Reports of the Department of Mathematical Information Technology
Series C. Software Engineering and Computational Intelligence

No. C 1/2000

MLP-Network in a Layer-Wise Form:

Derivations, Consequences and Applications
to Weight Decay

Tommi Karkkiinen

University of Jyvaskyla
Department of Mathematical Information Technology
P.O. Box 35 (Agora)

FIN-40351 Jyvaskyla
FINLAND
fax +358 14 260 2731
http:/ /www.mit.jyu.fi/

Copyright © 2000
Tommi Karkkédinen and
University of Jyvaskyla

ISBN 951-39-0833-X
ISSN 1456-4378

MLP-Network in a Layer-Wise Form: Derivations,
Consequences and Applications to Weight Decay

Tommi Karkkainen*

October 13, 2000

Abstract

Description of a feedforward MLP-network in a layer-wise algebraic form is given.
A general calculus for the sensitivity analysis of transformations having the network-
like nonlinear structure is developed. Based on the derivations some consequences
of the least-means-squares learning problem for the locally optimal MLP are stated
and further discussed. Numerical experiments with a presentation and comparison of
different weight decay techniques are included.

Key words: MLP-network, layer-wise description, weight decay

1 Introduction

In this paper, we first consider the transformation that is realized by the feedforward neural
network, i.e. MLP-network. Instead of the usual neuron-wise treatment of the network action
with single computing units we consider a layer-wise description in an abstract setting using
a linear-algebraic form based on matrices and function-matrices. In this way, we are able
to construct a solid mathematical basis for earlier such presentations, e.g., in |26, 64|. The
proposed formalism also suggests some interesting possibilities for generalizing the MLP-
architecture.

An essential part of any textbook on neural networks consists of the derivation of error-
backpropagation formulas for the network training [8, 63, 64]. What makes such sensitivity
analysis messy is the consecutive application of the chain-rule in an index-jungle! In order to
simplify and clarify this process, we develop a simple calculus for the sensitivity analysis of
transformations having the layer-wise nonlinear structure of the MLP. The difficulties of the
conventional approach are circumvented by applying consistently the Lagrangian treatment
of equality constraint optimization problems [6]. Using the proposed calculus the derivation
of the necessary optimality conditions for the least-means-squares (LMS) learning problem of
MLP follows immediately. One advantage of the layer-wise formalism is that the optimality
system is presented in a compact form that can be readily exploited in an efficient computer
realization. In addition, due to the clear description of the optimality conditions we are able

*University of Jyvéskyld, Department of Mathematical Information Technology, P.O.Box 35 (Agora),
FIN-40351 Jyviskyld, Finland (tka@mit. jyu.fi)

to derive some interpretations and consequences concerning the final structure of the trained
network. These results have direct applications to different weight decay techniques, which
are presented and tested through numerical experiments.

One purpose of the current work is a thorough discussion of some of the common techniques
used together with MLPs and other neural networks. Our point of view is based on the
theory 6] and practice [58] of optimization which is used in order to enlighten some aspects
originating from the LMS learning problem for the MLP training. The main emphasis in
this respect is on the balance of unknowns in the optimization problem, which has direct
consequences in preprocessing and weight decay.

The contents of the work are the following: First, in Section 2, we introduce the algebraic
formalism of the multilayer feedforward network that is used throughout the rest of the paper.
In Section 3, we derive the optimality conditions for a network learning in a similar form
used to describe the network action. Also some consequences of the optimality conditions are
described and discussed. Finally, in Section 4 we present numerical experiments for studying
different regularization techniques and make some observations based on the computational
results.

2 Layer-wise form of MLP-network

Next we develop step-by-step a layer-wise structure for the MLP-network. This will be
accomplished by using an algebraic representation utilizing matrices and function-matrices
64, 26].

Step 1:

We start from the very beginning, i.e. from the linear transformation of given reals z, ... ,z,
that for n = 1 defines a straight line, for n = 2 a plane and for n = 3,4, ... a hyperplane.

a (X) =Wy +W1Z1 +** + Wp_1Tp—1 + WpTp = WT}A(’ (1)
where
Wo 1
w1 x1
w=| . and x= | |. (2)
Wp, Tn

Here the special weight wyq is called as bias node, and its purpose is to guarantee that the
transformation does not necessarily go through the origin (a (0) = wg). The extension of
the original vector x into %X enables the compact notation w?x. The linear transformation is
uniquely determined by the weight-vector w. Especially, if ||w|| = 1, then the real a (x) =
wlx gives the length of the projection py (%) = wlxw of X onto w.

Step 2:
We apply multiple linear transformations to the same vector x to obtain:

_ N RS

ar (x) = wio + W%y + -+ + Wi p_1Tp_1 + W1nTn = Wi X,
T~

as (X) = Woo + Wo1x1 + ---+ Wo,n—1Tn—1 + W2, nTy = WX,

T~
a; (X) = w0+ Wi 1T1 + -+ Wip 1Tp_1 + WinZy = W; X,

A (X) = W0 + W1 T1 + -+ Wiy 1Tp—1 + WipnTp = Wﬁi
By setting the weight-vectors wy, ... ,w,, as rows (in, e.g., [64] columns are occupied and a
transposed form in (5) is then obtained) of the matrix W,
wi
W=|:|, (4)
Wi
we can present the m linear transformations in (3) in a compact form
a=Wx, (5)
where the vector a contains the obtained reals a4, . .. , a,,. This defines a two-layered structure

with the input-layer represented by vector x and output-layer by a.

Step 3:

Next, we add a nonlinear component to the above transformation. The usual way is to
apply some suitable nonlinear function to each component of vector a = WX to obtain
f(a;) = fi(a;). This kind of a nonlinear transformation can be represented in a compact form
(cf. [26]) by defining the so-called diagonal function-matriz F = F(-) = Diag{f;(-)}", as

A0 0
e ©

The function-matrix is supplied with natural way to define the matrix-vector product, i.e.
m

y =F(v) & yi=>_;_, fij(vj) so that the multiplication of a vector component by a matrix

component is simply replaced with an application of the corresponding function.

Using the above function-matrix definition we can consider the generalization of the linear

transformation a = Wx into a form

F(a) = F(Wx). (7)

Figure 1: Functions #;(a) (solid line) and ¢, (a) (dashed line) for & =1,... 5.

Here, the choice of function-matrix F as diagonal coincides with the usual way where each
component a; of vector a is transformed separately using the given activation function. Al-
ready at this point, we emphasize that in what follows all formulas are valid in the more
general case where F is not diagonal (cf. Corollary 1).

For completeness, we include here the two most popular activation functions for MLP (al-
though special activation functions for specific cases can be developed [59]). Typically used
activation functions are bounded and monotone non-polynomials, so-called squashing func-
tions [47, 63, 67, 84]. The most popular activation function is probably still the logistic
sigmoid 1/(1 + exp(—a)) which is only a special case of the more general function (|21])

1

= — =12,...
1+exp(—ka)’ k 1 <y (8)

sk(a)
that actually approaches the Rosenblatt’s originally used step-function as the steepness pa-
rameter k£ goes to infinity. Notice that just for simplicity we have chosen k here to be a
(positive) integer. The derivative of s(a) reads as s,(a) = k exp(ka)/(1 + exp(ka))? =
k sp(a) (1 — sg(a)) and the inverse is given by s, '(a) = (In(a) — In(1 — a))/k. Another (gen-
eralization of) widely used activation function is the k-tanh’ given by

_exp(ka) —exp(—ka)
—ka

~ exp(ka) + exp()~ 1+exp(—2ka) —1=254(2a) -1, 9)

tk (a)

with the derivative t,(a) = 4k exp(2ka)/(1 + exp(2ka))? = k(1 + tx(a)) (1 — tx(a)) =
k (1 —t,(a)?) and the inverse ¢, ' (a) = (In(1 +a) —In(1 —a))/(2 k). We remind that the given
inverses are complex-valued for some arguments. The tanh-function and its derivatives are
illustrated in Figure 1 for different values of k.

Notice that the two activation functions in (8) and (9) have different ranges. Moreover, for k
fixed the 'k-tanh’ grows from -1 to 1 twice as fast as the ’k-sigmoid’ from 0 to 1 as can be seen
from their closely related expressions and corresponding derivatives. This suggests that in

4

Figure 2: Perceptron with one hidden layer.

the basic form for £ = 1 the 'k-tanh’ function might be able to capture sharper boundaries,
e.g., in classification. Anyway, smoothness of the nonlinear transformation containing the
given activation functions can be controlled using the integer k.

Step 4:

However, usually only one nonlinear component in the feedforward transformation is not
enough [32, 63]. For example, the perceptron as defined in (7) can correctly classify only
data sets which are linearly separable. Thus, we need to introduce more than one subsequent
nonlinear components (transformations), say two of them. Then we obtain the perceptron
with one hidden layer in an algebraic form as

0 =N(x) = FA(W2F (W')). (10)

Notice that we have placed the layer number (starting from zero for the input) as an upper
index. Moreover, F'! means that the transformation of the hidden layer F '(W'x) must
also be extended for obtaining the biases. As is well-known, by means of the universal
approximation property of the MLP-networks, one hidden layer is already enough, if the
number of nodes in it can grow to infinity [67, 84].

Finally, a compact notation for multilayer perceptron with L — 1 hidden layers is given by

o=o"=N(x)= .7-'L(WL6(L_1))), (11)
where we have used the recursive definition
0 _ X,
o' = F (W) forl=1,...,L.

5

The dimensions of the weight-matrices are given by dim(W!) = n; x (my_1+1), I =1,...,L,
where ng is the length of input-vectors {x;}, n; the length of output-vectors {y;}, and
n;, 0 <1 < L, determine the sizes (number of neurons) of hidden layers.

3 Layer-wise calculus for learning

3.1 MLP with one hidden layer

For clarity, we first consider the learning of perceptron with only one hidden layer which is
illustrated in Figure 2.

3.1.1 Learning problem

The transformation realized by the one-hidden-layer perceptron is uniquely determined by
the weight-matrices W' = (w;;) and W? = (wy;), and the chosen activation functions in F'
and F2. Because the activation functions are mostly fixed beforehand (also they could be
optimized on some given set of admissible functions, e.g., w.r.t. k in (8) or (9)), we must be
able to determine the values of wl-lj and w?j in order to activate the network.

This task is accomplished with training data, i.e. with a given set of desired input-output
vector-pairs {x;, yi}i]il , X; € R™ and y; € R, which are utilized to configure the network
in such a way that N'(x;) ~ y; for all i = 1,... , N in appropriate sense. For this purpose,
we introduce a learning problem and the corresponding training algorithm for solving this
problem.

A natural configuration principle for the network is the requirement that the average error
of the mapping generated by the MLLP over the learning data should be as small as possible.
The mathematical formulation corresponding to this principle yields determination of W'
and W? as a solution of the optimization problem

min J(W! W?), (12)
(W1, W2)

where
1 & 1 & ~
J(W', W?) = N Y IV (xi) —yil|* = N S IIF(W? FI(W' %)) — yill® (13)
=1 =1

is the least-mean-squares (LMS) cost functional in its basic form. Here || - || denotes the
I2-norm of vector which is induced by the corresponding inner product (v, w) = w’ v.

One immediately notices that all outputs N (x;) in (13) are restricted to the range of the
activation functions in F2. Therefore, one should preprocess at least the given set of desired
outputs {y;} into this range. Moreover, when considering gradient-descent based training,
one must try to keep all unknowns in W' and W? on the same level. Otherwise, components
of the gradient have different orders of magnitude, which may yield nonbalanced updates in
the training algorithm. Finally, this usually leads to large deviation of weights decreasing
the fault tolerance of a network substantially [11]. Therefore, we suggest that all activation

functions in F! and F? have the same range and also the input-data {x;} is prescaled into

6

this range. Then all layers of the network treat vectors with components of the same order
of magnitude.
To this end, we here base the network learning on the following simplified form of (13):

N

1 S
J (W', W?) = ﬁX:IIWQJE(W1 %) = yill*, (14)
=1

where the learning data {x;,y;} is assumed to be prescaled onto the interval [0, 1] (k-sigmoidal
activation) or [—1, 1] (k-tanh activation). The relation between (13) and (14) will be discussed
in Section 3.3 in Remark 2. Notice that a possible loss of information using k-tanh activation
and the proposed prescaling is that for each feature in {x;} the average of minimum and
maximum values is transformed to zero. Hence, all records containing this average value are
insensitive to the corresponding column in the weight-matrix W! (multiplication of zero).
Hence, this may result to non-uniqueness in W! and lead to a substantial loss of information
especially for those features having independent Gaussian distribution.

Such least-squares formulations are still nowadays the most popular ones for training the
MLP, but also other formulations based on robust statistics exist [31]. In case of noisy data
one can alter the underlying assumption behind least-squares on having Gaussian data-error
distribution. This directly leads to a derivation of new cost functionals for the learning
problem (e.g., [13, 48]).

3.1.2 Optimality conditions in algebraic form

For a gradient-based training algorithm we need expressions for the derivatives 2Z- and 2Z-.
8w¢j ow; 7

Namely, a local solution (W'*, W2") of the minimization problem (12) is characterized by
the conditions

1* 2%
Vo wyJ (W, W) = Ywi I (W W)} = [O}. (15)

= | Vwe I (WY, W2 T o

Bwéj
matrix-form as the unknown weight-matrices. Hence, our next task is to derive the partial
derivatives w.r.t. these 'data structures’ (cf. [19] Appendix B and [26]). For this analysis,
we presuppose that all activation functions in the function-matrix F are differentiable.

We start the derivation by giving some simple, but useful lemmas and one corollary for
which the proofs are contained in Appendix A. We remind that the proposed approach is
not restricted to the LMS error function. For other (differentiable) cost functionals one can
use exactly the same technique for deriving the necessary optimality conditions in a similar
layer-wise form.

Here, Vw1 J = [oF] , I =1,2, which due to the applied formalism is presented in a similar
0,

Lemma 1. Let v.€ R™ and y € R™ be given vectors. The gradient-matrix Vw J(W) €
R™2*™ for the functional

1
T(W) = 5 [[Wv =y

is of the form
VwJ (W) = [Wv —y]vT.

Lemma 2. Let W € R™2*™ be a given matrix, y € R™ a given vector and F = Diag{f;}:",
a given, diagonal function-matrix. The gradient-vector V,J(u) € R™ for the functional

J(w) = 5 W F(u) - y]? (16)
reads as
VaJ(u) = Diag{}"(u)} W W F(u) —y].

Corollary 1. If in Lemma 2 the function-matrix F(u) is of a general form (not necessarily
diagonal), the gradient-vector V,J(u) € R™ for the functional (16) has the presentation

Vo) = (WF @) (W F@) -y,

where F (u) denotes the function-matrix-multiplication of vector u by the derivative func-
tions.

Notice that the result in Corollary 1 is actually a natural generalization of the optimality
condition AT(Au —y) =0 for the quadratic problem

Ig]g;—HAu yl* = (AU—Y)T (Au-—y).

The next lemma contains the fundamental result for deriving the optimality conditions of
the three-layered perceptron in algebraic form. Its proof in Appendix A also introduces the
Lagrangian technique that has been used here for obtaining such results.

Lemma 3. Let W € R™*™ he a given matrix, F = Diag{f;}7 a given, diagonal function-
matrix, and v € R™ y € R™ given vectors. The gradient- matrlx VwJ (W) € R™*mo for
the functional

TOW) = 3 |[W F(Wv) v (17)

is of the form o
VwJ(W) = Diag{F (Wv)} W [W F(Wv) — y]v%.
Now we are ready to give the actual result for the perceptron with one hidden layer.

Theorem 1. Gradient-matrices Vw27 (W', W2) and Vw1 J (WL, W?2) for the cost func-
tional (14) are of the form

Vw: T (W', W?) = Z[W2 — yil [F(W' %)
(i)

VwiJ (W', W?) = ZDlag{f’ (Wi%,)} (WHT W2 F(W'R;) — y] %7
(ii)
- %Zniag{f’ (W' %)} (W) e, 5.

In (ii), W? is the submatrix (WQ)Z.J., 1=1,...,n9, 7 =1,...,n;, which is obtained from

W? by removing the first column W containing the bias nodes.
Proof. Formula (i) is a direct consequence of Lemma 1. Moreover, due to the definition of
the extension operator = we have, for all 1 <i < N,

W2EW %) -y, = (W3 Wi | Y= WIWIFWR) —yi (19

1
(W'%;)
Using (18) and Lemma 3 componentwise with the cost functional (14) shows (ii) and ends
the proof. m

Notice that the optimality conditions above are given in the form suitable for individual
activation functions represented as a diagonal function-matrix. As stated in Corollary 1,
similar conditions remain valid in case of a more general, not necessarily diagonal function-
matrix activation. From the training point of view, this opens up new possibilities for
generalizing the basic architecture of MLP (remember that the re-invention of MLP during
80’s was due to backpropagation, a way to train the architecture), but this topic is out
of the scope of this work. A first step towards this direction should clearly be a study
of the universal approximation properties of such generalized architectures. Finally, other
generalization techniques can yield, e.g., recurrent networks [63] and networks with hysteresis

[17].

3.2 Several hidden layers

Next, we generalize the previous analysis to the case of several hidden layers. The cost
functional to be minimized is now given by

N
1 (L
TAWIED = 5 D IWEe Y — vl (19)
=1

where 0 = x; and o} = F(W'6{!™) for [=1,... L —1.

The next lemma (which is also proved in Appendix A) generalizes the result of Lemma 3 to
produce a fundamental result for deriving the optimality conditions in an algebraic form for
an MLP with more than one hidden layer.

Lemma 4. Let W € Rm3xm and W € R™*™ be given matrices, F = Diag{f;}:*3 and
F = Diag{f;};*, given, diagonal function-matrices, and v € R™, y € R™ given vectors.
The gradient-matrix VwJ(W) € R™ *™0 for the functional

J(W) = _ |[WF(W F(Wv)) -y (20)

DN | =

is of the form

VwJ(W) = Diag{F (Wv)} WT Diag{F (W F(Wv))} WI [W F(W F(Wv)) —y]v7.

Theorem 2. Gradient-matrices Vi J({W'}.,), I = L,...,1, for the cost functional (19)
are of the form

1 & -
Vwi T(WHE) = 2> diel V],

N
=1
where
dZL = €, = WL(A)EL_U —Yi (21)
di = Diag{(F) (W'e{™")} (W{"")Td{"". (22)
Proof. Apply Lemma 4 inductively. O

Remark 1. Few observations concerning Theorem 2.

(i) Definition of d! in Theorem 2 contains the backpropagation of the output-error in a
layer-wise form.

(#7) Theorem 2 gives formulas for the derivatives in a compact form that can be readily
exploited in the implementation. Moreover, computation of the activation-derivatives
(F) (W'6{'™) can, using the proposed sigmoidal activation functions in (8) and (9),
be realized using layer-outputs o!. Hence, when going through the network for the first
time for obtaining the output N (z;), it is enough to store the individual outputs of
different layers for the backward gradient loop. For a minimal memory usage these
same vectors can then be overwritten by d! if in the actual implementation the whole
operation in (22) is performed in a single loop. In modern workstations such combina-
tion of operations yielding minimal amount of loops through the memory can decrease
the CPU time substantially, cf. [40].

3.3 Some consequences of the optimality conditions

Next we derive some straightforward consequences of the layer-wise optimality conditions.
First result shows especially that every local solution {W"}X, obtained by solving the
least-squares optimization problem actually satisfies our initial intention N*(x;) ~ y; in a
particular statistical sense.
N

e

Corollary 2. (i) The average error % > .=, ef made by the locally optimal MLP-network

satisfying the conditions in Theorem 2 is zero.
(#7) The correlation between the error-vectors and the action of layer L — 1 is zero.

Proof. The optimality condition VyzJ = + SN er [6§L_1)]T = O (with the abbreviation

6§L71) = 6§L71)*) in Theorem 2 can be written in the non-extended form as
1 & T
v el)]=0. (23)

10

By taking the transpose in (23), we obtain

N N
1 1 *\T 1 (e;)T O
72 o] @07 = 5 2 [eS| = [0] o
i=1 L6 i=1 L7 i
But now the first row in (24) shows (i) and the second row (i7) thus ending the proof. O

Remark 2. Final layer with or without activation?

e From Lemma 3, it follows that if MLP also contains the final layer activation

N(x) = FHWhe ™)),
then (21) replaced with
d? = Diag{(F*) (WZo6{" ")} e;

gives the corresponding sensitivity w.r.t. WZ. In this case, we have in Corollary 2
instead of (24)

*

V2 o] 2= [0

for D; = Diag{(F") (W* 61(-L_1))}. Hence, the two formulations with and without
activating the final layer yield locally the same result only for the zero-residual problem
e; =0 for all 1 <7 < N. This slightly generalizes the corresponding result derived in
[55] where a bijectivity of the final activation F~ was also assumed.

The use of 01 coding for the desired output-vectors in classification enforces the weight-
vector of 1-neuron to the so-called saturation area (|80]) of a sigmoidal activation where
the derivative is nearly zero (cf. Figure 1). For this reason, the error function with
the final layer activation has a nearly flat region around such points. Indeed, the tests
reported in [23] suggest that the network with sigmoid in the final layer has more local
minima than when using a linear final layer. Furthermore, in [35] it has been pointed
out that the reconstruction error surface for a sigmoidal autoassociator consists of
multiple local valleys on the contrary to the linear one. Hence, one conclusion that has
been drawn is that the nonlinear transformation acts locally whereas the linear one
globally. By combining these two formulations in (19) we try to take advantage of both
these characteristics.

To have some idea on the complexity of the learning problems with and without the
final layer activation, we have illustrated in Figure 3 two error functions in the two-
dimensional weight-space (w!, w?) (cf. Figure 8.7 in [63]). More precisely, remembering
the role of bias as shift of the transformation from the origin, we have computed the
LMS error function for the two nonlinear mappings

Np(z) = t1(w? t1(w'z)) : nonlinear final layer as in (13),

Ni(z) = w? t;(w'z) : linear final layer as in (14),

11

0.8—

os-] ik |
Vs

0.4 7#//%/////;;/’"‘

//// S -ll““‘ ‘

/

L

N &+
Y
AN

Figure 3: Error functions in the two-dimensional weight-space for linear (left) and nonlinear
(right) final layers in MLP.

where the data {z;,y;} is the prescaled noisy data representing the sine-function in
Example 1 in Section 4. Figure 3 clearly shows the flatness problems of the error
function resulting from the final layer activation. Furthermore, this also suggest exis-
tence of multiple local minima with hidden nonlinear transformations, especially, when
combining more of them together [16].

In the next corollary we make a further discussion concerning the last weight-matrix WZ.

Corollary 3. If the autocorrelation matrix A = %Zf\; v; vl corresponding to the (ex-
tended) final layer inputs v; = OEL_I) is non-singular, W can be recovered from the formula

N
1
W-=BA™ for B:NZW?. (25)
=1

Furthermore, if A* for a minimizer {W'"}F | of (19) is non-singular, then WL is unique.

Proof. We notice that W satisfying the system

N
1 L (L—1 ~ 1ra(l—1
& W ol —gfel" T = 0 (26)
i=1
is independent of i = 1,... , N. This means that the equation (26) can be written as
1 & 1 &
L o T ~ T L A _
W N;Vivi —N;yivi & WPA=B. (27)

Multiplying both sides in this equation from right with A~! gives (25) and ends the proof. O

Let us add one further observation concerning the above result. Consider the three-layered

perceptron with the autocorrelation matrix A = + SV 997 € Rutxmtl Because dim(span(¥;)) =

12

1, each matrix ¥; V7 has only one nonzero eigenvalue A = v ¥; with the corresponding eigen-

vector ¥;. This means that 1 < dim(span(A)) < min(N,n; + 1). Hence, if N < n; + 1 the
matrix A must be singular and W2* can not be unique. On the other hand, if N > n; + 1,
all vectors V; can not be linearly independent.

To this end, notice that in Corollary 3 the assumption on nonsingularity can be relaxed to
the so-called pseudo-invertibility, which has been extensively used to generate new training
algorithms for MLP-networks [12, 18, 82].

Remark 3. e Due to the given layer-wise description of MLP formulas for the gradient-
matrices can easily be checked using some software capable of symbolic calculations.

e The consequences that were stated here followed immediately from the optimality con-
ditions w.r.t the final layer of MLP. It remains as a future challenge to analyse the
conditions for hidden layers more profoundly in order to get insight into the way how
MLP solves problems for us. We believe that a possible transition from the neuron-wise
to the layer-wise treatment could be helpful for such investigations.

3.4 Comments and remarks

Next, we give a list of observations and comments based on the results in Section 3.3.

Role of Corollary 2: Notice that both results in Corollary 2 are consequences of in-
cluding the bias-term in the input OZ(L*U of the last, linear layer WL. Especially, the
transformation before the last layer has no influence whatsoever on these facts. This
suggests the following interpretation of the MLP-action with the proposed architec-
ture: nonlinear hidden layers produce the universal approximation capability of MLP
while the final linear layer compensates the hidden action with the desired output in
an uncorrelated and error-averaging manner (cf. [35]).

Assume that we have noise in the given output data:
yi=yite 1<i<N,

where §; denotes the error-free (true) output-vector. It then follows from Corollary 2,
(i) that the output-error of the locally optimal MLP-network N* satisfies

1 1
N > IV (m) -3 = N > e
=1 =1

Hence, noise with zero mean in the output-data is complete removed by the locally
optimal MLP-network. To analyse the case of noisy input-data {x;} certainly requires
more comprehensive study, because such errors are amplified by the transformation
realized by the MLP-network. We remind that, e.g., in classification the class y; of an
individual observation x; is usually known beforehand being thus error-free, but the
features in x; may contain all kinds of degradation.

It is known that any model trained using the LMS cost functional approximates the
Bayes optimal discriminant function (BODF) in classification [65]. In this case, the

13

architecture of MLP determining its flexibility should be related to the complexity of
BODF. On the other hand, BODF does not necessarily minimize the probability of
classification error [57], and the basic assumption that samples from different classes
are independent is a severe restriction. Relaxation of such assumption yields other
classifiers which can still be implemented using neural networks [81].

Simple modifications of LMS cost functional: Consider the classification problem
with learning data from K different classes {Cy}<, so that N = Y_K Ny, where Ny,
denotes the number of samples from the class Cy. It then follows from Corollary 2, (4)
that the amount of learning data Ny from an individual class has a significant effect to
the obtained MLP-classifier (cf. the BODF-result above). Hence, if one would like to
have equal probability % for all classes in the classifier, the least-squares cost functional
to be minimized should be adjusted for this purpose using the weighted form

Wl}l 1) Z 2KN Z ||WL —Yi||2-

1€Ch

More generally, use of non-constant weighting of the learning data in the cost functional
incorporates a priori information into the learning problem. For example, a time-series
prediction could be based on larger weighting of the more recent samples; especially if
one tries to simulate a slowly varying dynamical process [60]. It is also straightforward
to improve the LMS learning problem when more knowledge on the variance of the
output-data is available [50, 79]. Finally, a locally weighted linear regression also
adaptable for MLP learning was introduced in [68].

Difficulties with early stopping: One way to regularize the MLP is to use early stop-
ping (cutting, termination) of the learning algorithm [8]. This may lead to a better
(smoother) network with noisy learning data, especially when network is initialized
with small random numbers in the almost linear region of a sigmoidal activation func-
tion. For example, early stopping may be due to a cross-validation technique when
value of the cost functional in the test set starts increasing [75]. Moreover, the opti-
mization process is usually stopped overhasty when a fixed number of epocs (iterations)
with a fixed learning rate (line search parameter) is taken in the original backpropa-
gation algorithm. Early stopping means certainly that the underlying optimization
problem has not been solved precisely, and thus the results in Corollary 2 with their
consequences (including the BODF result) are in general not valid. Formulation of
general and robust conditions for stopping the optimization algorithm prematurely can
be problematic, which usually leads to a very large number of tests for validating dif-
ferent networks [25]. It is also evident that using early stopping different solutions
are obtained with different optimization methods. Finally, it was shown in [10] that if
models with the same training error are chosen with equal probability, then the lowest
generalization error is obtained by choosing the model corresponding to the training
error minimum. This result is valid globally for linear models and locally, around the
training error minimum, for nonlinear models.

14

4 Numerical results

Here, we describe numerical experiments based on the proposed techniques. All experiments
are performed on an HP9000/J280 workstation (180 MHz PA8000 CPU) and the implemen-
tation is based on F77 (optimization and MLP realization) and MatLab [1] for data pre- and
postprocessing.

As an optimization software we apply the limited memory quasi-Newton subroutine L-BFGS
[87], which uses a sparse approximation of the BFGS-formula based inverse of the Hessian
matrix and is intended for solving large nonlinear optimization problems efficiently. As a
stopping criterion for the optimization we use

k
Jr = gkt <1
max {[J*], | ¥, 1} —

where epsmch is the machine epsilon (~ 107'¢ in our case). This choice reflects our intention
to solve the optimization problem with (unnecessary) high precision. Moreover, according
to the discussion in Section 3.4 we want to distinguish between the learning problem and
the training algorithm so that application of a general optimization software as a black-box
solver is justified and actually desirable.

There exists a large variety of different tests comparing backpropagation (gradient-decent
with constant learning rate), conjugate gradient, and second-order methods (Gauss-Newton,
Levenberg-Marquart, Hessian approximation, and quasi-Newton) for the MLP training (e.g.,
[8, 26, 51, 53, 72, 83]). The main ingredient in the L-BFGS-software is that due to the
limited memory Hessian update, the storage requirement is only O(n), where n is the total
amount of unknowns. For ordinary quasi-Newton methods, the O(n?) memory consumption
has been one of the main reasons to prevent the application of these methods for learning
problems with larger network architectures.

Notice that a single gradient vector w.r.t. the unknown weights is obtained from the layer-
wise gradient-matrices by simply reshaping and assembling.

In the numerical experiments, we only consider simple examples, because the emphasis here
is on testing the algorithms and different formulations rather than on complex applications
of NN’s. Therefore, we also restrict ourselves to the perceptron with only one hidden layer
although the actual implementation is suitable for any number of layers. As noted in [63]
and references therein (see also |74]), there exist rather simple examples where MLP with
two relatively small hidden layers can already reconstruct the given function whereas with
one hidden layer an ’infinite’ amount of hidden nodes are needed for a proper approximation.
However, for training the network with several hidden layers one must solve significantly more
complex optimization problem with an increased number of local minima. Hence, the dispute
concerning the number of layers should consider the overall efficiency as a combination of
approximation properties and training times.

In order to generate less regular nonlinear transformations by increasing the dimension n; of
the hidden layer without affecting the scale of weights we choose tx(a), k =1,... ,nq, to be
the activation functions for the hidden neurons [54]. From the physiological point of view,
this is only a tiny change because real nervous systems are known to contain hundreds of
different neuron types ([63] and references therein). Notice that even though our purpose
here is to introduce some kind of ordering in the hidden layer by using different activation

0% % epsmch,

15

functions for each neuron, the symmetry problem related to the hidden neurons (e.g., [8]) still
remains as can be seen by a simple rescaling argument. Use of even more general mixture
of different activation functions in the hidden layer is suggested in [86]. Finally, the possible
danger when increasing the nonsmoothness of the hidden activation functions is that the
convergence of second-order optimization methods is based on assuming C?-continuity of the
cost functional, which may for very large n; be almost violated.

4.1 Approximation of noisy function
The basic MLP

Ezample 1. First we consider the reconstruction of the function f(z) = sin(27z), z € I =
[0, 27], which is corrupted with quasi-uniform, normally distributed random noise. The input-
data points {x;} correspond to the uniform discretization of the interval I with the step size
h = 0.1. Points in the output-data are taken as y; = f(z;) +d¢; for 6 = 0.3 and &; € N(0,1).
Altogether, we have in this example N = 63 and ny = ng = 1.

In the following experiments we have solved the optimization problem (14) with prescaled
learning data into [—1, 1] starting from ten different (quasi-)random initial guesses from the
same range (—1, 1) for the weight-matrices (W, W?2). For an overview and study of different
initialization techniques we refer to [76| and articles therein. Notice that according to |23|
a quasi-Newton method can survey a larger amount of local minima than the BP- and CG-
methods. Depending on application, this can be an advantage or disadvantage, but surely it
indicates that either we have to start the training using multiple initial configurations or use
some global optimization strategy as on outer iteration to enforce search through different
minima.

The contents of the following tables include minimum 'min’, maximum ’max’, and average
'mean’ values of the following quantities corresponding to the ten solutions of the optimization
problem:

J*: Final value of the cost functional. If the minimum or maximum value (with tolerance
e = 1079) is scored more than once, the number of instances is included in parenthesis.

|e*|: Absolute value of the average output-error over the learning data as stated in Corollary

2, (4).
Its: Number of function/gradient evaluations during the optimization procedure.
CPU: CPU time in seconds for solving the optimization problem.

Finally, figures of the obtained network mappings corresponding to minimum and maximum
values of J* are given in Appendix B, where the mapping is illustrated using test set of data
points {Z;} generated on I using another step size h =0.13.

Let us make some comments based on Table 1 and Figures 5-10:

Local minima: Even for the smallest network (n; = 2) and especially for larger ones
there exist a lot of local minima in the optimization problem. Moreover, the arising
local minima are strict in a sense that they correspond to truly different values of

16

JT* |e*| Its CPU

1 min max mean | min max mean | min max mean | min max mean

0.014 (2) 0.032 0.018 | 2e-8 4e-6 2e-6 | 41 234 126 | 0.23 0.52 0.39
0.013 0.024 0.014 | 4e-7 2e-5 4e-6 | 120 1079 427 | 0.42 0.80 0.60

0.012 (2) 0.014 0.013 | le-6 8e-6 4e-6 | 153 341 250 | 047 0.60 0.54
0.010 0.013 0.012 | 4e-7 2e-5 6e-6 | 237 804 430 | 0.55 0.76 0.64
0.010 0.013 0.011 | 3e-7 3e-5 8e-6 | 183 737 466 | 0.51 0.75 0.66
0.0086 0.013 0.010 | 2e-7 2e-5 Te-6 | 440 1541 927 | 0.67 0.95 0.80

N O Ot W N

Table 1: Computational results in Example 1 without regularization.

the cost functional and not just different representations (symmetries) of the same
MLP-transformation.

Condition (i) in Corollary 2: Is valid with a precision related to the stopping criterion
of the optimization.

Efficiency: Although the number of iterations in the optimization varies a lot, the CPU
time remains always small in this small example.

Generalization: Best result according to Figures 5-10 is obtained using the MLP corre-
sponding to the minimal value of J* for n; = 2. However, MLP corresponding to the
maximal value of J* for n;y = 7 gives also a reasonable result. This illustrates the
difficulty of naming the ’optimal network’ in a specific example. Moreover, from the
large variation of the number of iterations we conclude that when a fixed number of
iterations is taken in the learning algorithm, one has no knowledge on the error between
the obtained weight-matrices and the true (local) solution of the optimization problem
(cf. the discussion in Section 3.4).

Regularization of MLP using WD

A problem is said to be well-posed in the sense of Hadamard if ¢) it has a solution, i7) the
solution is unique, i7i) the solution is stable w.r.t. data. If a given problem is not well-posed
a usual way to improve its structure is regularization (in general, see [78, 69]; in connection
with neural networks, see [24, 25, 29, 59]), which usually refers to increasing smoothness of
a solution.

The existence of local minima shows that the LMS cost functional to be minimized in the
learning problem is mathematically speaking highly non-convex, containing a large amount, of
local minima. A natural remedy for this problem is to increase coercivity of the cost functional
w.r.t. the unknowns. In the simplest form this can be accomplished by introducing an extra
penalization term in the cost functional, and usually in connection with neural networks
this yields some kind of a weight decay (WD) technique [25]. As a consequence, this also
imposes some restriction on the generality (universality) of the MLP-transform to prevent
overlearning yielding to a special kind of pruning [5, 33, 36, 43, 46, 61, 62, 70, 73, 79, 85].
Hence, we enhance the optimization problem for network training with a WD-term R(W};).
More precisely, we use the simplest possible strictly convex form w.r.t the unknown weights

17

by considering initially R(W};) = 5/2 37, (W};)?, where (3 is a weight decay parameter
representing our confidence in the data. Here, the choice of having only a single coefficient
makes sense, because the network inputs and the outputs of the hidden layer are in the
same scale due to the applied prescaling. We remind that in general the ’best’ value of 3
is related to both the complexity of the MLP-transformation and the (usually unknown)
amount of noise contained in the learning data [69]. However, one can, e.g., apply different
cross-validation techniques for obtaining an effective choice of 8 (for a general discussion, see
|8, 64]; precisely in our setting, see |66]).

In addition to strict convexity some particular reasons for choosing the proposed form of WD
with the quadratic penalty function p(w) = |w|? are:

e Because single weights are treated separately, it is trivial to include the corresponding
derivative-matrices in the optimality conditions.

e The proposed form forces weights in the neighborhood of zero (similarly to prior distri-
butions with zero mean suggested in [56]) thus balancing their scale in a gradient-based
optimization algorithm [11]. The smoothing property is due to the fact that the activa-
tion functions si(a) and tx(a) are nearly linear around zero, although size of the linear
region is decreasing as k is increasing (cf. Figure 1). Furthermore, the first deriva-
tives of both sigmoidal activation functions are most informative around zero. Thus,
the proposed form of WD is also helpful to prevent saturation of weights by enforcing
them in the neighborhood of this transient region [45, 80|.

e In [66] the conclusion from the numerical experiments was that the combination of
quasi-Newton optimization algorithm and quadratic WD drastically improved both
the convergence of the training algorithm and the generalization performance of the
trained MLP.

One drawback of quadratic WD is that it produces weight matrices with many small compo-
nents even if a choice of one large weight instead of a group of small ones could be sufficient.
This can yield unnecessary large networks, even if the overlearning can be prevented. On
the other hand, this property increases the fault tolerance of the trained network due to the
so-called graceful degradation |63].

Let us comment some of the difficulties resulting from a few other forms of WD for individual
weights suggested in the literature [24, 25, 66]:

' —formulation: Each weight w is regularized using penalization p(w) = |w|. This function
is convex, but not strictly convex. A severe difficulty is that because the derivative
of p(w) is multivalued for w = 0, the resulting optimization problem is nonsmooth,
i.e., only subdifferentiable [52]. In general, function |w|? for 1 < p < 2 only belongs
to Holder space C'P~! [22], so that assumptions for convergence of gradient-descent
(on batch-mode Lipschitz continuity of gradient [58], for on-line stochastic iteration
C? continuity [28]), CG (Lipschitz continuity of gradient [58]), and especially quasi-
Newton methods (C2-continuity [58]) are violated. As documented, e.g., in [66] (MLP)
and [39] (image restoration) this yields nonconvergence of training algorithm when cost
functional does not fulfil the required smoothness assumption. Furthermore, even if
smoothed counterpart vw? + ¢ for € > 0 is introduced, this formulation is either (for

18

small ¢) too close to the nonsmooth case so that again the convergence of ordinary
solution methods fail, or, otherwise (for larger ¢), the smoothed formulation differs
substantially from the original one. For such nonsmooth optimization problems one
needs to develop special algorithms [37, 38, 39]. Finally, these same difficulties also
concern the so-called robust backpropagation where the error function is defined as
Yo IN(x;) — yillie (e.g., [44] and articles therein).

Mixed WD: Each weight is regularized using mixed penalization p(w) = w?/(1 + w?).
This form is, firstly, non-convex producing even more local minima to the optimization
problem and, secondly, it favors both small and large weights thus corrupting the
gradient by destroying the balance in scales of different weights.

However, Corollary 2 and the description of the MLP-transformation (role of bias-terms as a

shift from origin) raise the question “Which components of weight-matrices {V\/’l}lL:1 should
be regularized and which not?” Certainly, if condition (i) in Corollary 2 is required for the
resulting MLP, one should not include the bias-terms of the final layer W in WD. Similarly,
for conditions (z)-(#4) both to hold one should exclude all components of W* from WD.
These questions will be studied in the following experiments. According to the above discus-
sion, we apply the proposed form of WD only for selected components of the weight-matrices
(W1, W?2). We distinguish between four cases:

I Regularize all other components except the bias-terms W2 in the weight-matrix W2,
IT Exclude all components of W2 from the regularization.

1T Exclude all bias-terms of (W', W?) from the regularization.

IV Exclude all components of W2 and bias-terms of W' from the regularization.

Notice that WD according to case III is used in [30] for an MLP-classifier.

Remark 4. Let us state one further observation concerning the non-regularization of W32.
Using the error-average formula ~ ¥ Z = O of Corollary 2 and the expression for e
according to (18) yields (cf. [8])

zlz

N
— % Z W2 Sk Wl,*)ACZ) _ Yi]-
I |e*| Its CPU
n1 min max mean | min max mean | min max mean | min Mmax mean
2 10022 (5) 0.025(5) 0.023 | 3e-8 4e-6 le-6 | 48 84 65 0.25 0.35 0.30
3 0.0195 0.0199 (2) 0.0197 | 3e-8 5e-6 2e-6 | 76 149 101 | 0.33 0.43 0.37
4 0.017 0.019 0.018 | 1e-7 4e-6 26 | 88 208 146 | 0.38 0.51 0.44
5 0.017 0.018 0.017 | 1e-7 2e-5 Te-6 | 142 245 188 | 0.46 0.55 0.50
6 0.016 0.017 (2) 0.017 | 5e-7 1le-5 6e-6 | 145 382 244 | 0.47 0.63 0.55
7 0.016 0.017 0.016 | 2e-7 2e-5 5e-6 | 227 395 327 | 0.57 0.65 0.62

Table 2: Computational results in Example 1 for regularization I.

19

T3 B Tts CPU
min max mean min max I1mean min max mean min max mean
0.015 0.016 0.015 | 266 8e5 25 | 67 554 231 |0.33 0.67 0.49
0.014 0015 0015 | 27 1le5 3e-6 | 131 1009 383 | 044 0.78 0.59
0014 0015 0015 | 8-8 25 86 | 257 963 414 | 048 0.79 0.61
0.014 0.015 (2) 0.014 | 2e-6 3e-5 1le5 | 329 1283 832 |0.61 087 0.75
0.013 0.014 0014 | 3e-6 3e-5 1le5 | 607 2402 1331 |0.72 1.10 0.8
0013 0.014 0014 | le-7 1le5 4e-6 | 1213 2472 1599 | 0.86 1.13 0.96

N o ot w NS

Table 3: Computational results in Example 1 for regularization II.

Hence, increased coercivity and thereby uniqueness w.r.t to (W% W!) immediately affects
the uniqueness of the bias W§ as well.

The results corresponding to the above cases are presented in Tables 2-5 (where Jj refers to
the value of the cost functional containing the regularization term) and in Figures 11-34. For
all experiments we have chosen 3 = 10~2 according to some prior tests, which also indicated
that the obtained results in these examples were not very sensitive to the choice of f.
Let us give some observations based on Tables 2-5 and Figures 11-36 in Appendix B:

Local minima: Even if the regularization improves the convexity of the cost functional
there still exist a lot of local minima in the optimization problem.

Condition (i) in Corollary 2: Is valid with a precision related to the stopping criterion
of the optimization.

Efficiency: By means of number of iterations and the CPU time regularization methods I
and ITIT are better and more robust than the regularization methods II and IV.

Generalization: All regularization methods improve the obtained results compared to
the original formulation by preventing oscillation in the final mapping generated by
the MLP. When n; is increased, regularization methods I and IIT seem to be more
stable than regularization methods II and IV. Moreover, for small n; the minimal
cost function values are scored more than once for methods I and III suggesting an
improved convexity compared to methods IT and IV.

7;] Tts CPU

min max mean min max mean min max mean min max mean
0.022 (5) 0.025 (5) 0.023 | le7 3e-6 1le6 | 4 93 71 |0.25 036 0.30
0.019 (4) 0.025 0.019 | 3e-8 Te-6 26 | 73 173 109 | 0.33 048 0.39
0.017 (2) 0.019 0.018 | 3e-7 6e-6 2e-6 | 87 172 121 |0.36 048 0.41
0.017 0.019 0.017 | 37 1le5 4e6 | 80 205 141 |0.36 051 0.45
0.016 0.017 0.017 | 37 T7e-6 3e-6 | 104 199 153 |0.40 051 047
0.016 0.018 0.016 | 2¢-6 3e-5 9e-6 | 118 537 269 |0.44 0.70 0.56

N o otk w oS

Table 4: Computational results in Example 1 for regularization III.

20

73 & Tts CPU
min max mean min max I1mean min max mean min max I1mean
0.0156 0.016 0.015 | 467 25 1le5 | 73 913 235 | 0.31 0.75 0.47
0.014 0016 0015 | 9e-7 5e5 le5 | 110 953 352 |0.39 0.77 0.56
0.014 0015 0015 |27 3e5 9e6 | 151 744 344 | 047 0.74 0.58
0.014 0.015(2) 0.014 | 9e-8 1le5 5e-6 | 244 2436 1176 | 0.55 1.09 0.82
0.013 0.014 0014 | 27 25 7e6 | 361 2135 1184 | 0.62 1.05 0.84
0.012 0.014 0.014 | le8 25 T7e-6 | 321 3119 1368 | 0.61 1.19 0.89

g o ot w S

Table 5: Computational results in Example 1 for regularization I'V.

Conclusion: From the tested regularization methods I and ITI seem to be more preferable
than IT and IV. When comparing I and III we remind that the prescaling of the data
into the range [—1, 1] already decreases the significance of the bias-term Wj.

4.2 Classification

Ezample 2. As a second example, we consider the well-known test case to classify Iris flowers
(cf. [25]) according to measurements obtained from the UCI repository [9]. In this example,
we have ny = 3 (number of classes), ng = 4 (number of features) and initially 50 samples
from each of the three classes. We remind here that due to the choice of the 'k-tanh’
activation functions prescaling of the output-data {y;} into the range [—1,1] destroys the
linear independence between different classes.

In Tables 6-11, we have solved the classification (optimization) problem again ten times using
40 random samples from each class as the learning set and the remaining 10 samples from
each class as the test set. These two data sets have been formed using five different random
permutations of the initial data realizing a simple resampling procedure (that could give
rise to an actual cross-validation technique). Hence, we have N = 120 and the remaining
30 samples in the test set. In Tables 6-11 the first column ’P’ contains the permutation
index. In the second column ’C},’, minimum, maximum and (rounded) mean values for the
number of false classifications in the learning set are given. The third column ’C’ includes
numbers of false classifications in the learning and test sets (denoted with C}, and Cr) for the
‘optimal’ perceptron N satisfying Cr,(N}) + Cr(N}) < Cr(Np)+Cr(Np) over all networks
encountered during the ten optimization runs for the current permutation P. The overall
quality of N} for each permutation is measured using the total sum of misclassifications
CLN*) + Cr(A™).

In Tables 9-11 we have added noise to the inputs of the learning data. More precisely, we
have first computed class means w.r.t. each of the four features within the three classes.
After that the vector of class means has been multiplied componentwise with a noise vector
de; for § = 0.3 and &; € N(0,1) and this has been added to (unscaled) learning data {x; }icr
obtained after permutation of the initial data.

To this end, we derive some final observations based on the computational results, especially
in Example 2:

Local minima: In all numerical tests for unregularized and regularized learning problems

21

with methods I and III the L-BFGS optimization algorithm was convergent. This
strongly suggests that using the proposed setting of prescaling and MLP-architecture
we were able to deal with the flat error surfaces during the training. Furthermore,
because usually in all ten testruns of the learning problem a different value of the
cost functional was obtained, the different results corresponded to 'true’ local minima
instead of just the symmetrical presentations of the same MLP-transformation.

Efficiency: By comparing the number of iterations and the CPU time the unregularized
problem seems to be easier to solve than the regularized one (with given () for the
clean learning data. On average, there is no real difference between the unregularized
and regularized problems for the noisy learning data, but the variation in the number
of iterations is significantly larger for the unregularized formulation.

Comparison: There seems to be no significant difference between the quality of perceptrons
resulting from the unregularized and regularized problems. This suggests that the Iris
learning data contains only a few cases with non-Gaussian degradations. Moreover,
according to the observations in Example 1 one reason for the quite similar behaviour
can be the size of n; which is not that large compared to ny and no. Finally, we cannot
favor either of the two regularization methods I and IIT according to these results. Let
us further mention that especially when using the regularization method II (and in
some cases IV) the L-BFGS-software sometimes failed in optimization indicating that
the optimization problem for these formulations may have a higher complexity due to
increased nonconvexity and flatness problems.

Generalization: The amount of false classifications in the test set is between 0-3 , i.e.
between 0%-10% in all test runs. A single preferable choice (for different strategies to
combine multiple networks as an ensemble, see, e.g., [27, 49|) for an classifier would
probably be the one with median of false classifications in C7 obtained using permuta-
tion one or four, even if with the fifth permutation an optimal one was found according
to the given data. Notice that the amount of variation in C7 over the different permu-
tations provides some information on the quality of the data.

CL C Its CPU
P min max mean | C;, C7| min max mean | min max mean
1 0 0 0 0 2 |109 534 239 | 037 0.60 047
2 0 0 0 0 3 81 664 290 | 030 0.65 049
3 0 1 1 0 1 [106 1243 492 | 0.35 0.93 0.57
4 0 0 0 0 2 129 891 349 | 036 0.75 0.51
5 0 1 1 0 0 92 702 286 | 0.31 0.67 048
mean | 0 04 04 0 1.6 103 807 331 034 0.72 0.50

Table 6: Computational results in Example 2 without regularization for n; = 9.

22

CL C Tts CPU
P min max mean | C;, Cpr| min max mean | min max mean
1 0 0 0 0 2 |517 1280 843 | 0.60 0.93 0.76
2 0 0 0 0 3 |443 814 551 | 0.57 0.72 0.63
3 0 0 0 0 0 | 742 1797 1047 | 0.68 1.04 0.82
4 0 0 0 0 2 |426 1451 792 | 0.56 091 0.71
5 0 1 0 0 0 |646 1604 884 |0.69 1.00 0.76
mean | 0 0.2 0 0 14|55 1389 823 |0.62 092 0.74

Table 7: Computational results in Example 2 for regularization I with e = 1073 and n; = 9.

Cy C Its CPU
P min max mean | C; Cr| min max mean | min max mean
1 0 0 0 0 2 1369 939 543 | 0.56 0.77 0.61
2 0 0 0 0 3 |484 923 602 | 0.58 0.80 0.64
3 0 2 1 0 0 |418 868 677 | 0.56 0.78 0.67
4 0 0 0 0 3 |382 643 507 | 0.54 0.69 0.60
5 0 3 1 0 0 |413 973 619 |0.56 0.82 0.64
mean | 0 1 0.4 0 1.6|413 869 590 | 0.56 0.77 0.63

Table 8: Computational results in Example 2 for regularization III with e = 102 and n, = 9.

5 Conclusions

5.1 Summary of the present paper

We have studied the transformation realized by the MLP-network. A compact, layer-wise
description for the action of MLP has been given. Based on this formalism, optimality
conditions for the LMS cost functional have been presented and their consequences derived
and discussed. In the numerical experiments, study of different regularization methods based
on the earlier findings has been performed. Our numerical approach used can be summarized
as:

e For balancing the sensitivities w.r.t all weights, prescale the input-output -data into
the equal range of activation functions.

o) C Its CPU
P min max mean | C;, Cr| min max mean | min max mean
1 0 1 0 0 2 |275 3008 968 |0.49 1.19 0.73
2 0 1 1 0 2 | 240 460 339 | 047 057 0.52
3 0 3 1 0 1 | 175 2680 948 |0.41 1.16 0.73
4 0 1 1 0 2 |146 1655 589 |0.39 0.98 0.61
5 0 2 1 0 0 | 284 5464 927 | 0.50 1.42 0.65
mean | 0 1.6 0.8 0 1.4 |224 2653 754 |0.45 1.06 0.65

Table 9: Computational results in Example 2 without regularization for n; = 9 and noisy
learning set.

23

CL C Tts CPU
P min max mean | C;, Cpr| min max mean | min max mean
1 0 1 0 0 2 |492 1196 724 |0.59 0.88 0.68
2 0 0 0 0 3 |48 1059 782 | 0.58 0.81 0.70
3 0 0 0 0 1 |579 982 739 | 0.62 0.78 0.69
4 0 1 0 0 2 | 616 1120 862 |0.64 084 0.74
5 0 1 1 0 0 |464 1211 756 | 0.58 0.88 0.69
mean | 0 06 02 |0 1.6|527 1114 773 | 0.60 0.84 0.70

Table 10: Computational results in Example 2 for regularization I with ¢ = 1073, n; = 9
and noisy learning set.

Cr C Tts CPU
P min max mean | C;, Cpr| min max mean | min max mean
1 0 1 0 0 2 [434 1024 710 | 0.56 0.80 0.68
2 0 2 1 0 3 |365 941 580 | 0.54 0.76 0.62
3 0 3 1 0 1 |464 800 653 | 0.58 0.71 0.65
4 0 2 1 0 2 |38 1007 725 |0.54 0.83 0.69
5 0 1 1 0 0 |458 1003 690 | 0.58 0.79 0.67
mean | 0 1.8 08 |0 1.61|421 955 672 | 0.56 0.78 0.66

Table 11: Computational results in Example 2 for regularization III with e = 1073, n; = 9
and noisy learning set.

e To prevent overlearning use weight decay, but in such a form that every trained map-
ping has zero error on average according to Corollary 2. This also requires that the
optimization problem must be solved with a fixed precision.

e To deal with multiple local minima, solve the learning problem starting from several
initial configurations and determine a measure for classifying these results.

e To deal with inconsistent data, use some kind of outer iterative procedure, which is
here realized using resampling with permutation. Again one must construct a way
(appropriate measures) to pick up the best one or combine the different ones.

Finally, we think that the given implementation of MLP together with the L-BFGS software
as an optimizer is well-suited for an efficient local resolution of the learning problem also
for significantly larger networks. One of the main challenges for future research is to study
enhanced formulations containing less local minima for the MLP learning problem.

5.2 Discussion

To conclude and generalize this prensentation, let us consider a rough scheme of artificial
intelligence based on the data analysis as sketched in Figure 4. In the scheme we have the
following characteristics:

Application: characterized by available data

24

to to
simulate activate

Application | <——>| Model —~— Method

Figure 4: Scheme of data analysis.

Model: characterized by free parameters; consists of

Architecture: complexity of distribution

Learning problem: quality of data
Method: characterized by training algorithms

In MLP, the given input-output pairs {x;,y;} contain the available data. Free parameters
correspond to unknown weights in the weight matrices and architecture is represented by
amount and dimension of the hidden layers with the chosen activation functions. Learning
problem in the present work refers to LMS optimization problem and training algorithm
should solve this problem in order to adjust the network weights.

It is necessary to follow the above steps in the forward mode, i.e., when seeking and develop-
ing models and their training algorithms to simulate the phenomena behind the application.
However, success of the realization (backward or reverse mode within the schema) is often
analysed by qualifying the system solely by its performance in the application thus suppress-
ing the relation between the model and the method. As a typical example, we have again
the case when the optimization problem for the MLP-training is solved with an unknown
precision by taking only fixed number of epocs, and the resulting network is validated, e.g.,
by measuring the amount of false classifications in the test set. Even if this can work well
in practice (especially with cross-validation), ideal goal in the reverse mode is to derive a
model that ¢) agrees with the complexity of the approximated distribution and 7) takes into
account the quality of data in the learning problem formulation. If this is accomplished,
then the only purpose of a method is to estimate the free parameters with a suitable, fixed
precision.

In neural networks literature it is sometimes mentioned that by improving the training algo-
rithm one can improve the performance of MLP (usually generalization ability). However, if
such a phrase is referring for speeding up the training algorithm for solving the optimization
problem (using better choice of learning rate parameters, cf. [15]), then the formulation of
the learning problem remains unchanged. Hence, actually one is either changing the strategy
behind early stopping or just converging to another local minimum than before. Only if the
learning problem is truly altered, e.g., by changing the error function to be minimized, then
one is really considering another model according to Figure 4.

This leads us to a particular problem with the MLP-networks, which is the role of the term
‘optimality’. Namely, the MLP satisfying the optimality conditions of the LMS learning
problem may not be the best generalizer or classifier in the considered application, vice
versa, by means of optimization the non-optimal solutions may produce the 'best’ networks
in terms of the application (cf. results in Section 4). Furthermore, optimality of a training

25

algorithm should refer to the speed of convergence rather than to the final result which is
determined by the model.

The existence of local minima and remedies for them is an extensively studied subject in the
MLP literature (e.g., [3, 7, 8, 14, 20, 41, 53, 72| and articles therein). However, Corollary 2
and the previously mentioned BODF-result in [65] show that in any case every local minimum
contains a fair amount of 'optimality’ w.r.t. the given data. The phrase ’false local minima’
refers to bad generalization that may be observed for some solutions of the learning problem.
The difficulty is that in many cases one has not a precise knowledge on the relation between
the error function and false local minima. More precisely, the smallest value of the error
function, the global minimum, may in the sense of generalization properties be just another
false local minimum. Typically this happens when the architecture is too flexible so it can
overlearn the data by capturing the erroneous, noisy behaviour of the system (cf. Example 1
in Section 4 without regularization). In this case, improvement of the minimization process,
e.g., by using methods of global optimization (genetic algorithms, simulated annealing, etc.)
does not necessarily produce better model. It can have even the opposite effect. Moreover, the
earlier mentioned model selection result in [10] nominating the training error minimizer as the
best model for generalization over models which are chosen with equal probability was only
valid locally for nonlinear models and, thus, it cannot be applied to compare different local
solutions. The conflict between the learning problem minimization and best generalization
really calls for new improved models where these two aims could be in agreement.
Altogether, one should try to develop such formulations for the network learning which at
the same time allow the treatment of the learning problem as a deterministic optimization
problem due to the obtainable computing efficiency and also contain appropriate measures
for the quality of the learning data and the obtained model in the considered, specific ex-
ample. One should keep in mind that usage of one model (like MLP with a predescribed
architecture) is based on the assumption that the joint distribution p(z,y) = p(y|x) p(x) re-
mains the same, i.e., both the input distribution p(z) and the conditional distribution p(y|x)
are fixed throughout the samples. For example, the Bayesian framework for MLP as firstly
introduced by Mackay [50] (for a review, see [77] and articles therein; see also [34, 42, 73])
and further developed by Neal [56], other statistical methods [2, 4] and even more general
approaches [71] are steps towards an improved model selection in the expense of increased
computational complexity. For statistical approaches one problem is whether the prior as-
sumptions concerning the chosen form of density functions are valid and can be rigorously
tested on the given data. If this is not the case (especially, for mixture models consisting
of different basic density-distributions), then a hybrid combination of cross-validation and
resampling producing different views on the data is a reasonable choice. By slightly modi-
fying the central questions in software engineering, we should always ask ourselves “Are we
training the right model?”, “Are we training the model right?”

References

[1] Getting Started with MATLAB, MathWorks, Inc., Natick, MA, 1997.

26

2]

13]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. ALPAYDM, Combined 5 X 2 cv F test for comparing supervised classification learning
algorithms, Neural Computation, 11 (1999), pp. 1885-1892.

N. AmPAzZIS, S. J. PERANTONIS, AND J. G. TAYLOR, Dynamics of multilayer networks
in the vicinity of temporary minima, Neural Networks, 12 (1999), pp. 43-58.

U. ANDERS AND O. KORN, Model selection in neural networks, Neural Networks, 12
(1999), pp. 309-323.

B. S. ARAD AND A. EL-AMAWY, On fault tolerant training of feedforward neural net-
works, Neural Networks, 10 (1997), pp. 539-553.

D. P. BERTSEKAS, Constrained Optimization and Lagrange Multiplier Methods, Aca-
demic Press, New York, 1982.

M. BIANCHINI, M. GORI, AND M. MAGGINI, On the problem of local minima in re-
current neural networks, IEEE Trans. Neural Networks, 5 (1994), pp. 167-177.

C. M. BisHOP, Neural Networks for Pattern Recognition, Clarendon Press, Oxford,
1995.

C. L. BLAKE AND C. J. MERZz, UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Z. CATALTEPE, Y. S. ABU-MOSTAFA, AND M. MAGDON-ISMAIL, No free lunch for
early stopping, Neural Computation, 11 (1999), pp. 995-1009.

S. CAVALIERI AND O. MIRABELLA, A novel learning algorithm which improves the
partial fault tolerance of multilayer neural networks, Neural Networks, 12 (1999), pp. 91—
106.

C. L. P. CHEN, A rapid supervised learning neural network for function interpolation
and approzimation, IEEE Trans. Neural Networks, 7 (1996), pp. 1220-1230.

D. S. CHEN AND R. C. JAIN, A robust back propagation learning algorithm for function
approzimation, IEEE Trans. Neural Networks, 5 (1994), pp. 467-479.

F. M. COETZEE AND V. L. STONICK, Contrast enhancement for backpropagation, IEEE
Trans. Neural Networks, 7 (1996), pp. 318-325.

H. DA1 AND C. MACBETH, Effects of learning parameters on learning procedure and
performance of a BPNN, Neural Networks, 10 (1997), pp. 1505-1521.

J. DE VILLIERS AND E. BARNARD, Backpropagation neural networks with one and two
hidden layers, IEEE Trans. Neural Networks, 1 (1992), pp. 136-141.

P. DE WILDE, The magnitude of the diagonal elements in neural networks, Neural
Networks, 10 (1997), pp. 499-504.

27

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]
[32]

M. D1 MARTINO, S. FANELLI, AND M. PROTASI, Ezploring and comparing the best "di-
rect methods" for the efficient training of MLP-networks, IEEE Trans. Neural Networks,
7 (1996), pp. 1497-1502.

K. I. DIAMANTARAS AND S. Y. KUNG, Principal Component Neural Networks: Theory
and Applications, John Wiley & Sons, New York, 1996.

Y. FUKUOKA, H. MATSUKI, H. MINAMITANI, AND A. ISHIDA, A modified back-

propagation method to avoid false local minima, Neural Networks, 11 (1998), pp. 1059
1072.

A. A. GHORBANI AND V. C. BHAVSAR, Incremental communication for multilayer
neural networks, IEEE Trans. Neural Networks, 6 (1995), pp. 1375-1385.

D. GILBARG AND N. S. TRUDINGER, FElliptic Partial Differential Equations of Second

Order, Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag, Berlin
Heidelberg, 1983.

D. GORSE, A. J. SHEPHERD, AND J. G. TAYLOR, The new ERA in supervised learning,
Neural Networks, 10 (1997), pp. 343-352.

C. GouTTE AND L. K. HANSEN, Regularization with a pruning prior, Neural Networks,
10 (1997), pp- 1053-10509.

A. GUPTA AND S. M. LAM, Weight decay backpropagation for noisy data, Neural Net-
works, 11 (1998), pp. 1527-1137.

M. T. HAGAN AND M. B. MENHAJ, Training feedforward networks with the Marquardt
algorithm, IEEE Trans. Neural Networks, 5 (1994), pp. 989-993.

S. HASHEM, Optimal linear combinations of neural networks, Neural Networks, 10
(1997), pp. 599-614.

S. HAYKIN, Neural Networks; A Comprehensive Foundation, Macmillan College Pub-
lishing Company, New York, 1994.

M. HINTZ-MADSEN, L. K. HANSEN, J. LARSEN, M. W. PEDERSEN, AND M. LARSEN,
Neural classifier construction using reqularization, pruning and test error estimation,
Neural Networks, 11 (1998), pp. 1659-1670.

L. HOLMSTROM, P. KOISTINEN, J. LAAKSONEN, AND E. OJA, Neural and statistical

classifiers - tazonomy and two case studies, IEEE Trans. Neural Networks, 8 (1997),
pp- 5-17.

P. J. HUBER, Robust Statistics, Wiley, New York, 1981.

D. HUSMEIER AND J. G. TAYLOR, Predicting conditional probability densities of sta-
tionary stochastic time series, Neural Networks, 10 (1997), pp. 479-497.

28

[33]

[34]

[35]

[36]

[37]

[38]

[39]

|40]

|41]

42]

[43]

[44]

[45]

[46]

J.-N. HWANG, S.-S. You, S.-R. LAy, AND 1.-C. Jou, The cascade-correlation learn-

ing: A projection pursuit learning perspective, IEEE Trans. Neural Networks, 7 (1996),
pp. 278-289.

R. A. JAcoBs, F. PENG, AND M. A. TANNER, A Bayesian approach to model selection

in hierarchical miztures-of-experts architectures, Neural Networks, 10 (1997), pp. 231
241.

N. JApPkOwICZ, S. J. HANSON, AND M. A. GLUCK, Nonlinear autoassociation is not
equivalent to PCA, Neural Computation, 12 (2000), pp. 531-545.

P. P. KANJILAL AND D. N. BANERJEE, On the application of orthogonal transforma-

tion for the design and analysis of feedforward networks, IEEE Trans. Neural Networks,
6 (1995), pp. 1061-1070.

T. KARKKAINEN AND K. MAJAVA, Nonmonotone and monotone active-set methods
for image restoration, Part 1: Convergence analysis, J. Optimiz. Theory and Appl., 106

(2000), pp. 61-80.

—, Nonmonotone and monotone active-set methods for image restoration, part 2:
Numerical results, J. Optimiz. Theory and Appl., 106 (2000), pp. 81-105.

T. KARKKAINEN, K. MAJAVA, AND M. M. MAKELA, Comparison of formulations
and solution methods for image restoration problems, Report No. B 14, University of
Jyviskyléd, Department of Mathematical Information Technology, 2000.

T. KARKKAINEN AND J. TOIVANEN, Building blocks for odd-even multigrid with appli-
cations to reduced systems, J. Comp. Appl. Math., (2000). to appear.

D. A. KARRAS AND S. J. PERANTONIS, An efficient constrained training algorithm for
feedforward networks, IEEE Trans. Neural Networks, 6 (1995), pp. 1420-1434.

A. KEHAGIAS AND V. PETRIDIS, Predictive modular neural networks for time series
classification, Neural Networks, 10 (1997), pp. 31-49.

R. A. KOENE AND Y. TAKANE, Discriminant component pruning: Reqularization and

interpretation of multilayered backpropagation networks, Neural Computation, 11 (1999),
pp. 783—802.

B. Kosko, Neural Networks and Fuzzy Systems; A Dynamical Systems Approach to
Machine Intelligence, Prentice-Hall, Englewood Cliffs, N.J., 1992.

T. M. KwON AND H. CHENG, Contrast enhancement for backpropagation, IEEE Trans.
Neural Networks, 7 (1996), pp. 515-524.

C. W. LEE, Training feedforward neural networks: An algorithm giving improved gen-
eralization, Neural Networks, 10 (1997), pp. 61-68.

29

[47] M. LEsHNO, V. Y. LIN, A. PINKUS, AND S. SCHOCKEN, Multilayer feedforward net-

works with a nonpolynomial activation function can approximate any function, Neural
Networks, 6 (1993), pp. 861-867.

[48] K. LIANO, Robust error measure for supervised neural network learning with outliers,
IEEE Trans. Neural Networks, 7 (1996), pp. 246-250.

[49] Y. Liu AND X. YAO, Ensemble learning via negative correlation, Neural Networks, 12
(1999), pp. 1399-1404.

[50] D. J. C. MACKAY, A practical Bayesian framework for backpropagation networks, Neu-
ral Computation, 4 (1992), pp. 448-472.

[61] G. D. MAGOULAS, M. N. VRAHATIS, AND G. S. ANDROULAKIS, Improving the conver-

gence of the backpropagation algorithm using learning rate adaptation methods, Neural
Computation, 11 (1999), pp. 1769-1796.

[52] M. M. MAKELA AND P. NEITTAANMAKI, Nonsmooth Optimization; Analysis and Al-
gorithms with Applications to Optimal Control, World Scientific, Singapore, 1992.

[53] J. J. MCKEOWN, F. STELLA, AND G. HALL, Some numerical aspects of the training
problem for feed-forward neural nets, Neural Networks, 10 (1997), pp. 1455-1463.

[54] D. MCLEAN, Z. BANDAR, AND J. D. O’SHEA, An empirical comparison of back propa-

gation and the RDSE algorithm on continuously valued real world data, Neural Networks,
11 (1998), pp. 1685-1694.

[55] J. O. MooDY AND P. J. ANTSAKLIS, The dependence identification neural network
construction algorithm, IEEE Trans. Neural Networks, 7 (1996), pp. 3-15.

[56] R. M. NEAL, Bayesian Learning for Neural Networks, Springer, New York, 1996.

[67] V. NEDELJKOVIC, A novel multilayer neural networks training algorithm that minimizes
the probability of classification error, IEEE Trans. Neural Networks, 4 (1993), pp. 650
659.

[58] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, New York, 1999.

[59] D. ORMONEIT, A regularization approach to continuous learning with an application to
financial derivatives pricing, Neural Networks, 12 (1999), pp. 1405-1412.

[60] D. C. PARK, M. A. EL-SHARKAWI, AND R. J. MARKS, II, An adaptively trained
neural network, IEEE Trans. Neural Networks, 2 (1991), pp. 334-345.

[61] G. E. PETERSON, D. C. ST. CLAIR, S. R. AYLWARD, AND W. E. BOND, Using

Taguchi’s method of experimental design to control errors in layered perceptrons, IEEE
Trans. Neural Networks, 6 (1995), pp. 949-961.

[62] R. REED, Pruning algorithms - a survey, IEEE Trans. Neural Networks, 4 (1993),
pp. 740-747.

30

[63]

|64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

R. D. REED AND R. J. MARKS, II, Neural Smithing; Supervised Learning in Feedfor-
ward Artificial Neural Networks, The MIT Press, Cambridge, 1999.

R. RoHAs, Neural Networks; A Systematic Introduction, Springer-Verlag, Berlin Hei-
delberg, 1996.

D. W. Ruck, S. K. ROGERS, M. KABRISKY, M. E. OXLEY, AND B. W. SUTER, The
multilayer perceptron as an approrimation to a Bayes optimal discriminant function,
IEEE Trans. Neural Networks, 1 (1990), pp. 296-298.

K. SAITO AND R. NAKANO, Second-order learning algorithm with squared penalty term,
Neural Computation, 12 (2000), pp. 709-729.

F. ScARsELLI AND A. C. Tso1, Universal approximation using feedforward neural

networks: A survey of some existing methods, and some new results, Neural Networks,
11 (1998), pp. 15-37.

S. ScHAAL AND C. G. ATKESON, Constructive incremental learning from only local
information, Neural Computation, 10 (1998), pp. 2047-2084.

O. SCHERZER, H. W. ENGL, AND K. KUNISCH, Optimal a posteriori parameter choice

for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer.
Anal.; 30 (1993), pp. 1796-1838.

C. SCHITTENKOPF, G. DEcO, AND W. BRAUER, Two strategies to avoid overfitting
in feedforward networks, Neural Networks, 10 (1997), pp. 505-516.

J. SCHMIDHUBER, Discovering neural nets with low Kolmogorov complexicity and high
generalization capability, Neural Networks, 10 (1997), pp. 857-873.

F. STAGER AND M. AGARWAL, Three methods to speed up the training of feedforward
and feedback perceptrons, Neural Networks, 10 (1997), pp. 1435-1443.

J. Sum, C. LEUNG, G. H. YOoUuNG, L. CHAN, AND W. KAN, An adaptive Bayesian

pruning for neural networks in a non-stationary environment, Neural Computation, 11
(1999), pp. 965-976.

S. TAMURA AND M. TATEISHI, Capabilities of a four-layered feedforward neural net-
work: Four layers versus three, IEEE Trans. Neural Networks, 8 (1997), pp. 251-255.

I. V. TETKO AND A. E. P. VILLA, Efficient partition of learning data sets for neural
network training, Neural Networks, 10 (1997), pp. 1361-1374.

G. THiMM AND E. FIESLER, High-order and multilayer perceptron initialization, IEEE
Trans. Neural Networks, 8 (1997), pp. 349-359.

H. H. THODBERG, A review of Bayesian neural networks with an application to near
infrared spectroscopy, IEEE Trans. Neural Networks, 7 (1996), pp. 56-72.

31

[78]

|79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

87]

A. N. TIKHONOV AND V. Y. ARSENIN, Solutions of Ill-Posed Problems, Wiley, New
York, 1977.

P. VAN DE LAAR AND T. HESKES, Pruning using parameter and neuronal metrics,
Neural Computation, 11 (1999), pp. 977-993.

J. E. VITELA AND J. REIFMAN, Premature saturation in backpropagation networks:
Mechanism and necessary conditions, Neural Networks, 10 (1997), pp. 721-735.

E. VOUDOURI-MANIATI, L. KURZ, AND J. M. KOWALSKI, A neural-network approach

to nonparametric and robust classification procedures, IEEE Trans. Neural Networks, 8
(1997), pp. 288-298.

G.-J. WANG AND C.-C. CHEN, A fast multilayer neural-network training algorithm

based on the layer-by-layer optimizing procedures, IEEE Trans. Neural Networks, 7
(1996), pp. 768-775.

Y.-J. WANG AND C.-T. LIN, A second-order learning algorithm for multilayer networks
based on block Hessian matriz, Neural Networks, 11 (1998), pp. 1607-1622.

H. WHITE, Artificial Neural Networks: Approrimation and Learning Theory, Blackwell
Publishers, Cambridge, 1992.

S. YAsul, Convergence suppression and divergence facilitation: Minimum and joint use
of hidden units by multiple outputs, Neural Networks, 10 (1997), pp. 353-367.

J. ZHANG AND A. J. MORRIS, A sequential learning approach for single hidden layer
neural networks, Neural Networks, 11 (1998), pp. 65-80.

C. Zuu, R. H. ByrD, P. Lu, AND J. NOCEDAL, L-BFGS-B — Fortran subroutines
for large-scale bound constrained optimization, Report NAM12, Northwestern University
EECS, 1995. http://www.ece.nwu.edu/~nocedal /software.html.

32

Appendix A: Proofs of Lemmas

Lemma 1:
Proof. Functional J(W) in a componentwise form reads as

J(W) = %i (zl: Wij Vj — yi)) (28)

where ¢ represent the row and j the column index of W, respectively. A straightforward
calculation shows that

Wv —

W = | y]vh

Here we have applied a MatLab-type abbreviation : for the row-vector w;. consisting of the
7’th row of matrix W. This proves the result. O

Lemma 2:
Proof. As before, consider the componentwise form of the functional

Z (Z wii fi(u;) —) ZJ (30)

]1 =1

where we have set J;(u) = Y 7" wy; fi(wi) —y; = [W F(u) —y]j. From this we further obtain

auk [Z wji fi(ui) = yj] Wik Felug) = Wik frlug) [W F(u) — vl (31)

Remember here that u is a vector with ms components. As in Lemma 1, we get the derivative
of J(u) with respect to u by treating & as a row-index and j as a column-index. Proceeding
like this, we obtain from (31)

W11 f{(?h) Wa1 f{(ul) Wiyl f{(ul)
W12 fé(UQ) W22 f;(Ua) < Wima2 fé (U2)
Vol (u) = : : : [WF(u) -yl
W1im, f';nl (uml) Wam, fr’nl (uml) <o Wmamg f;nl (uml) (32)
— (WDiag{F (w)})" [W F(u) - y] = Diag(F (u)} W [W F(u) - y],
which is the desired result. O

Corollary 1:
Proof. Introduce yet another index in (30)—(32) to go through the whole function-matrix

F(u). O

33

Lemma 3:
Proof. Here we introduce the basic Lagrangian technique to simplify the calculations.

As a first step let us introduce an extra variable u = Wv. Then, instead of problem (17) we
consider the equivalent, constraint optimization problem

. 1.
(m‘i)% J(u, W) = 3 |W F(u) —y||> subject to u= W, (33)

where u and W are treated as independent variables which are linked together by the given
constraint. The Lagrange-functional associated with (33) reads as

Lu,W,A) =J(u, W)+ AT (u-Wv), (34)

where A €€ R™ contains the Lagrangian variables for the constraint.

Noticing that the values of functions J(u, W) in (33) and £(u, W,) in (34) coincide if the
constraint u = W v is satisfied, it follows that solution of (33) is equivalently characterized
by the saddle-point conditions V.L(u, W' X) = 0. Our technique here is based on using these
saddle-points conditions to remove the extra unknowns u and A (if and when they are well-
defined, which in the optimization theory refers to the concept of constraint qualification) for
obtaining the desired gradient Vw.J(W). Therefore, we compute the derivatives VL, VwL
and VL (in vector- and matrix-form) for the Lagrangian in (34) next.

The gradient-vector V,L(u, W, A) is, due to Lemma 2, of the form

VoL = VuJ(u) + A = Diag{F (u)} W [W F(u) — y] + A. (35)
Derivates with respect to other unknowns are given by

Vwl = —-Av7, (36)
ViL = u—-Wv. (37)

Using formula —X = Diag{F (u)} W’ [W F(u) — y] due to (35) and substituting this into
(36) we obtain

Vw£ = Diag{F (u)} W' [W F(u) — y]v". (38)
Finally, when u is replaced with Wv obtained from (37), (38) can be written as
Diag{F (W v)} W' [W F(Wv) —y]v', (39)

which is represented only using the unknown matrix W. Due to the equivalency of (17), (33)
and (34), (39) gives the desired gradient-matrix for (17). This ends the proof. O

34

Lemma 4:

Proof. To simplify the calculations, we now introduce two extra variables u = Wv and u =
W F(u) = W F(Wv). As in Lemma 3, instead of problem (20) we consider the equivalent,

constraint optimization problem

min J(u, i, W) = % W (@) — y|” subject to u=Wwv and & =W F(u). (40)

(u,a,W)

The Lagrange-functional associated with (40) reads as

Lu, 8, W, AN = J(u,a, W)+ X (u-Wv)+ X (@ - W E(u)).

(41)

Using similar techniques as in the previous proof, the derivates realizing the saddle-point

conditions for the Lagrangian are given by

Vol = —[WF]" A+,
Vil = [WF @] [WF(@) —y]+ A,
VW,C = —>\VT,

V)\,C = u—Wv,
Vil = iu-WZF(u).

From V(a) L = O and (42)-(43) we obtain

A= [WF A= ~[WF @] [WF @] [WF@) -yl

Substituting this into Vw.L in (44) yields

VwZ = Diag{F (u)} W7 Diag{F' (@)} W7 [W F(&) — y] v'.

TN TN TN N N
N
N

S N N N N

(48)

This together with the original expressions u = W v and @ = W F(u) proves the result. [J

35

Appendix B: Figures

1.5 = 15 =
S0 X Xy % x oy
X
1t - : 1t %= o - :
¥ x 0 X X
e frNE < © e NE
HX X el X
05 ¥ w X : 05 XX o 1
¥ % / *
sk * %, Y
* > /
o # Kok] or e]
X ’ X ’
-0.5F X i%é\ X ;(%g; - -0.5F X iﬁé\ X /X X 7
* x R y X
5 F %W@@g@%@ﬁ%
-1r Koo X 1 -1r - 1
XX ><><X XX
x X x X
15 I -15 I I I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 T T % T T T T T 15 T T % T T T T T
X xooxoy e Xy
X X
1t -] 1t PN -]
TN © e NG A © N
X « % < X Ry
0.5 gﬁgf » w X : 05r XK %%&% i
% é%;x x, %
or 7 <K] o XX]
*\X , *\X ,
R Xx/’x% K Xx/’x
X / X
-0.5¢ * i%é\ x /X%‘§<] -0.5 x izé\ * w |
. R R
-1 R 1 1) s XX]
xx X
X XX>3<X X XX>3<X
15 I -15 I I I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1.5 T T % T T T T T 1.5 T T % T T T T T
X xooxoy e Xy
kK, - o
1t e] 1t]
3 % x
ol *x N i N *x N
x % o x ¥
0.5 A K : 05r ¥ ¥ :
Z % ¥ %
L ok *
’ * i o
/ X * Ky X
of % : of 4 % :
5 , * ,
:gé ><><//>< X* Xxggé
x * X [
-05r % i;e\ x ;%W] -05r * x *
**x * x 9szﬁ\x 4% x
X iex xx/% X X xx;é%
-1t *%{r 1+ * > < 9@6 4
R i < i
x X X x X X
15 | | | | | | | 15 | | | | | | |
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 7: n; = 4 in Table 1. Results for minimum of J* (left) and maximum of J* (right).

36

15 - 15 -
X x %oy oK x %oy
e o x o
1r ¥ - K 1 1r 1
Pl o+ N T N
4 NS X %
X g X
0.5f WX %] 05 o]
%// % iﬁ/// %
L // >2g\<>< 4 L // ><yﬁ>\<>< 4
0 R x , 0 W ,
* \
XK x ;;: k;;;g X*;% x X X,;gj
-0.5F ¥ ig%@ x I -0.5r 4 N o g x]
A , A /%
1t x ‘_X’X] 1t X§§§:~—§é®é
X XX X X XX ><>§<
X< X<
_15— _15
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 - 15 -
X X
WXXX xoox oy P y
- O et S|
P S * N 5 < NG
d Xk asl x %
0.5 W ®] 05 X¥ S]
X XX XX
. * * ¥
><// * X% *
/ \ * \ X
o Xﬁi:x o o # ek .
* o K o %
% X * X
-050 4 K xR -050 % o R
5 5 X e, M
n X%&~—XX/ l X%‘_X){
- Sk X B Pt
X >¢<>2<>< X >¢<>2<><
_1.5 L L L L L L L _1.5 L L L L L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 9: n; = 6 in Table 1. Results for minimum of J* (left) and maximum of J* (right).

15 = 15 X
& x Xy S Xy
X X
1t] 1t]
X X % X
% ;K;M& * * N(X) % ﬁ%\ﬁ% * * N(X)
X \ X
ost ok 1 ost &, x&% 1
¥/ S ¥ k
or KX 1 or KX 1
* / * /
X;%\ X//X X;k\ XX;;?K
o * Seaere #, = X
-05F 4 w5« K 1 -05F 4 2 x]
*\\% o X ﬁe\& %{zﬁx
1t - 1 1 s 1
) R - S
x >¢*¥< x XX
-15 I I I I I * I 15 I I I I I I I
0o 1 2 3 4 5 & 71 o0 1 2 3 4 5 & 71
Figure 10: ny = 7 in Table 1. Results for minimum of J* (left) and maximum of J* (right).

37

15 = 15 =
2K X X y 2K X X y
X
1r X T 1 1r Xz o 1
2 *x N e Ty o+ N
< o
X ok x V&
0.5r gﬁg%i o) 0.5¢ éﬁggﬁi e X il
& % X %
>’</ 9k>\<>< ; *}fx
or / X%X 4 or / X "]
*\\ X & %\\ X &
XK« /5 XK« B
X
-05F » PR T -05F B x X%
X\ . X /;&%
$\X K * X
%%\X ><9K
-1r 1 -1r 1
O O
XK X X
15— ‘ ‘ ‘ ‘ ‘ ‘ 15— ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 — 15 —
2 xoox oy 2 xoox oy
1 " y oo] 1 ﬁﬂ%% y oo]
QAT * % N(x) KE * * N(X)
%géx . % %3% x *%
05 ¥ o 1 05 ¥ XX%;; 1
* % * %
Q% ><%\<>< ﬁé X3
of o T of o T
® Sl * X
-0.5F igi\ X 3«*;}% il -05r « X X /X/*% 1
* X 4Kx Ko (Fx
¥ X X*x ,ng
-1t %Mﬁ] -1t s]
X >¢»<>2< x X >¢<>2< X
_1.5 L L L L L L L _1.5 L L L L L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 12: n; = 3 in Table 2. Results for minimum of J* (left) and maximum of J* (right).

15 = 15 X
& x Xy S Xy
X X
1t 1 1t 1
%gmg ¥ % N (X) « gﬁ%@%x ¥ % N(X)
$6% x % x X
0.5} xi% « w ¥y 1 0.5} xjgf « w ¥y 1
K % v %
L j >?ﬁ>\<>< 4 oF %/ >?K>\<>< il
’ ¥ : ¥ :
H X, %% * x,
X X X , X X X ,
05t 5 o« 2 05t N
K £ 5
XXy 3 X X
1L - i 1 o - i
1 &W% “ ! %}%&}é&w
X >‘><>e< X X >‘><>e< X
1. L L L L L L L -1. L L L L L L L
° 1 2 3 4 5 6 7 ° 1 2 3 4 5 6 7

Figure 13: n; =4 in Table 2. Results for minimum of J* (left) and maximum of J* (right).

38

15

0.5

15

0.5

Figure 15: ny = 6 in Table 2. Results for

15

0.5

Figure 16: ny = 7 in Table 2. Results for

- 15 -
X X x oy X X x oy
X R
o | 1l |
« %m%x * * N(X) il *%%: * o+ N(X)
aisd x X Faisl X ¥
A .] ost 2K, %]
><9K N sk *
Ko Hox
* " 1 or * " i
B / * /
XQK\ XS X% KK
X X /%*X * X /%{‘j
X N x ,;?e 1 -05r x*% « /jj J
K x & % X % x
* X ,ﬁ *x ¥
X%&‘_ﬁg | 4l X%"ﬁ |
ol k™
x XX x >¢<>2< X
0 1 2 3 4 5 6 7 -1, 1 2 3 4 5 6 7

< 15 <
§ X xoox oy . K xoox oy
I | 1l I |
X X KK X
X %m% * * N (X) K X 93%% * * N (X)
#6% x X HoX x X
%)i% X %ﬁ) 0.5r *ﬁé[X %ége)
* % " %
X x X \9@<
K x * oy X
* Sk 1 or % " 1
* / ¥ ’
x;ﬁ‘ XX/§< x;ﬁ\ ><><’ *
%, % FE i 2 X P
x Zh x XK -0.5F §€\ x x K
* * X*\ X (s
K% ,92% x ¥ X &<
X%&"XX% 4l N]
X P X
x XX X >¢<>2< X
L L L L L L L _1.5 L L L L L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

X 15 X
& x Xy S Xy
X X
- | 1 PR, - 1
MW%% *ox N R *ox N
02 x % Jo x %
X¥ B 1 05- X¥ » 1
+ ¢ ¥ 9
§j€ % K o
* B 1 of * X 1
X
X*\% « x /éé*jf ><y’{;g « x /;ﬁéf
x S x b] -0.5r A x o]
%@*\& %% X %;K\i(x Ko
XX X7 | X *X_xxg% |
" 2 -1 &WN{X
x XX X%«
I I I I I I L -1.5 L L I I . I I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

39

15 - 15 -
X X x oy X X x oy
X
1 I] 1 y %]
e o+ N g o+ N
o x % s x T
05 X¥ o E] 05f X . %]
* * *
xk * ¥ %%
* \ * N
o # ok o o/ e *
X x ik * x K
Ty, ¥ X g XX x x
-0.5F X%é x A -0.5F 3:36 « X i
x*;g& ’gézﬁx x %}é x’ﬁjx
X
-1 R - X : -1 %‘Q@ggf :
X >¢»<>2< ><>§< X >¢<>2< X
15l ‘ ‘ ‘ ‘ ‘ ‘ 15l ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 - 15 -
X X x oy X X x oy
1 R -] 1 % wC]
il t&g * + N @{ﬁf@ﬁ%x % N (%)
462 Xk o Xk
0.5r Y;% X %gi;) 0.5r ¥ X %‘ai;)
i * sk *
* X * X
L XN | L 7 X\]
0r 3k) 0 M ><>$;\L><)
;é x5k * X A
| He x < | *Tp x * |
=057 R X 7 -0.5r * X /jf
* /¥ * /
X 5 x Y QSK x
b x i@gﬁ&‘_xﬁ | 1l x %*;~—>;§K%
Kok Hageel
X >¢»<>2< x X >¢<>2< X
_15 L L L L L L L _1 5 L L L L L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 18: n; = 3 in Table 3. Results for minimum of J* (left) and maximum of J* (right).

15 = 15 X
& x Xy S Xy
1 Ry -] 1 S5 -]
ke £ 0 N T fNE
o % s x %
05 ¥ ¥ 1 05F X¥ wE 1
¥ * * *
o Ho o %
* \ X \ X
or s X il or # XX%*X]
X* XX§@K X;K\ ><></3<jé
* X /. X /
-0.5r Xgé\ X Zﬁﬁ X 1 -0.5F i%&\ % %%%X ,
ﬁé\x % x * X 2Kk
X K R 3
] x%*x_éégg 1 X%ﬁ&_xx
-1t % , 1t i
KK e Ww
X ><><>e< x X >‘><>e< X
1. I I I I I . L -1.5 L I I I I . .
5 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 19: n; =4 in Table 3. Results for minimum of J* (left) and maximum of J* (right).

40

15 - 15 -
X xoox oy K xoox oy
il — f il f
¥ X %« X
LI 3 * % N (X) HK éé%é * % N (X)
HoX x % $02 x %
05t X¥ o E 1 05F X¥ o 1
* * * *
xH *® xH *
* ><*>\<>< * X\ X
or « X il o + X**x il
X X & * x &
] X 2 x X jé] X 2 % X /%*X |
-0.5r N x Z@e -0.5F A x X
* x £ x * X (Kx
* X LK * X o
1l XX XK | b X%&‘_Xfﬁ |
B Sree
X >¢»<>2< x X >¢<>2< X
1. 15—
15 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 - 15 -
X xoox oy K xoox oy
X
1t bk S 1 1t " S 1
s s N R e N
; S % % HeX x X
0.5} ;gx » XX?‘% 1 0.5} gi% » @% 1
«/ * ¥ *
* K * Fox
or o 1 o # o]
\ /. \ /
N x 4ok % X 8
* XK« X /’ X x X /’%
-05f . % “ yj?; 050 & «oF
* X K x * x K x
X%%\X /K X%%\x X/%K
1) ot] 1} e :
X
X >¢<>2< X X >4¢<>2< X
-1. L L L L L L L _1.5 L L L L L L L
15 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

15 = 15 X
R Y " B
ir K 1 1t R |
“ £ x
i £ N ot) s N
Kok X *;K Hox Xk
0.5¢ X ><><’§; il 0.5 Qi% x XX%; |
¥ R 7 b
/ X X i L /ﬂ)‘6 Xy X i
of Q&X / or 4 x**x /
.
. ﬁ; . Xxg X%* . XX//%
-0.5- ¥ % « % 1 -0.5F 2) 1
x*\ Y e %;%
\>\<>< /ﬁx %é\>\<>< /% X
Xk X x 2K X ¥ X X7k
1t *y 1t %%— prd B
%X % %X
X ><><>e< x X >‘><>e< X
1. L L L L L I 1 -1.5 1 L L I I I I
° 5 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 22: ny = 7 in Table 3. Results for

minimum of J* (left) and maximum of J* (right).

41

15

0.5

15

0.5

15

0.5

Figure 25: ny = 4 in Table 4. Results for

% 15 %
o X ox oy o X ox oy
X * % N(X) S N (x)
x X%
gﬁggg‘i o e 1 0.5¢ %gﬁai %< 1
5@6/ k3 o ﬁé
Xy \ / *X
// X\ X] oF // X\ X i
\X ; \ X ,
* x & * x &
><%\\ X //><>< ><%\\ X //><><
N ii . X /?7&*% 1 -0.5r Z %% . X /7%%]
%\ \
x*%% NS
X e 1 -1r x e 1
X >¢<>2< X X >4¢<>2< X
. 15
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

— 15 —
o X x oy o X x oy
x o x —
X) 1r X2 X)
X 4
% % ¥ x N(X) S ¥ x N(X)
%EXKX X % X eg&
%)i% x %égfe] 0.5r X < X]
J *>< //
* X\ X] L ; X\ X i
X , 0 IS ,
: 5 \ 5
xR Xx&g XK« X//><X
X NN X XK 1 -0.5F ﬁ\\ « P]
T K
X X
&%@é« -1 e]
X
% %
X >¢<>2< X X >4¢<>2< X
L L L L L L L _1.5 L L L L L L L
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

X 15 X
& x Xy S Xy
X
— | 1 %g% - i
%g&m%x * % N e %x * % N(x)
HX x X $6x Xk
XE X 1 0.5 y K 1
¥ * *
* ><¥\<>< | oF * ;k\ X |
¥ , 2 /
3 x A x &
X*\% . % /*f X%* . % //*j
X >§<\ X 7 7 -0.5r x X*\ x 34% 4
* % g *ox 4
K R aF
X % X
e et -1r -]
xx % xx
X ><><>e< x X >‘><>e< X
I I I I I . L -1.5 L I I I I . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

42

15 = 15 =
. S X Xy . S X Xy
Xx% 5 < NG 2 3 < NG
x X P X \>%<
050 ¥ Xxi% 1 05 ¥ %]
% Ay ?K N\
07 X 0 X
* ’ ’
N P N &
05 X*;% « x%/%é o5 x%\ « X><//><>1;<K
- [x >§<\ X ;@ﬁ 7 - rox S « /></ ¥ i
ﬁé\x %’zﬁx %\o& (Kx
-1t Xt&?wx& 1 -1r X&Wﬁ 1
X i X i
X >2< X X >2< X
-5, 1 2 3 4 5 6 7 -9, 1 2 3 4 5 6 7

15 - 15 -
§ X xoox oy) 0K xoox oy
1t S 1 1t S 1
@{"Mﬁ * * N (X) %%% x X *%%KX * * N (X)
. x *&(il x %
05 XF s 1 05 ¥« Xxﬁx 1
K % K *
or # e 1 or * % 1
S , S ,
4 X & N P
xyzg « X /’%f X%% x /s j
-0.5F 2 x /;(’Zﬁ -0.5F EN x A 1
% : T
1 X%%wxx% 1 R 3 :
WM R
X >¢<>2< X X >4¢<>2< X
-1. Il Il Il Il Il Il Il _1.5 Il Il Il Il Il Il Il
15 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

15 . 15 .
& x Xy S Xy
X
1 okl -] 1 B -]
S s N R N
ok ¥ Fo< X ﬁe
0.5¢ >g§;§§‘ X ><><l§;§ b 0.5+ %i% x >¢<>§; R
K >§§ Nl *
* *XX * X
or # X 1 of * X i
Mg , * ,
x*;% % 5% X;EK % x5
KX KX
-05r ><>§<\\ x Z(Zﬁ 1 -0.5r X%* « ZQK%]
%%\& %ék X X %é% X
1 R X 1 B ey 1
- SO - Fo ok
XX il
X%« X%«
-1 I I I I I I I 15 I I I I I I I
5 0 1 2 3 4 5 6 7 0 1 2 3 5 6 7

Figure 28: n; = 7 in Table 4. Results for minimum of J* (left) and maximum of J* (right).

43

15

0.5

15

0.5

15

0.5

Figure 31: ny; = 4 in Table 5. Results for

- 15 -
X X x oy X X x oy
T : 1t K T]
* x ~ X X
ek %& % % N(X) £ ﬁ% N
Fo£ x % % xRy
%)i% X >¢<§§% b 0.5+ 2% « %\5 i
ok * ok #x
* \ X 9 KX
4 T y i o N]
* % y
x*‘% « ><></’3<< * X*;& x XX/%
. & " /y(ﬁéx -05F X » /y(ﬁ |
X
K | i Feor
X >¢»<>2< ><>§< X >¢<>2< ><>¢<
‘ ‘ ‘ ‘ ‘ ‘ ‘ 15 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

< 15 <
X xoox oy K xoox oy
e oo : 1t A S 1
R © e N i * e N
HoX X % K x *®
Yi% X >¢<‘5§% il 0.5¢ %)ﬁ? X xjx 1
v s %
xik **x f* Rx
* Xy X] of 4 H X]
* 2 , ><>$é\>< ,
* X /. ® X /
X R x b * 1 -0.5F ng\ﬁ « /y;jex j
ﬁé& % x %ﬁx !k
x %%X%!;;é@e | 4l X x%%égégé |
X<
X >¢<>2< X X >4¢<>2< X
Il Il Il Il Il Il Il _1.5 Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

X 15 X
;@g& X xooxy XX X x oy
K X X Xy x X
AN L AR frNK
#X X Xk
« ¥ 1 05 ¥ 'S 1
* ™ * %;ﬁ
sk * x#
* X
* Xiixx . of j Xx%xx 8
% / * /
3 X bk 3 X &
X** X o /;g@(X*;%‘ X * /égié
x A x /j:k -0.5r Xﬁ«% x o]
Py ,
x*;:“ ’QSK) xﬁgx ’Qé)
X i L * oo X 1
%K& sg* -1 o é@é
» ot
X%« X%«
I I I I I I I 9. I I I I I I I
0 1 2 3 4 5 6 7 5 0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

44

X
S X Xy
T s e N
Hx x %k
*i% X %éi;)
xK *
* X
* Xx%;kx .
M X 5
X ><>5§\ x Xy il
Kx L
X K
X X x XW
0 1 2 3 4 5 6 7

X
o X x oy
T L NE
HoeX x X
S |
¥ &
* Fix
* X}Kx]
* /
X*;% x Xxg
. >§<\ . ,j:ﬁ X |
* x [Fx
X*%ﬁ&wxgé%ﬁ |
ol
XK x
0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

15 - 15
X X x oy
i R * ok N(X)
ot Xk
05r X¥ o 1 0.5
* *
o %
* >?K>\<><
0, / P% 7 0
* *% /
* X K
X X
* X ’
-05f & x Zgﬁé 1 -0.5
*
T
1t K- Xﬁ* - -1
o X
X >2< X
15 ‘ ‘ ‘ ‘ ‘ ‘ 15
57 1 2 3 4 5 6 7
Figure 32: n; =5 in Table 5. Results for
15 - 15
X X x oy
1 P -] 1
R % o N
ﬁéﬁ%ﬁ x X
0.5- //x % %éﬁ% 1 0.5
¥ 5
N X
o - o 0
*
% xRy ><></§<<
X
-0.50 ;%@\)"] -0.5
% o
1 AR] 1
gt
X >2< X
-1. Il Il Il Il Il Il Il _1.5
5 1 2 3 4 5 6 7
Figure 33: ny = 6 in Table 5. Results for
15 < 15
X X x oy
1 PN - : 1
SR Y * o+ N(X)
Forpt x %
o5t KX X 1 05
// %X
¥ **X
o o] 0
A
X%* y XX/*T
-05r ¥ * x] -0.5
X o
%\X X
X%%\x &
1| B] -1
o XX
X X X
1. L L L L L L L 1.
57 1 2 3 4 5 6 7 >
Figure 34: ny = 7 in Table 5. Results for

X
2 xoox oy
%ﬁi%%% I 4
A s N
HX x %
%i% X ><><é§;< il
Nl *
* \
* Ko, 1
Ry /
x;ﬁ\ ><></§<:K
* X W/%X]
X ng\é X /%%
£ o
X %%é_xx |
e
X >¢<>e< X
0 1 2 3 4 5 6 7

minimum of J* (left) and maximum of J* (right).

45

15 - 15 -
X Xy S X Xy
¥ K o NK) % o NK)
4 *
v X ¥ X
0.5f X Py 1 osf & s 1
xX
Xy * Xy N,
* ji;x | ¥ Zf;x]
or ¥ , 0 % g
* * x4 " * x5
X * X X /%ié X * X X , 5@6
-0.5r X%\K\ x éé@é B -0.5r X%\é\ « %;@e |
WX X X X
* X , * X ,
XK X X
-5 1 2 3 4 5 6 7 -5 1 2 3 4 5 6 7
Figure 35: n; = 15 for regularization method I. Results for minimum of J* (left) and
maximum of J* (right).
15 < 15 <
o XX
*
1 T i 1t %Eg&%é i
% P K
ook " %% %XXX % %*
0.5(g?éx x ani(1 0.5(% o ke 1
/ * \
;)2 t%fx :él >?9\<><
or e o o/ e T
* x X N X K
* o X Lok Ty x x
050) « X 050) < #
Fax % x Kx X
* X , ,
1 X%;gég—xxﬁ] 1 R 4
- ;, -
X X><>3< ><><>< X X><>3< ><><><
-15 I I I I I I I -15 I I I I I I I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 36: n; = 15 for regularization method III. Results for minimum of J* (left) and
maximum of J* (right).

46

