ++j)

mu(i,j) = (3*i+j,3*i+j);

}

std::cout<<mu<<std::endl;

}

• Armadillo (NICTA, Australia) Can utilize MKL and OpenBlas, to mention a few.

• MTL4 (Simunova, a C++ software company in Dresden)

• Blaze A project initiated by Klaus Iglberger, main developers in Erlangen, Germany.
A link to a fine article on Smart Expression Templates.

• Eigen The eigenvalue problem specialist. Widely used in numerics community.

447

http://arma.sourceforge.net/
www.mtl4.org
https://bitbucket.org/blaze-lib/blaze
http://arxiv.org/pdf/1104.1729.pdf
http://eigen.tuxfamily.org/index.php?title=Main_Page

A comparison of array views didn’t flatter Armadillo, see speed tests @romanpoya.medium.com.93

30.1 Armadillo examples

Example: Armadillo: Matrix product (source: Armadillo web page)

arma_matrix_multi.cpp

#include <iostream>

#include <armadillo>

int main()

{

using arma::mat, arma::randu;

mat A = randu<mat>(4,5); // mat is double

mat B = randu<mat>(4,5);

std::cout << "A*trans(B) =" << "\n";

std::cout << A*trans(B) << "\n";

}

Linking examples, the details vary depending on the compiler, operating system, and Armadillo installation:

$ g++ arma_matrix_multi.cpp -larmadillo # builtin

$ g++ arma_matrix_multi.cpp -I$ARMA_INSTALL_DIR/include -lopenblas # external

93The tests were run 2020, but I got similar results 2023.

448

https://romanpoya.medium.com/a-look-at-the-performance-of-expression-templates-in-c-eigen-vs-blaze-vs-fastor-vs-armadillo-vs-2474ed38d982

Example: Armadillo: Eigenvalues of a symmetric matrix

arma_eigenvalues.cpp

// g++ arma_eigenvalues.cpp -larmadillo

#include <iostream>

#include <iomanip>

#include <armadillo>

int main(){

using arma::mat, arma::vec, arma::randu, arma::trans;

mat A = randu<mat>(5,5);

vec eigval;

mat eigvec;

A = A+trans(A); // a way to make a symmetric matrix

std::cout<< "A= \n"<<A<<"\n";

eig_sym(eigval, eigvec, A); // this does all work

vec x(eigval);

for (unsigned i=0; i<A.n_rows; i++){

std::cout<<"--"<<"\n";

std::cout<<"eigenvalue "<<i<<" = "<<eigval(i)<<'\n';

x = eigvec.col(i); //x(j) = eigvec(j,i);

std::cout<<" x = "<<trans(x);

std::cout<<"check: Ax -lambdax = "<<trans(A*x-eigval(i)*x)<<"\n";

}

}

449

Armadillo calls the LAPACK routine dsyev (”double symmetric eigenvalue”). Linking examples,

$ g++ arma_eigenvalues.cpp -larmadillo # builtin

$ g++ arma_eigenvalues.cpp -I$ARMA_INSTALL_DIR/include -lopenblas # external

$ g++ arma_eigenvalues.cpp -I$ARMA_INSTALL_DIR/include -lblas -llapack # external

31 Calling C or fortran from C++

Here are some principles about mixing fortran, C and C++.
Example: Fortran subroutine dgemm (part of BLAS) computes the matrix-matrix product.

SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,

B,LDB,BETA,C,LDC)

DOUBLE PRECISION ALPHA,BETA

INTEGER K,LDA,LDB,LDC,M,N

CHARACTER TRANSA,TRANSB

DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)

Declaration in C++:

extern "C"

{

void dgemm_(char* transa, char* transb, int* m,

int* n, int* k, double* alpha,

double* a, int* lda, double* b,

int* ldb, double* beta, double* c, int* ldc);

450

}

• extern ”C”
means ”compile C style”.
It tells the C++ compiler to forget about function overloading and identify the function by its name only.

• The compiled fortran subroutine is in object code file dgemm.o or inside a library with an underscore: dgemm() is shown
as dgemm_().

• fortran is ”pass by reference”, so all arguments have to be pointers. Here double* a points to the start of a double array.

As if this were not enough, there is one more problem: matrix storage in fortran and Matlab is column major, but in C/C++
it’s mostly row major. Armadillo is C++, but it mimics Matlab syntax and Armadillo is column major. Below is a
figure about the two storage habits.

math notation:

(
1 2 3 4
5 6 7 8

)
fortran/Matlab/Armadillo is row major : 1 5 2 6 3 7 4 8

Most C/C++ is column major : 1 2 3 4 5 6 7 8 .

Both are natural, but moving between languages you have to change indexing before and after a call to dgemm. For square
matrices this means transpose. If you have defined a static array in C-style like this

const int n=100;

double a[n][n];

the fortran call has const int* n .

Finally, by default indices begin from 0 (C/C++) or from 1 (fortran)
fortran : 1 → N, meaning V(1),V(2)...,V(N)

C++ : 0 →(N-1), meaning V(0),V(1)...,V(N-1)

451

32 Fixed-size arrays in C++: plain array and std::array:

Two different things that can be called ”arrays”.

• Plain, C-style array. A static array is made like this:

double array1[10]; // memory allocation for 10 elements

int array_int[]={3,6,12}; // memory allocation and fill with values

Dynamic arrays are created with keywords new and deleted with delete. I’m not telling you how to use plain arrays,
because they don’t conform with C++ containers. Deleting a two-dimensional, dynamic array array2 is not simply
delete[][] array2. Below are two examples.

452

Example: Passing an C array to function in C++ style

array_to_function.cpp

#include <iostream>

void f(int d[],const int sized){ // C++ style

// empty [] tells compiler d is an array

// d is passed by reference!

// You are dealing with the original array, not with it's copy.

for (int i=0;i<sized;++i) std::cout<<i<<" "<<d[i]<<"\n";

}

int main(){

int j[]={2,4,5};

f(j,3);

}

Example: Passing an C array to function in C style

453

array_to_function2.cpp

#include <iostream>

void f(int *d,const int sized){ // C-style, think of d as a pointer

for (int i=0;i<sized;++i) std::cout<<i<<" "<<d[i]<<"\n";

}

int main(){

int j[]={2,4,5};

f(j,3);

}

• There is one more data type suitable for numerical data in C++, std::array (mentioned earlier in 23.4). std::array is
a container. From cppreference, std::array can be initialized like this:

std::array<int, 3> a1{ {1,2,3} }; // double-braces required

std::array<int, 3> a2 = {1, 2, 3}; // except after =

std::array<std::string, 2> a3 = { {std::string("a"), "b"} };

Notice how std::array type and dimension is defined as template parameters! Since it’s a container, it has many built-in
methods.

Fixed size enables checks at compile-time and optimization: in C++ also template arguments can be checked.
For that C++ has std::static_assert (see basic/static_assert.cpp). std::static_assert can greatly benefit code
development, by letting you know if you, by mistake, give contradicting definitions.

33 Exception handling with throw and catch

The C++ Standard Library has a class dedicated to exception handling, std::exception. One part of it is runtime_error.
One way to make your own error handling process is to inherit the class,

454

http://en.cppreference.com/w/cpp/container/array

class MyException : public std::exception{

...

}

and add a new property.
In numerics exceptions are often simple. I’m using this error handling (although I seldom do)

try{

my_function();

}

catch (char const* e) {

cerr << e << endl;

return 1;

}

and the function has the row

void my_function(void){

{

...

if(test) throw "test failed";

...

}

Error happens if test is true, and the exception with message ”test failed” is thrown and we leave the function. Later the
exception is caught with catch 94

94The function my_function() throws an exception and wishes some exception handling routine will take care of it properly.

455

If throw is executed, the function execution terminates; it’s still more gentle than halting the program execution. Any code
after throw is not executed and essentially the function does not return at all (so no need to have a return in a function that
only throws).

In the example the message is output to stream std::cerr, similar to std::cout, but specialized for error outputs. This
makes it possible to separate error output from normal output. In bash,

$ a.out 2> err

causes normal std::cout output to screen and std::cerr output to go to file err. There is also std::clog for log outputs.

34 Gnu Scientific Library (GSL)

GSL in wikipedia

GSL is free and written in C, but linkage is made easy for C++ users:

The library header files automatically define functions to have extern ”C” linkage when included in C++ programs. This
allows the functions to be called directly from C++.

Example: Bessel function J0
Compilation:

$ g++ gsl_bessel.cpp `gsl-config --libs` # backticks: bash-evaluate gsl-config --libs

456

http://en.wikipedia.org/wiki/GNU_Scientific_Library

gsl_bessel.cpp

#include <iostream>

#include <iomanip>

#include <gsl/gsl_sf_bessel.h>

int main(void) {

double x = 5.0;

double y = gsl_sf_bessel_J0(x);

printf("J0(%g) = %.18f\n", x, y);

// or using iomanip:

//cout<<fixed<<setprecision(18);

//std::cout<<"J0("<<x<<") = "<<y<<endl;

}

// J0(5) = -0.177596771314338264

457

34.1 GSL: statistics

Example: Arithmetic mean and standard deviation

458

gsl_statistics.cpp

#include <iostream>

#include <vector>

#include <gsl/gsl_statistics.h>

int main(void) {

// using plain array

double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6};

double mean, variance;

mean = gsl_stats_mean(data, 1, 5);

variance = gsl_stats_variance(data, 1, 5);

std::cout<<" mean = "<<mean<<"\n";

std::cout<<" variance = "<<variance<<"\n";

// using std::vector

std::vector<double> v = {17.2, 18.1, 16.5, 18.3, 12.6};

mean = gsl_stats_mean(&v[0], 1, 5);

variance = gsl_stats_variance(&v[0], 1, 5);

std::cout<<" mean = "<<mean<<"\n";

std::cout<<" variance = "<<variance<<"\n";

}

Passing a std::vector as a pointer &v[0] isn’t pretty, but it works. All that the GSL function needs is the start address
and the length of the data. The elements of a std::vector are consecutive in memory.

34.2 GSL: Fast Fourier Transform (FFT)

I want to transform complex data with length 2N , N ∈ Z>0, like this:

459

fft(data,direction) // direction = 1 forward, -1 backward

Here direction is 1 for a Fourier transform and -1 for an inverse transform. Notice that I want to keep this syntax no matter
what library does the FFT.

I wan’t to postbone the decision how the data is stored, so I write the header as a template that works at least for
std::vector, fixed-size std::array, std::valarray, armadillo vector and Blaze vector and possibly something else, too.

460

Example: A possible GSL FFT header

gsl_fft.hpp

#ifndef GSL_FFT_HPP

#define GSL_FFT_HPP

#include <gsl/gsl_errno.h>

#include <gsl/gsl_fft_complex.h>

namespace my_GSL_FFT

{

template <typename T>

int fft(T& data, int direction){

int status;

const size_t stride=1;

size_t n;

#ifdef ARMA

// Armadillo data has no member size, use n_elem

n = data.n_elem;

#else

n = data.size();

#endif

double* pdata = reinterpret_cast<double*> (&data[0]);

if(direction>0){

status = gsl_fft_complex_radix2_forward(pdata, stride, n);

}

else {

status = gsl_fft_complex_radix2_backward(pdata, stride, n);

}

if(status!=GSL_SUCCESS) return 1;

return 0;

}

}

#endif

461

34.2.1 Passing a pointer to complex data

C++ complains if you try to take the address of a complex number like this:

double* pdata = &data[0].real(); // may not compile

Here data[0].real() is an rvalue, a temporary whose life is about to end (see chapter 21.2). It does not have an address that
lives long enough to be used. The first complex element does have a ”good address”, an lvalue , so I tell the compiler to use
that and pretend it’s pointing to a double using reinterpret_cast. The type change done by reinterpret_cast is in your
responsibility, it basically tells the compiler ”trust me, I know what I’m doing”.

double* pdata = reinterpret_cast<double*> (&data[0]);

Armadillo vector does not conform with a standard container, specifically it has no size() method. The least I want is to
add a third argument to the clean call fft(data,direction) to tell the data size! I have chosen to use the preprocessor; if
I’m using Armadillo vectors
#define ARMA

A test code is numerics/gsl_fft_arma_main.cpp, the one using std::vector is numerics/gsl_fft_main.cpp.
Result:

462

−0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

original pulse
Fourier transformed pulse

The data is represented, as usual in FFT, in wrap-around order. You can easily write utilities to do the wrapping from
”natural order” and unwrapping to natural order; move data or use an index table.

463

34.3 GSL: differential equations

Let’s solve a simple equation, one that we can solve analytically,

y′(t) = −ty , y(0) = −1 , exact solution y(t) = −2e−t2/2 .

464

gsl_ode_simple.cpp

// solve y'(t) = -t*y , condition y(0) = -2

// g++ -std=c++11 gsl_ode_simple.cpp `gsl-config --libs`

#include <iostream>

#include <iomanip>

#include <cmath>

#include <vector>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_odeiv2.h>

int func (double t, const double y[], double f[], void *params){

f[0] = -t*y[0] ; // y[0] = y, f[0] = y' = dy/dt = -t*y

return GSL_SUCCESS;

}

void output(double t, double y, double exact){

std::cout<<std::fixed<<std::setprecision(16);

static bool first=true;

if(first) {

std::cout<<std::setw(20)<<"t"<<std::setw(20)<<"gsl solution";

std::cout<<std::setw(20)<<"exact solution"<<std::setw(20)<<"error\n";

first = false;

}

std::cout<<std::setw(20)<<t<<std::setw(20)<<y<<std::setw(20)<<exact<<std::setw(20)<<y-exact<<"\n";

}

int main ()

{

double exact;

const int n=50; // # of points

double t0 = 0.0, t1 = 10.0; // time start and end

double dt=(t1-t0)/(n-1); // time step

double y[1] = {-2.0}; // initial value; table with one entry

gsl_odeiv2_system sys = {func, NULL, 1, NULL}; // not using a Jacobian, hence NULL pointer

auto driver = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd, 1e-13, 1e-13, 0.0);

output(t0,y[0],y[0]);

for (int i = 0; i<n; ++i) {

auto t = t0+i*dt; // begin of t interval

if(gsl_odeiv2_driver_apply (driver, &t, t+dt, y) != GSL_SUCCESS)

{

std::cout<<"FAILED near "<<t<<"\n";return 1;

}

exact = -2.0*exp(-0.5*t*t);

output(t,y[0],exact);

}

gsl_odeiv2_driver_free(driver);

}

465

The next one is more involved, it’s directly from the GSL manual. The 2nd order, nonlinear Van Der Pol oscillator equation
is

x′′(t) + µx′(t)(x(t)2 − 1) + x(t) = 0 .

The numerical solver is for 1st order equations, so we split this 2nd order equation to two coupled 1st order equations. Define a
new variable y,

x′(t) = y(t)

y′(t) = −x(t)− µy(t)(x(t)2 − 1)

An n:th order differential equation is solved as n coupled 1st order differential equations

The code solves two unknown functions {x(t), y(t)} point by point, starting from initial values at t = 0. Once a point
{x(t), y(t)} has been solved, the derivatives in that point can be computed and the next point {x(t + dt), y(t + dt)} can be
solved, and so on.

The Van Der Pol oscillator position x(t) can have very sharp turns for some values of µ. Near sharp turns we apply adaptive
stepsize: In order to maintain numerical accuracy, the algorithm takes shorter steps in t. 95

The biggest challenge is bookkeeping. We have (i) the math on paper, (ii) 1st order differential equation notation in GSL
and (iii) the notation in GSL solver. The GSL manual uses this general notation:

dyi(t)

dt
= fi(t, y1(t), ..., , yn(t)) , i = 1...n .

Don’t spend too much time studying this, but tabulated, the three notations are related like this:

95If this is neglected, the solution goes astray after every steep turn. It will follow a solution curve, but not the one we started with, until after
the next turn it picks yet another wrong curve and so on. Since the numerical accuracy is limited anyhow, you can be sure this happens sooner or
later in t.

466

A B C

x(t) y1(t) y[0]
y(t) y2(t) y[1]

x′(t) = y(t) dy1(t)
dt

= f1(t, y1(t), y2(t)) f [0]

y′(t) = −x(t)− µy(t)(x(t)2 − 1) dy2(t)
dt

= f2(t, y1(t), y2(t)) f [1]
∂x′(t)
∂x(t)

= 0 ∂f1(t,y1(t),y2(t))
∂y1(t)

m[0, 0]
∂x′(t)
∂y(t)

= 1 ∂f1(t,y1(t),y2(t))
∂y2(t)

m[0, 1]
∂y′(t)
∂x(t)

= −1− 2µxy ∂f2(t,y1(t),y2(t))
∂y1(t)

m[1, 0]
∂y′(t)
∂y(t)

= −µ(x2 − 1) ∂f2(t,y1(t),y2(t))
∂y1(t)

m[1, 1]

x′′(t) df1(t,y1(t),y2(t))
dt

dfdt[0]

y′′(t) df2(t,y1(t),y2(t))
dt

dfdt[1]
Implementation:

• The function func()(4 top rows of the table) computes {x′(t), y′(t)} from known values {x(t), y(t)}. The results are stored
to table f, elements {f[0],f[1]}.

• The function jac() (4 bottom rows of the table) hold the Jacobi matrix. This information is used only in higher order
solvers - the more knowledge, the less function evaluations. A twist to bookkeeping: jac() is supposed to fill a 1-
dimensional table dfdy, where the Jacobi matrix is stored as m[i, j] = dfdy[i+ dimensio ∗ j]. Hence the odd calls to
gsl_matrix_*. If you find this hard to follow, fill dfdy as you please. A plain for loop is not a bad idea.

467

gsl_func_jac.h

int func (double t, const double y[], double f[], void *params){

double mu = *(double *)params;

f[0] = y[1];

f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);

return GSL_SUCCESS;

}

int jac (double t, const double y[], double *dfdy, double dfdt[], void *params){

double mu = *(double *)params;

gsl_matrix_view dfdy_mat

= gsl_matrix_view_array (dfdy, 2, 2);

gsl_matrix * m = &dfdy_mat.matrix;

gsl_matrix_set (m, 0, 0, 0.0);

gsl_matrix_set (m, 0, 1, 1.0);

gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);

gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));

dfdt[0] = 0.0;

dfdt[1] = 0.0;

return GSL_SUCCESS;

}

GSL has nice driver functions in the header gsl_odeiv2.h, which are much easier to use than the basic functions in the
header gsl_odeiv.h. Whichever, some preparatory steps need to be done.

• Choose the integration algorithm, that is, how the next point {x(t + dt), y(t + dt)} is computed. Plenty of choice here:
rk2, rk4, rkck, rk8pd, rk2imp, rk4imp, bsimp, rk1imp, msadams and msbdf.

• Choose the control criterion, that is, when are shorter steps needed. For example absol. error 10−6, relative error 0

• GSL wants all information about the problem at hand in one data structure of type gsl_odeiv2_system:

468

gsl_odeiv2_system sys = {func, jac, 2, &mu} ;

This collects information about the functions, their derivatives, Jacobi matrix, order and the parameter(s). Any number
of parameters are passed as a pointer
void * params.

GSL driver function96

auto solver =

gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0);

and it’s called later like this

int status = gsl_odeiv2_driver_apply (solver, &t, ti, y);

Passed values are the system sys, the algorithm solver, start point t, end point ti and initial values y. The solution at time
ti comes out in y, as well.

Set initial values and find the solution between t=0...100.

96Actually there are four drivers to choose from.

469

http://www.gnu.org/software/gsl/manual/html_node/Driver.html

gsl_ode_part.cpp

#include <stdio.h>

#include <gsl/gsl_errno.h>

#include <gsl/gsl_matrix.h>

#include <gsl/gsl_odeiv2.h>

#include "gsl_func_jac.h"

int main (void){

double mu = 10;

gsl_odeiv2_system sys = {func, jac, 2, &mu};

auto solver = gsl_odeiv2_driver_alloc_y_new (

&sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0);

int i;

double t = 0.0, t1 = 100.0;

double y[2] = { 1.0, 0.0 };

for (i = 1; i <= 100; i++) {

double ti = i * t1 / 100.0;

int status = gsl_odeiv2_driver_apply (solver, &t, ti, y);

if (status != GSL_SUCCESS) {

printf ("error, return value=%d\n", status);

break;

}

printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);

}

gsl_odeiv2_driver_free (solver);

}

470

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

Van Der Pol oscillator with µ = 10. The line is just a linear interpolation between solved points.

34.4 GSL: interpolation

It’s convenient to hide the GSL-specific parts to a header. I chose to use std::vector for data. The example recognizes two
spline types, not very ambitious :ˆ)

• “cspline” (natural cubic spline)
Changes in one point causes non-local changes to the spline → unstable
”Natural” refers to setting end point derivatives to zero.

• ”akima” or ”Akima” (natural Akima spline)
Changes in one point causes only local changes to the spline → stable

Steps:

1) Reserve space for accelerator (speeds up searches)

471

auto accel = gsl_interp_accel_alloc() ;

2) Reserve space for interpolation

gsl_spline spline = gsl_spline_alloc(gsl_interp_cspline, ...);

3) Initialize the interpolation with known points (x, y) (now in a std::vector):

gsl_spline_init(spline,&x[0],&y[0],x.size()) ;

4) Compute the interpolated y values to yy (iterator posy) at points xx (iterator posx)

*posy++ = gsl_spline_eval(spline, *posx, acc);

If needed, the 1st and 2nd derivative could be computed:

... = gsl_spline_eval_deriv(...);

... = gsl_spline_eval_deriv2(...);

472

gsl_spline.hpp

// wrapper to GSL spline

// spline type "cspline" is natural cubic spline

// spline type "akima" or "Akima" is natural Akima spline

#ifndef GSL_SPLINE_HPP

#define GSL_SPLINE_HPP

#include <iostream>

#include <cstring>

#include <vector>

#include <gsl/gsl_errno.h>

#include <gsl/gsl_spline.h>

namespace my

{

using namespace std;

using vec= vector<double>;

void spline(const vec& x,const vec& y, vec& xx, vec& yy, const string& type){

auto acc = gsl_interp_accel_alloc();

gsl_spline* spline;

int choose=0;

if(type.compare("akima")==0 || type.compare("Akima")==0) choose=1;

switch (choose){

case 0:

spline = gsl_spline_alloc(gsl_interp_cspline, x.size());

break;

case 1:

spline = gsl_spline_alloc(gsl_interp_akima, x.size());

break;

}

gsl_spline_init(spline, &x[0], &y[0], x.size());

auto posy = yy.begin();

for(auto posx = xx.begin() ; posx != xx.end() ; ++posx){

*posy++= gsl_spline_eval(spline, *posx, acc);

}

gsl_spline_free(spline);

gsl_interp_accel_free(acc);

}

}

#endif

473

Example: Test code for GSL spline header

gsl_spline.cpp

// spline test g++ -std=c++11 gsl_spline.cpp `gsl-config --libs`

#include <iostream>

#include <iomanip>

#include <vector>

#include <algorithm>

// home made call to GSL spline

#include "gsl_spline.hpp"

typedef std::vector<double> vec;

void output(const vec& x, const vec y)

{

std::cout<<std::fixed<<std::setprecision(8);

for(size_t i=0;i<x.size();++i)

std::cout<<x[i]<<" "<<y[i]<<"\n";

std::cout<<"\n\n\n";

}

int main(){

vec x(10),y(10); // known points (x,y)

double t;

t=-5.0;

for(unsigned i=0;i<x.size();++i){ // you could use std::generate

x[i] = t;

y[i] = 10.0-t*t;

t += 1.0;

}

y[4] += 10.0; // lift one point up to demonstrate locality/nonlocality

output(x,y);

// interpolated points xx

vec xx(100),yy(100);

double dx = (x[x.size()-1]-x[0])/(xx.size()-1);

for(unsigned i=0;i<xx.size();++i){ xx[i] = x[0]+i*dx;}

// interpolate using natural cubic spline

my::spline(x,y,xx,yy,"cspline");

output(xx,yy);

// interpolate using natural Akima spline

my::spline(x,y,xx,yy,"Akima");

output(xx,yy);

}

// a.out>tt

// gnuplot

// p 'tt' i 0 w p pt 7 ps 1.5 t'known points','' i 1 w lp pt 8 t'cubic','' i 2 w lp pt 12 t'akima'

474

-15

-10

-5

 0

 5

 10

 15

 20

-5 -4 -3 -2 -1 0 1 2 3 4

known points
cubic

akima

34.5 GSL: Monte Carlo integration

Let’s compute an N dimensional integral over a hyper cube,∫ b1

a1

dx1

∫ b2

a2

dx2...

∫ bN

aN

dxN f(x1, x2...xN) .

GSL offers three ways (see Wikipedia Monte Carlo sampling)

1) Plain - sample random points inside the hyper cube; a very crude method

475

http://en.wikipedia.org/wiki/Monte_Carlo_integration

2) MISER - (Press & Farrar) stratified sampling algorithm; sample points from areas that give largest error

3) VEGAS - (Lepage) combines both stratified sampling and importance sampling (sample points from areas that affect the
result the most)

The example code evaluates the integral

1

π3

∫ π

0

dx

∫ π

0

dy

∫ π

0

dz
1

1− cos(x) cos(y) cos(z)
= 1.39320392... .

Prerequisites:

• Random number generator

• Integrand:

Data Type: gsl_monte_function

This data type defines a general function

with parameters for Monte Carlo integration.

double (* f) (double * x, size_t dim, void * params)

this function should return the value f(x,params)

for the argument x and parameters params,

where x is an array of size dim giving

the coordinates of the point where the function is to be evaluated.

size_t dim the number of dimensions for x.

void * params a pointer to the parameters of the function.

The integrand is passed as a function pointer. ROOT (CERN C++ package) includes, among plenty of other things, Monte
Carlo integration and a wrapper to pass a function object to GSL.

(see http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Examples.html)

476

http://project-mathlibs.web.cern.ch/project-mathlibs/sw/5_19_02/html/index.html
http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Examples.html

gsl_monte.carlo.cpp

// g++ -std=c++11 -Wall gsl_monte.carlo.cpp `gsl-config --libs`

#include <iostream>

#include <iomanip>

#include <string>

#include <gsl/gsl_math.h>

#include <gsl/gsl_monte.h>

#include <gsl/gsl_monte_plain.h>

#include <gsl/gsl_monte_miser.h>

#include <gsl/gsl_monte_vegas.h>

double func (double *x, size_t dim, void *params);

void display_results (std::string title, double result, double error);

int main ()

{

const size_t dim=3;

double result,error;

std::string method;

gsl_rng *r;

gsl_monte_function G = { &func, dim, 0 };

double a[dim] = { 0, 0, 0 };

double b[dim] = { M_PI, M_PI, M_PI };

size_t calls = 500000;

// random number generator

gsl_rng_env_setup ();

r = gsl_rng_alloc (gsl_rng_default);

{

method="plain";

auto s = gsl_monte_plain_alloc (dim);

gsl_monte_plain_integrate (&G, a, b, dim, calls, r, s,

&result, &error);

gsl_monte_plain_free (s);

display_results (method , result, error);

}

{

method="MISER";

auto s = gsl_monte_miser_alloc (dim);

gsl_monte_miser_integrate (&G, a, b, dim, calls, r, s,

&result, &error);

gsl_monte_miser_free (s);

display_results (method , result, error);

}

{

method="VEGAS warmup";

auto s = gsl_monte_vegas_alloc (dim);

// warmup

gsl_monte_vegas_integrate (&G, a, b, dim, 10000, r, s,

&result, &error);

display_results (method, result, error);

method="VEGAS";

do

{

gsl_monte_vegas_integrate (&G, a, b, dim, calls/5, r, s,

&result, &error);

display_results (method, result, error);

method = "VEGAS continue";

}

while (fabs(gsl_monte_vegas_chisq(s)-1.0) > 0.5);

gsl_monte_vegas_free (s);

}

}

double func (double *x, size_t dim, void *params)

{

static const double A = 1.0 / (M_PI * M_PI * M_PI);

return A/(1.0 - cos (x[0]) * cos (x[1]) * cos (x[2]));

}

void display_results (std::string title, double result, double error)

{

const double exact = 1.3932039296856768591842462603255;

std::cout<<std::setiosflags(std::ios::fixed);

std::cout<<std::setfill('=')<<std::setw(50)<<"="<<"\n";

std::cout<<"Method : "<<title<<"\n";

std::cout<<std::setfill('=')<<std::setw(50)<<"=\n";

std::cout.precision(8);

std::cout<<"result = "<<result<<" +/- "<<error<<"\n";

std::cout<<" exact = "<<exact<<"\n";

std::cout<<"|diff| = "<<fabs(result-exact)<<"\n";

}

477

Output:

==

Method : plain

==

result = 1.41220870 +/- 0.01343586

exact = 1.39320393

|diff| = 0.01900477

==

Method : MISER

==

result = 1.39132158 +/- 0.00346056

exact = 1.39320393

|diff| = 0.00188235

==

Method : VEGAS warmup

==

result = 1.39267259 +/- 0.00341041

exact = 1.39320393

|diff| = 0.00053134

==

Method : VEGAS

==

result = 1.39328139 +/- 0.00036248

exact = 1.39320393

|diff| = 0.00007746

478

34.6 Add numbers to file names

Sometimes it’s convenient to have file names contain numerical parameters. One option is to use stringstream objects, see
basic/stringstream_ex.cpp. It’s not convenient, because one has to dig a ”C string” out of the stringstream object s using
s.srt().c_str() 97 An easier way is shown below.

Example: Open files res_, suffix is a real number.

97A valid file name has to end with null character (”\0”) like a character string in C.

479

string_to_filename.cpp

// Principle: how to get a computed number to a file name

#include <iostream>

#include <fstream>

#include <math.h>

#include <string>

using namespace std;

int main()

{

const string str = "res_";

for (unsigned i=1;i<5;i++){

ofstream out(str+to_string(cos(i)));

out.close();

}

}

/* opened files

res_0.540302

res_-0.416147

res_-0.989992

res_-0.653644

*/

35 Lambda Functions/Expressions

I have already mentioned lambda functions or expressions in a few examples. They are nice. They are fast. A lambda function
is compiled to a function object and easily inlined. Boost has it’s own lambda’s, parts of the ideas came to be in C++11.

Usage: Define a ”temporary” function on the spot, exactly where it’s used. It can remain unnamed.

480

Bonus: No class needed to get a function object. The lambda remains local and you can’t misuse it elsewhere.

The brackets [] in a lambda are for capturing things from outside. Here is a list of what is captured and how:

[] capture nothing

[x, &y] capture x by value, y by reference

[&] capture all external variables by reference

[=] capture all external variables by value

[&, x] capture x by value, all else by reference

[=, &x] capture x by reference, all else by value

Example: A locally applied function func

autolambda.cpp

//g++ -std=c++11 autolambda.cpp

#include <iostream>

int main()

{

auto func = [] () { std::cout << "Hello world\n"; };

func();

}

Example: Output a container and the cubes of the elements

481

lambda1.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <cmath>

int main()

{

std::vector<int> v{11,22,33};

std::for_each(v.begin(), v.end(), [](int n) {std::cout << n<<" "<<pow(n,3) <<"\n";});

}

11 1331

22 10648

33 35937

Note: int n is passed by value.

482

lambda2.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <cmath>

#include <complex>

int main()

{

typedef std::complex<double> cmplx ;

std::vector<cmplx> v={cmplx(11,12),cmplx(22,21),cmplx(33,32)};

for(auto x:v) std::cout<<x<<" ";

std::cout<<" original data"<<"\n";

// take complex conjugate of elements

std::for_each(v.begin(),v.end(), [](cmplx& c) {c = conj(c);});

for(auto x:v) std::cout<<x<<" ";

std::cout<<" complex conjugate"<<"\n";

}

Tulostus:

(11,12) (22,21) (33,32)

(11,-12) (22,-21) (33,-32)

Note: The elements are passed by reference to complex conjugation.
Example: Calculate the product of std::vector elements.

483

lambda4.cpp

#include <iostream>

#include <vector>

#include <algorithm>

int main()

{

std::vector<double> v{1.0,2.0,3.0};

double prod=1.0;

std::for_each(v.begin(),v.end(), [&prod] (double x) { prod *= x;});

std::cout <<"product = "<< prod << "\n";

}

product = 6

Note: prod is captured by reference.
Example: Chop all elements below some limit to zero.

484

lambda5.cpp

#include <iostream>

#include <vector>

#include <algorithm>

typedef std::vector<double> vec;

void rand_vector(vec& v){

generate(v.begin(),v.end(), [](){return rand()/((double)RAND_MAX);});

}

int vector_chop(vec& v, const double lim){

int count = 0;

for_each(v.begin(),v.end(), [&count,lim](double& x){if(x<lim) {x=0.0; count++;}});

return count;

}

int main()

{

vec v(7);

rand_vector(v);

for(auto x:v) std::cout<<x<<"\n";

const double limit=0.4;

std::cout<<"chopped "<<vector_chop(v,limit)<<" values below "<<limit<<"\n";

for(auto x:v) std::cout<<x<<"\n";

}

485

36 Parallel C++

Choose from two types of parallelism:

1. MPI parallel code. The way to parallelize over multiple nodes.
MPI is a standard, you can install, for example, OpenMPI. The MPI function calls are in principle similar to those used
in mpi4py, but I won’t go into details in these lecture notes.

2. Multihreaded code. The way to parallelize within one multi-core CPU.
C++17 has a quite extensive support for multithreading. Some threading options:

• Intel’s OpenAPI Threading Building Blocks (TBB)

• POSIX threads (pthreads) are low-level API

• Windows threads

On top of these you have very high-level API’s. One of them is OpenMP, which can be used in several languages (C, C++,
fortran...). Another one is C++11 threads.

36.1 Intel OneAPI TBB

OneAPI TBB implements work stealing. The work load is initially evenly distributed to cores, but if a core becomes idle
it can steal work load from a heavily burdened core. This dynamical redistribution is done without any intervention of the
programmer.

Intel OneAPI compilers and TBB can be easily chosen using environment modules, both in Linux and in Windows.
I recommend using the lua-based Lmod module system (installation instructions).98 Intel OneAPI is usually installed under
/opt/intel/oneapi, and it provides the script modulefiles-setup.sh. Choose the directory for your private module files, for
example

98Another option is to use the Environment Modules open source project.

486

https://lmod.readthedocs.io/en/latest/030_installing.html
http://modules.sourceforge.net/

$ sh /opt/intel/oneapi/modulefiles-setup.sh --outdir= ${HOME}/privatemodules

Then add the line module use ${HOME}/privatemodules to your ${HOME}/.bashrc. After this you can either start a new
bash shell or in the current shell type

$. ~/bashrc

module avail

This lists available modules. Intel compilers setup is

$ module add icc

which sets up the environment to icc (for C), icpc (for C++), and ifort (for fortran). TBB environment is set up using

$ module add tbb

Examples of compilations:

$ g++ -std=c++17 sort_parallel.cpp `pkg-config --libs --cflags tbb`

$ g++ -std=c++17 sort_parallel.cpp -L/opt/intel/oneapi/tbb/latest/lib/intel64/gcc4.8/ -ltbb

$ g++ -std=c++17 sort_parallel.cpp -L${LIBRARY_PATH} -ltbb

$ icpc -Ofast sort_parallel.cpp -ltbb

Apparently icpc finds the TBB headers and the library with just the option -ltbb.

Remark: Why couldn’t my g++ do that? module add tbb appends to the CPATH environment variable the path /opt/intel/oneapi/tbb/2021.4.0/include/,

and g++ finds the headers. Also the compile-time path to libraries is setting LIBRARY_PATH, but unfortunately the compiler sees the path as (g++ -v

...) LIBRARY_PATH=... :/usr/lib/../lib64/:...:/opt/intel/oneapi/tbb/2021.4.0/lib/intel64/gcc4.8/. I have also an open-source TBB library at

/usr/lib64/libtbb.so (use by Blender, Sagemath etc.), and the linker finds that wrong TBB first. So how come g++ -std=c++17 sort_parallel.cpp

-L${LIBRARY_PATH} -ltbb works? For some reason, ${LIBRARY_PATH} is the correct tbb path. These kind of quirks are very annoying.

487

36.2 POSIX Threads (pthread)

Basics are in cplusplus.com. Notice the extra flags -pthread needed in compilation

$ g++ -std=c++17 threads1.cpp -pthread

threads1.cpp

// compile: g++ -std=c++17 -pthread threads1.cpp

#include <iostream>

#include <chrono>

#include <thread>

using namespace std::chrono_literals; // s as second

void foo() { std::cout<<"started foo\n"; std::this_thread::sleep_for(3s); }

void bar(int x) { std::cout<<"started bar\n"; std::this_thread::sleep_for(5s); }

int main() {

std::thread th1 (foo); // a thread calls foo()

std::thread th2 (bar,0); // a thread calls bar(0)

th1.join(); // wait for th1 to finish

std::cout<<"th1 joins\n";

th2.join(); // wait for th2 to finish

std::cout<<"th2 joins\n";

}

Especially file IO gets easily garbled with concurrent read/write, so better use a mutex (MUTual EXclusion). The next
example is a Printer class with a mutex:

488

http://www.cplusplus.com/reference/thread/thread/

threads_printer.cpp

//

// Linux: compile using

// g++ -std=c++17 threads_printer.cpp -pthread

//

#include <iostream>

#include <chrono>

#include <thread>

#include <mutex>

#include <string>

#include <fstream>

#include <vector>

namespace demo{

class Printer{

private:

std::mutex printmtx_;

public:

void print(std::string file, int x) {

std::lock_guard<std::mutex> lock(printmtx_);

std::cout << "thread id "<<std::this_thread::get_id() << " printing to file " << file << '\n';

std::ofstream out(file);

out<<x<<"\n";

out.close();

}

};

}

int main() {

demo::Printer printer;

auto job = [&printer](int x){printer.print("test",x);};

std::vector<std::thread> ths;

for(int i=0; i<10; i++){

std::thread th(job,i);

ths.push_back(std::move(th)); // must use std::move

}

for(auto &th: ths) th.join(); // must use auto &

}

Some useful features in threads_printer.cpp:

489

• printmtx_ is a static mutex, every instance of Printer shares the same mutex.

• std::lock_guard<std::mutex> lock(printmtx_) replaces the usual unsafe lock-unlock sequence

// unsafe code, may leave the lock on

std::mutex mtx;

void fun(){

mtx.lock();

::: do something - but this may exit before unlock!

mtx.unlock();

}

with a safe locking: it releases the lock when it goes out off scope, also in case of an exception:

// safe code, never leaves the lock on

std::mutex mtx;

void fun(){

std::lock_guard<std::mutex> lock(mtx);

::: do something

} // scope of lock() ends, and it's released automagically

• Threads are collected to a std::vector container. A thread must be moved to the container,

ths.push_back(th); //error

// g++ says use of deleted function 'std::thread::thread(const std::thread&)'

ths.push_back(std::move(th)); // Ok

• Joining all threads is now simple,

490

for(auto& th : ths) th.join();

where auto& th makes possible to actually close the thread (auto th would again try to copy the thread and close the
copy).

You can also use std::swap to swap threads, just std::swap(t1,t2); will swap threads t1 and t2.

36.3 C++17: Parallel std Algorithms

If your code uses std algorithms, you can trivially parallelize over multiple threads. Since C++17, many algorithms accept an
execution policy:

1. std::execution::seq is sequential

2. std::execution::par may be parallel

3. std::execution::par_unseq may be parallel and vectorized.

The algorithms are overloaded, you can add the policy:

std::algorithm_name(policy, /* normal arguments */);

The next page show how sorting 108 random floating point numbers is done sequentially or in parallel. I got the result99

ordinary sequential sort

Timer: 11.043943000000 secs

parallel execution, policy std::execution::par

Timer: 1.879833000000 secs

parallel execution, policy std::execution::par_unseq

Timer: 1.897244000000 secs

99Using g++ 9.2 and 8 threads, set in bash export OMP_NUM_THREADS=8.

491

http://en.cppreference.com/w/cpp/algorithm

Compilation shows how parallel algorithms rely on TBB (-ltbb):

g++ -Ofast -std=c++17 sort_parallel.cpp timer.cpp -ltbb

or
clang++ -Ofast -std=c++17 sort_parallel.cpp timer.cpp -ltbb

Both compilers give comparable speed.

492

sort_parallel.cpp

// C++17 parallel sort

// System requirements: The Threading Building Blocks C++ headers and shared development libraries (tbb)

// compile using environment module tbb

// module add tbb

// g++ -Ofast -std=c++17 sort_parallel.cpp `pkg-config --libs --cflags tbb`

#include <vector>

#include <algorithm>

#include <iostream>

#include <random>

#include <execution>

#include "timer.hpp"

int main(){

using std::cout;

my::Timer timer;

// a vector to sort

const int N=1e5;

std::vector<double> v(N);

std::mt19937_64 rng;

std::uniform_real_distribution<double> unif(0,1);

for(auto& el : v) el = unif(rng);

std::vector<double> w(v); // copy

timer.tic();

std::sort(v.begin(), v.end());

timer.toc();

cout<<timer<<" sequential sort \n";

v=w;

timer.tic();

sort(std::execution::par, v.begin(), v.end()); // C++17

timer.toc();

cout<<timer<<" parallel sort, policy std::execution::par \n";

v=w;

timer.tic();

sort(std::execution::par_unseq, v.begin(), v.end()); // C++17

timer.toc();

cout<<timer<<" parallel sort, policy std::execution::par_unseq \n";

}

493

36.3.1 Parallel std::reduce and std::transform_reduce

C++17 introduced some new algorithms, mainly to overcome limitations that prevent their parallelization. The old algorithm
std::accumulate works, by definition, from left to right,

a1 op a2 op a3 op a4 , (36)

but in general one can’t change this to
(a1 op a3) op (a2 op a4) . (37)

However, this is valid if the operator op is commutative and associative, such as when op = +,

a1 + a2 + a3 + a4 = (a1 + a3) + (a2 + a4) , (38)

thus allowing for parallel execution of partial sums in threads.
std::reduce takes the liberty to evaluate the expression in arbitrary order.
std::transform_reduce can, for example,

• Compute inner product in parallel (parallel version of std::inner_product)

// computes x dot x

result = transform_reduce(x.begin(),x.end(),x.begin(),0.0);

• Apply a function to each element and ad them up, that is,100 result =
∑

i f(xi),

result = transform_reduce(x.begin(),x.end(),x.begin(),0.0,std::plus<>(),f);

The product result =
∏

i f(xi) can be computed with

100Notice the initial value 0.0, a plain 0 will give just result=0.

494

result = transform_reduce(x.begin(),x.end(),x.begin(),1.0,std::multiplies<>(),f);

36.4 OpenMP parallel programming

OpenMP offers an easy way to parallelize loops, see, for example, http://bisqwit.iki.fi/story/howto/openmp/

Example: OpenMP parallel loop; too small a task to get any speed-up, though.

495

http://bisqwit.iki.fi/story/howto/openmp/

openmp_ex.cpp

// g++ -std=c++17 -pipe -O3 -march=native -fopenmp -mfpmath=sse -msse2 openmp_ex.cpp

#include <iostream>

#include <cmath>

#include <vector>

int main()

{

std::vector<double> tab(200);

const int N=tab.size();

#pragma omp parallel for

for(int i=0; i<N; ++i) // threads have their own private i

{

tab[i] = sin(2*M_PI*i/N);

//std::cout<<i<<"\n"; // will produce mess, but shows parallelism

}

//std::cout<<"\n";

for(auto t:tab) std::cout<<t<<" ";

std::cout<<"\n";

}

The preprosessor directive \#pragma omp parallel for tells what to parallelize. You need to read more from a better
source, but here are some other pragmas:

#pragma omp parallel // Somewhere later comes a parallel computation

#pragma omp parallel num_threads(3) // parallel over 3 threads

#pragma omp for // following for-loop is parallel

496

#pragma omp for private(k) // each thread has it's own copy of k

#pragma omp for shared (m) // all threads use the same m

#pragma omp for ordered schedule(dynamic) // parts of for must happen in due order

#pragma omp ordered // following statement must be done in ordered fashion

A loop variable, such as i in the previous example, is automatically ”private”, meaning each thread get its own value of i from
the OpenMP scheduler. The scheduler decides who computes what.

In linux, the number of thread is set to four using environment variables:

setenv OMP_NUM_THREADS 4 (csh or tcsh shell)
export OMP_NUM_THREADS=4 (bash shell)

These are for run-time only, you can change these as needed without re-compiling the code.

> export OMP_NUM_THREADS=2

> a.out

> export OMP_NUM_THREADS=16

> a.out

runs a.out first using two threads (cores) and then using 16 cores.
The function omp_set_num_threads(16) does the same, overriding OMP_NUM_THREADS. See the next example.

OMP_NUM_THREADS and omp_set_num_threads() are only suggested maximum number of threads.

497

Example: for-loop reduction with timing.

498

openmp_reduction.cpp

#include <iostream>

#include <vector>

#include <cmath>

#include <fstream>

#include <omp.h>

#include <chrono>

using namespace std::chrono;

int main()

{

const int n=100000000;

std::ofstream fileout("timing");

double time,reftime=0.0;

const int ncores = 12;

std::cout<<ncores<<"\n";

for(int nc=1; nc!=ncores+1; nc++) {

omp_set_num_threads(nc); // override OMP_NUM_THREADS

double sum=0;

auto t0 = high_resolution_clock::now();

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i < n; i++) sum+=1/cos(i);//thread sums put together in the end

auto t1 = high_resolution_clock::now();

auto d = duration_cast<milliseconds>(t1-t0);

time = d.count()/1000.0;

std::cout<<"sum = "<<sum<<" cores "<<nc<<" timing "<<time<<" s"<<"\n";

if(nc==1) reftime = time;

fileout<<nc<<" "<<time<<" "<<reftime/time<<"\n";

}

fileout.close();

} 499

numerics/openmp_reduction.cpp: Timings on AMD Ryzen 7 1700X Eight-Core processor

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of cores

timing
ideal linear speedup

cores time (seconds) speed-up factor
1 1.457 1
2 0.730 1.996
3 0.487 2.992
4 0.365 3.992
5 0.293 4.973
6 0.244 5.705
7 0.211 6.905
8 0.201 7.249

OpenMP has some overhead, so don’t expect any speed-up for short tasks.

500

37 Tips and tricks

Here ::: means ”some lines of code”. The triple dot ”...” has a C++ meaning, it’s an ”ellipsis” :)

• How to pause execution:

cout<<"PRESS ENTER TO CONTINUE\n";

cin.ignore();

• Infinite loops can be typed as while(true) \{:::\}, or more to the point, as

#define ever (;;)

:::

for ever

{

// break to get out

:::

}

I heartily recommend stackoverflow.com discussions. ⇐ This is THE tip!

• (Linux) Long compiler messages can be piped to more (or less); Notice the ”&” after the pipe character

g++ -std=c++11 program.cpp |& more

• If you are bored, try strangest-language-feature:

501

https://stackoverflow.com/questions/1995113/strangest-language-feature?noredirect=1&lq=1

strangest_language_feature.cpp

#include <iostream>

int main()

{

int x[3]={1,2,3};

std::cout<<"x[1]="<<x[1]<<"\n";

std::cout<<"1[x]="<<1[x]<<"\n";

}

This one is absolutely priceless:
what-is-the-worst-real-world-macros-pre-processor-abuse-youve-ever-com .

This one is C, but works also in C++: fast inverse square root @Wikipedia. The original Quake III game really has the
lines of code cited, see Quake III @githib

• If you think C++ has plenty of initialization, see Mike Lui’s blog (Jan 3rd 2019)
seriously-bonkers
especially the Forest Gump adaptation
c++ init forest.gif

• (Linux) It’s tedious to type g++ -std=c++11 ... all the time. Write a makefile, use an IDE, or set an alias,
alias g++=’g++ -std=c++11’ (bash, put this line to $HOME/.bashrc and type ”. $HOME/.bashrc”)
alias g++ ’g++ -std=c++11’ (csh or tcsh, put this line to ${HOME}/.cshrc and type ”source ${HOME}/.cshrc)
and you only need g++ program.cpp

• std::numeric_limits (from <limits>) tells what traits a type has, hence they are ”type traits” For example, std::numeric_limits<int>::max()
gives 2147483647. If you have in mind a class that can use an optimized algorithm and another related one that cannot,
you can give the objects a trait. Based on that trait, the code can automatically decide if the optimized or the default
algoritm is applied. See advanced/traits.cpp.

502

http://stackoverflow.com/questions/652788/what-is-the-worst-real-world-macros-pre-processor-abuse-youve-ever-com
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552
http://mikelui.io/2019/01/03/seriously-bonkers.html
http://mikelui.io/img/c++_init_forest.gif

38 Some more C++ in the net

• Genetic algorithms are used for optimization
Genetic-Algorithm-Library

• Bartlomiej Filipek gives examples how to use the standard algorithms instead of raw loops:
Top-Beautiful-Cplusplus-std-Algorithms-Examples

39 Farewell words for C++ numerical programmers

• Prefer C++ Standard Library containers over dynamic arrays. Fixed size std::array is fast.

• Express math matrices and vectors using libraries, Eigen, Armadillo, MTL4, Blaze

• Link BLAS and LAPACK operations from MKL or OpenBlas.

• Use C++ Standard Library algoritms, not loops

• Forget type safety, it’s the least of C++ numerics problems.

• Move, don’t copy. Use std::ref() or a lambda in standard algorithms such as std::generate.

• Pass functions as function objects, lambda functions, and only as a last resort use std::function. Avoid pointers
to functions.

• Avoid verbose clutter. Hide ugly details to headers. Your main C++ code should express how the numerical problem
is solved, not to teach the C++ programming language.

fft(data,1,n); // overloaded fft(), library call in a header

gsl_fft_complex_radix2_forward(data,1,n); // Same job. This is why I don't use C

503

http://www.codeproject.com/Articles/26203/Genetic-Algorithm-Library
http://www.codeproject.com/Articles/854127/Top-Beautiful-Cplusplus-std-Algorithms-Examples

• Use namespace protection.

• Templates are you friends.

• Use operator overloading to make cleaner code. Test thoroughly.

outfile << myobject; // overloaded <<, more readable than a function call

A = (B+M)*c ; // overloaded * and +, B,M complex matrices,c real.

A = multiply_complexmat_realvec(sum_complexmat_complexmat(B,M),c); // C? Oh no!

• Give data types short and descriptive names with using.

using my_cvec = lib1::part3::section4::vector<complex<double>> ;

• A fast algorithm in a slow computer beats a slow algorithm in a fast computer.

• If you really need low-level access, use smart pointers (std::unique_ptr, std::shared_ptr). Why didn’t I men-
tion them until now? If possible, learn to live without any pointers. People used std::auto_ptr in their codes, only
to find the feature was deprecated in C++11 and removed in C++17. What’s the lifetime of std::unique_ptr and
std::shared_ptr?

Those are my principles, and if you don’t like them... well, I have others.
Groucho Marx

504

	Course itinerary
	Relation to other courses in JYU
	Popularity of programming languages

	Version control using git
	 A simple do - undo test

	Python
	About Python
	Installation
	Linux
	Windows 10
	Python 3 vs. Python 2

	Python package managers
	pip package manager
	Conda and Anaconda
	 Conda channels

	Spyder, the scientific Python IDE
	Where does Python search for modules?
	 How to exclude packages under .local
	Python (virtual) environments
	 Basic Python virtual environment
	 pip freeze
	 Conda environments
	Spyder, iPython, Jupyter Notebook, and Jupyter Lab
	 Jupyter Lab

	Updating Python packages
	Updating Python packages using pip package manager
	Updating Python packages using conda package manager
	 Troubleshooting

	Python file extentions
	Timing and watching memory usage
	Timing with the timeit module
	 Detailed profiling of short-running Python codes
	 Detailed profiling of long-running Python codes
	Timing and watching memory usage in iPython

	General advice to speed up Python
	List comprehensions
	 How fast is list comprehension?
	 Nitpicking: What makes list comprehension sometimes faster than for-loops?

	String concatenation
	Counting hashable objects
	Sorting
	Sorting by a key
	Sorting by a key in a given element
	NumPy Sorting

	Arbitrary precision calculations
	Large integers
	Long floats with mpmath

	Advanced unpacking
	A word about function arguments
	The beauty of the extended call syntax: *args and **kwargs
	 Using *args to absord extra arguments

	Decorators
	Python preprocessing and adding code for debugging
	Turning a decorator on/off using python -O
	 Decorator classes
	dataclass decorator
	Cache decorator
	Decorators with arguments

	Iterables, generators and yield
	Generator for watching a file
	Generator pipelines

	The versatile underscore
	Underscores in Python names
	Magic methods
	Context managers
	 Generators in context managers
	 Example of a context manager

	Coroutines
	Delegating work to subgenerators with yield from
	Changing behaviour of a library class method
	 Curiosity: Poking a method to a class
	 Curiosity: Poking an attribute to an object

	Curiosity: Making sure only one class instance can be created: Singleton
	NumPy random numbers and seeds
	 Sequential code
	 Parallel code

	Debugging Python segmentation fault
	Pattern matching with match-case in Python version 3.10 - and a warning
	The Property decorator

	Simulation and Measurements in Python
	Python Serialization
	Matplotlib
	Updating a plot by clicking it
	Matplotlib backends and how plots are viewed

	NumPy
	Matrix product and elementwise product
	Dot product calculated three ways
	NumPy BLAS
	 FlexiBLAS
	 Intel OneAPI and MKL
	 Conda Intel Python environment

	BLAS and speed
	 Intel and AMD Zen Architecture
	 Where did Cholesky decomposition spend time?
	Blis BLAS library

	View, and deep or shallow copy
	Copying Python lists
	Converting 2D data: numpy.matrix numpy.array without copying
	NumPy arrays: Copying data or Changing View?
	NumPy: ndarray.resize() or numpy.resize()?
	 NumPy method .resize()
	 NumPy function resize()
	More array slicing
	Curiosity: How to set temporary NumPy print options

	NumPy matrix operations
	 Linear regression

	NumPy broadcasting instead of for-loops
	 Adding a dimension to an array

	NumPy einsum tensor operations
	Computing Di = j Ai Bij
	 Using NumPy broadcasting and sum
	 Using NumPy einsum
	Potential energy calculation with NumPy einsum
	einsum optimization
	 NumPy einsum promotion problem

	SciPy
	SciPy robust regression
	Simplified Function Interface with functools.partial

	Pandas
	NumExrp
	Numba
	Numba jit options
	About NumPy, Numba, and NumExpr

	Machine learning with Python
	Fully connected, dense neural network
	Training a neural network
	Math details for one-hidden layer network forward and backward propagation
	Gradient descent
	Automatic Differentiation (AD)

	Batches, epochs, and overfitting
	Learning diabetes factors among Pima indians
	US Space Shuttle Data
	Gaussian process regression
	JAX

	Parallel Python
	Python Threads
	PyPy - a user-friendly no-GIL interpreter

	Python Multiprocessing
	How and what not to parallelize
	Examples of concurrent.futures

	Multiprocessing and Pool
	Safe locking with a context
	Bohrium

	Subprocess: easy parallelism
	MPI Parallelism with mpi4py (MPI for Python)
	 Send 'Hello World' to all processes
	 Parallel Monte Carlo estimate of
	 Collective calls
	send/recv or Send/Recv
	 Broadcasting a NumPy array
	Shutting down MPI jobs after an exception
	 Aborting mpi4py
	Non-blocking communication

	Python as a glue language
	Python extensions and embedding Python
	SWIG (Simplified Wrapper and Interface Generator)
	SWIG examples

	Cython
	Creating a standalone executable with Cython
	 Cython and C++

	Julia
	Julia IDEs
	Julia for Visual Studio Code
	Adding Julia to Jupyter notebook or Jupyter lab

	Calling Julia from Python
	Julia: language highlights
	Julia command prompt
	Julia arrays, matrices, references, and copies
	Julia broadcasting
	Julia array loop
	Julia Automatic Differentiation (AD)
	Julia Differential Equations
	Julia StaticArrays
	Julia Macros
	Julia Metaprogramming
	Multiple dispatch
	 The Expression Problem
	 Adding a type and a method in Python
	 Adding a type and a method in C++
	 Adding a type and a method in Julia

	C++
	A brief history of C++
	About these C++ lectures
	Easy tasks
	Online sources for C++ programmers
	C++ in Matlab or Octave
	C or C++ in Python 3

	A really brief introduction to C++
	The meaning of #include <iostream>
	Scope
	Simple file operations

	C++ Classes
	Private and public data, methods
	Member function qualifiers const and noexcept
	Example of a data structure

	Templates - Generic instructions and algorithms
	Variadic functions and templates

	C++ Standard Library
	C++ References
	Why would a reference be safer than a pointer?
	Unsafe references

	lvalue and rvalue
	rvalue references and rvalue references
	One-liners of lvalue and rvalue references
	The strange T&& and the Perfect Forwarding Problem

	C++ Smart pointers
	C++ Standard Library: A closer look
	std::vector container
	Iterators
	Storing objects into std::vector
	Sneak peak: overloading operator <<

	 Heterogeneous types stored in std::vector
	Moving, not copying
	std::valarray and std::array
	Give an alias to a type with using
	Heavier usage of aliases
	Stream iterators (read on spare time)
	Algorithms and utilities
	About std: min_element, max_element, find, sort, reverse
	std::swap is a template

	Function returning a tuple
	Header guards and namespace encapsulation
	Formatted output with <iomanip>
	std::complex: complex numbers and arithmetics

	Function Overloading, Optional Arguments and Default Arguments
	Operator overloading
	 fortran operator overloading
	Overloading << to print class objects

	C++ Standard Library: more algorithms
	std::for_each
	When to use std::for_each ?
	std::for_each in detail
	The std::generate algorithm
	C++ Standard Library algorithms - take care of copies
	C++ Standard Library algorithms - stateful objects and std::ref

	A few things that may speed up your code
	noexcept: no-throw quarantee
	constexpr: compile-time constant expressions
	Function objects (functors)
	Five ways to pass a function to a function
	C++17 calls with std::invoke
	Cache data
	Use emplace_back() instead of push_back()
	Prefer the methods of containers over generic algorithms
	Expression templates (read on spare time)

	Generation of (Pseudo) Random Numbers
	Simplify function calls with std::bind
	Return to std::generate: the member function predicament

	Boost and Ordinary Differential Equations (ODE's)
	Linear algebra - which library to use?
	Armadillo examples

	Calling C or fortran from C++
	Fixed-size arrays in C++: plain array and std::array:
	Exception handling with throw and catch
	Gnu Scientific Library (GSL)
	GSL: statistics
	GSL: Fast Fourier Transform (FFT)
	Passing a pointer to complex data

	GSL: differential equations
	GSL: interpolation
	GSL: Monte Carlo integration
	Add numbers to file names

	Lambda Functions/Expressions
	Parallel C++
	Intel OneAPI TBB
	POSIX Threads (pthread)
	C++17: Parallel std Algorithms
	Parallel std::reduce and std::transform_reduce

	OpenMP parallel programming

	Tips and tricks
	Some more C++ in the net
	Farewell words for C++ numerical programmers

