Pur pose;
How to train an MLP neural network in MATLAB
environment!

that is

For good computations,
we need good formulae
for good algorithms;
and good visualization
for good illustration
and proper testing
of good methods
and succesfull applications!

0.6

0.4

0.2

-0.4

Critical values:

~ Global max

~ Local max

Local max

Global min -

4 6 8 10 12 14 16 18 20

Theoretical bases of optimization problems:

Uy
Minimize J(u) where u= | : | € R". (1)

Up

J : R™ — R cost function(al) measuring the goodness of a solution candidate:
NOTICE: good measure = good problem =- useful solution (A = B = B — —Al)

we assume that 7(u) >0 VYu e R"

NOTICE: max, J(u) = min, —J(u)

we are seeking the values of (uy, ..., u,) (Unknowns)

through the following definitions we introduce precise characterization of the visual
intuition of the previous (and the following) figures

Definition 1. Vector u* is the (strict) global minimum of problem (1) if
Jw") < (<) J(u) forallueR"

Definition 2. Vector u* is the (strict) local minimum of problem (1) if there existsa é > 0
such that

J(u*) < (<) J(u), forallue R"suchthat ||ju—u*|| <.

Theorem 1. (Weierstraas) If function 7 in problem (1) is continuous, then there exists a
minimum solution u*.

Definition 3. Function 7 is convex if
JAMx+(1-Ny) <A ITx)+1-NT(y) Vx,yeR"and0 < A < 1.

Strict convexity requires < instead of < for x # y.

Theorem 2. For (locally) convex (and bounded from below) function 7 there exists a (local)
minimum. If 7 is (locally) strictly convex, then the minimum point is (locally) unique.

Theoretical bases of gradient methods:

y § X
1D mean value theorem of differential calculus:
f(z)=fly)+ f(§)(z—y) forsomef € (y,z).

¢ through the following definitions we generalize both the concept of derivative and its
relation to local function approximation in 1D into higher-order spaces

Theoretical bases of gradient methods |1

Definition 4. Function 7 is (continuously) differentiable at u (J € C'(R™)), if there exists
vector V7 (u) € R™ and function e : R™ — R such that

T(@) = T+ VI (W (@ -)+ [a - ulle(u,a - u) @)

forallu € R"and e(u,u — u) - 0 when o — u.
Vector V.7 (u) is the gradient of 7 at u consisting of the partial derivatives:

0J (u) 9
6u1 6U1
VJ)=| : | ~| | J(u). 3
0J (u) 0
Ouy, Oun,

Definition 5. Function 7 is twice (continuously) differentiable at u (7 € C%(R")), if there
exists vector V.7 (u) € R™ and symmetric n x n-matrix H(u), the so-called Hessian matrix,

and function € : R® — R such that
1

J(@) = J () + VI ()" (@ - u)+ (@ —u) Hu)(@-u) +[|a - ul*e(u, 0 -u), (4)

where (again) e(u,t — u) — 0 when u — u.

Hessian matrix consists of the second-order partial derivatives 662{6(11;) :
027 (u) 027 (u)
ou? Tt OuiOuy,
H(u) (~V(V'J(0) ~VTW)=| : .
0% (u) 0%J (u)
OunOuy " ou2

Definition 6. Vector d € R™ is descent direction for function 7 at u, if there exists 6 > 0
such that

J+td) < J(u) forallte (0,4].
Definition 7. Let 7 be differentiable at u. If there exists a direction d € R" such that
VJ(u)Td < 0, then d is descent direction for 7 at .

Theorem 3. Let 7 be differentiable at u*. If u* is local minimum, then V.7 (u*) = 0 (i.e.,
u* is a critical value of 7).

Theorem 4. Let 7 be twice differentiable at u*. If u* is local minimum, then V.7 (u*) = 0
and the Hessian matrix H(u*) is positive semidefinite. If V.7 (u*) = 0 and H(u*) is positive
definite, then u* is strict local minimum.

Two examples:

As an example, we consider a few least-mean-squares (LMS) (quadratic) cost functionals
and the corresponding optimization problems. Let {x1,...,xx} be a given set of (random)
vectorssuch that x; € R" forall 1 <i < .

1) Mean:
N 1 N 1 N 1 n
T =Y sl =il =3 S —x)T (w—x) = > 53 (w5 — (x:);)?)
i=1 i=1 i=1 = j=1
Because %W = (u —x;); forall i, j, we obtain
N N
VIu) =) (u-x;)=Nu-) x;

=1 =1

When u is solved from V.7 (u*) = 0, we get the sample mean

LN
u'=—>» x;, =X

Notice that if there is some (measurement, quantization) error like x; = x; + ¢;, then
ut = L3V %+ L3 e Hence, when N — oo or g; € N(0,6?) (in general,
any symmetric error distribution with “enough samples™), u* is a good estimate for the
average behaviour of the given sample.

Finally, H(u*) = VI (V7 (u)) = NI, so that % is always unique.

i) Linear fit: let n = 2 and

Then .
agg?) - Z ((x4)2 — (uwa(x;)1 + u1))
8?,5:) - Z ((xi)2 — (ua(xi)1 +u1)) (xi)1
and -

N
%#1("1);] Error in lecture notes!!!.
; 1

Basic Algorithm:

1. Choose a starting point u®. Set iteration counter k£ = 0.

2. Generate a descent direction d*.

3. Generate a step length ¢* such that 7 (u* + t*d*) < J(u*).
4. Update uf*! = u* 4 t*d*.

5. Stopping test. If need to continue, set k = k£ + 1 and go to 2.

When to Stop?

For chosene > 0 :

e (Absolute) critical point: [|[VJ (u*+1)|| < e.
e (Relative) critical point: [|[VJ (u*t))|| < ||V (V)]
e Change of solution: |[u**! — u*|| = t*||d*|| < e.

¢ (Relative) change of cost functional:
j(ukﬂ) _ j(uk)
max(6, |7 (u*)[, [T (u**1])

<e, whered > 0.

Qualities of a good algorithm?

1. convergence (it solves the problem...)
2. speed of convergence (fastly...)

3. memory efficiency (with low memory consumption; usually contradicts 2.)

Stepsize determination:

assume that a descent direction d* is given
we review different possibilities for selecting ¢* appropriately

starting point is to consider the following 1D minimization problem

min 7 (u" + td") = j(t), (5)

where [is a priori given search interval, usually 7 = [0, 1] (cf. Definition 3 of convex-
ity)

in principle, any minimization method for (5) is sufficient (halfing method(?), regula-
falsi, golden search, etc.), but one must try to cope with previous quality attributes of a

good overall method
=- compromise: compute quickly “good enough” solution for (5)!

Basic approaches:

Fixed stepsize: choose by hand some stepsize 0 < ¢* < 1 and use it throughout the
optimization iterations. Convergence questionable and slow, usual values, e.g. t* =
0.01, 0.05, 0.1.

Armijo-rule: Search smaller stepsizes consequtively by testing the sufficient decrease
of cost functional

0° Fix constants s, 3,0 such that s > 0, 8 € (0,1) and o € (0, %).

1° Try consequtively & = {0,1,2,...} and sett = t¥ = 3™, where my is the first
non-negative integer m, for which the so-called Wolfe-condition is satisfied:

J") — JW* 4+ " sd*) > —0 " s VI (uF)TdF.

Choice of free parameters, e.g.,as s = 1.0, 8 = 0.4 and o = 0.25.

Basic approaches (cont.):

e Quadratic interpolation: Approximate function j using second-order polynomial
7(t) =~ p(t) = at?+bt+c. Setting p'(t) = 2at +b = 0 yields to stepsize t* = —b/(2a)
when a # 0.

For determining the coefficients a, b and ¢ usually two basic methods are applied.

1. first approach is based on using values of j at three points, e.g.
t(]:OI j():j(uk)
t=3: H=JW+5-d
th=1: jo=JW+1-dF)
Second-order polynomial that goes through the points (¢;, j;), ¢ = 1,2, 3, is recov-
ered by solving the resulting linear problem, whose solution

c = Jo
a = 2(jo— 241 + jo)
b = —3jo+451—J2

; x _ —=b __ 3jo—4j1+Jo
yields ¢ = 37 = Go=zh sy

2. if gradient of 7 is also available, then by using j/(to) = V.7 (u*)Td* (cf. Defini-
tion 7), choosing 0 < ¢; < 1 and setting j; = J (u* + ¢;d*), we get

c = Jo
h — j(uk)Tdk
4 = J1—bti —c -’

G

Notice that if a < 0 then quadratic approximation is insufficient (too large search
interval, bad search direction, etc.). Usually one then tries to decrease I <+— 0.5 % [
and repeat the process.

e Cubic interpolation: like the quadratic, but based on third-order polynomial approxi-
mation, which can be determined using four values of 5 or two set of value-derivative
pairs. Notice the more restrictive conditions for appropriate values of coefficients.

e more advanced example routine in lecture notes, see also MATLAB Optimization Tool-
box

Descent direction:

Descent direction (cont.):

e Starting point: from Theorem 7 it follows that
~VI W)V (W) = —[|VI(Wh)[? <o.
e in fact, —V 7 (u*) points to the direction of the most rapid decrease
= good direction, but usually not the best length!

e Newton’s method:
H(u")d" = -vJ(u*) = —g*
— well-defined when H(u*) positive definite (i.e., J strictly convex):

T

VI (uh)fd* = —g" [H(u")]g" <0

— BUT: analytic determination of H(u*) for real problems problematic!
— BUT: Inversion of H(u*) for real problems expensive!
e BFGS quasi-Newton method: approximate (H(u**1))~! by

qTDkq) pp’ Dfqp” +p (Dfq)”
p’q / pfq p’q

Dk—H :Dk-l- <1+

where
p = u —u,

q = g —gh,
and usually DY = D! = 1.

— due to cumulation of errors reinitialization of D* = T after suitable number of
iterations (usually after 20-50 iters.)

Some additional stuff:

¢ Finite difference approximation of the gradient:
k A k
gl ~ J(u'+ h? J(a) forward difference, 1st order accuracy wrt h,
k) — E_hé.
g J(u'+ h51)2 hj(u hdi) central difference, 2nd order accuracy.

— the usual choice h = /¢, ¢ is the machine epsilon (MATLAB eps).
— 6; Is the so-called Knonecker’s delta

o { 1 4th index,

12

0 for other indeces,
¢ L evenberg-Marquart-method:

ei(u)

minimize J(u) = %iei(u)2 — %E(u)TE(U), where E(u) =
i=1 ey(u)

— gradient: V7 (u) = V(1 3, ei(w)?) = 3, Ves(u) - e;(u) = J(u)T B(u),

where J(u) is the so-called Jacobian matrix

Oe; (u) Oeq(u)
8111 e 6un
J(u) = : : e RV,
den(u) den(u)
ouy e ou,,

— iteration: (J(u*)T J(u*) + p*T) d* = —J(u*)T E(u*) for suitable u* > 0.

Some additional stuff (cont.):

e Conjugate gradient method a la Polak-Ribiere:

d’=r"=-VvJg(’ (initialization)
t* . 1D minimization of function7 (u* + ¢t* d")
W — ok 4 R gh
I,k+1 — —Vj(ukﬂ)
FHINT (k1 _ ok
o))
dk+1 — IJ<:+1 + Bk+1 dk

— better control of search directions on (nearly) flat error surface
— de facto -method for solving SPD linear problems

e About constrained optimization

— In many cases solution of an optimization problem should be constrained to a given
admissible set C

— e.g., production costs always positive u; > 0 Vz (inequality constraint), eigen-
vector’s norm always one ||u*|| = 1 i.e. [[u*|| — 1 = 0 (equality constraint) etc.
— most common approach is to complement the basic algorithm with a projection
step:
4.5 Project u**! into C by setting u**! = Pc(uf*?).
Here Pc : R™ — R™ is a projetion-operator, e.g.

Piuso}(u) = max(u,0) (componentwise),
u

Poal=nr(1) =u=—.
{lufl=11(w) Tal

— generally constraint optimization is a hard discipline

— Other basic approach is to use the so-called (augmented) Lagrangian (merit) func-
tion for combining cost function and constraints into one functional which is then
minimized. This needs appropriate update rules for the resulting Lagrangian coef-
ficients.

