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Abstract. We prove an asymptotically sharp dimension estimate for
sets with large porosity in a collection of metric spaces. This generalizes
a dimension estimate first proven by A. Salli. From the metric space
we assume, among other properties, that it can be locally mapped into
R

n in a way that allows us to use Euclidean projections. We show
that R

n with any norm satisfies these conditions as well as every step
two Carnot group. We also discuss the necessity of the conditions by
examining various metric spaces where the estimates fail.

1. Introduction

Lower-porous sets have holes of certain relative size in all small enough
scales. They differ from upper-porous sets, which have holes only in some
sequences of scales. The dimension of lower-porous sets in R

n can be
bounded away from n with a function depending only on the porosity.
Such a function cannot be found for upper-porous sets. This can be seen
by constructing a maximally upper-porous set in R

n that has dimension n

(see [13, §4.12]). In this paper we will work only with lower-porosity and
therefore every time we speak of porosity we mean lower-porosity.

The fact that porous sets have dimension less than the dimension of
the ambient space is well known even for s-regular metric spaces (See [3]
and Section 6). In many applications information on the dimension of
certain sets is obtained via porosity. See the use of porosity for example in
connection with free boundaries [11] and complex dynamics [15]. Porosity
is also a property which is (qualitatively) preserved, for example, under
quasisymmetric maps [17].

In this paper we study the upper bound on how much the dimension
can drop when porosity is close to its maximum. The first result in this
direction was obtained by P. Mattila in [12] where he proved that when
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a set in R
n has porosity close to its maximum the dimension of the set

cannot be much larger than n − 1. This result was later improved by A.
Salli in [16]. He proved the dimension estimate

dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)
(1)

for ρ-porous sets A ⊂ R
n with a constant C depending only on n. Here

dimp is the packing dimension.
Porosity has been generalized in many directions and dimension results

similar to (1) hold in many of these generalizations. A. Käenmäki and V.
Suomala proved in [10] that a k-porous set in R

n having k-porosity close to
1
2

must have dimension at most close to n−k. By k-porosity we mean that
there are holes in k orthogonal directions in reference balls. This result
was improved in [9].

For mean porous measures dimension estimate similar to (1) has been
obtained in [1]. In mean porosity we require holes to appear only in some
percentage p of (for example) dyadic scales. With mean porosity the term
n− 1 in (1) is replaced by n− p. For the definition of porosity of measures
see [4] and for other results on measures with large porosity see [2], [6] and
[7].

In this paper we prove that the estimate of Salli holds in finite dimen-
sional normed vector spaces and step two Carnot groups equipped with
certain metrics of sub-Riemannian type. The idea in the proof is to use
Euclidean projections to a set of directions to move a cover of a porous set
to hyperplanes of R

n.
In Section 2 we introduce the notion of porosity and state our theorem

and some of its corollaries. Section 3 will deal with porosity in normed
vector spaces and Section 4 in step two Carnot groups. In Section 5 we
prove our main theorem and in the last section, Section 6, we give examples
illustrating that the dimension results for large porosity do not generalize
to geodesic regular metric spaces nor to bi-Lipschitz images of R

n.

2. Porosity in Metric Spaces

We start by introducing notation and definitions used in this paper.
Some of the definitions are left to be introduced in the later sections of the
paper where they are used. Let (X, d) be a metric space. First we note
that B(X,d)(x, r) is a closed ball in X centred at x with radius r. If we are
using only one metric d in our space, we may also write BX(x, r). By Sn−1

we mean the unit sphere in R
n. Following the convention introduced in
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[14], we define for a set A ⊂ X, a point x ∈ X and a radius r > 0

por(A, x, r) = sup{ρ ≥ 0 : there is y ∈ X such that BX(y, ρr) ∩ A = ∅
and ρr + d(x, y) ≤ r}.

(2)

The porosity of A at a point x is defined to be

por(A, x) = lim inf
r↓0

por(A, x, r) (3)

and the porosity of A is given by

por(A) = inf
x∈A

por(A, x). (4)

We call A ⊂ X porous if por(A) > 0, and more precisely, ρ-porous provided
that por(A) > ρ. From (2) we see that there can be only ρ-porous sets
with ρ < 1

2
. We call a set A maximally porous, if por(A) = 1

2
.

As in [13, §5.3], we define for a bounded set A ⊂ X, λ ≥ 0 and r > 0

Mλ(A, r) = inf{krλ : A ⊂
k

⋃

i=1

BX(xi, r) for some xi ∈ X and k ∈ N}

with the interpretation inf ∅ = ∞. The (upper) Minkowski dimension of a
bounded set A is

dimM(A) = inf{λ : lim sup
r↓0

Mλ(A, r) < ∞}.

The packing dimension of A ⊂ X is given by

dimp(A) = inf
{

sup
i

dimM(Ai) : Ai is bounded and A ⊂
∞
⋃

i=1

Ai

}

.

We use the notation Hd for the d-dimensional Hausdorff measure and
dimH for the Hausdorff dimension, see [13] for the definitions. Recall that
for all sets A ⊂ X we have

dimH(A) ≤ dimp(A).

Next we fix some notation in R
n. We denote the convex hull of E ⊂ R

n

by conv(E) and the boundary of E by ∂(E). Let x ∈ R
n, v ∈ Sn−1 and

α ∈]0, π[. With these parameters we define a cone

C(x, v, α) = {y ∈ R
n | dE(y, L(x, v)) ≤ sin(α)dE(x, y)},

where
L(x, v) = {x + tv ∈ R

n | t ∈ [0,∞[}
and dE is the Euclidean metric. The orthogonal complement of E is de-
noted by E⊥ and the Euclidean inner product between vectors x, y ∈ R

n

by (x|y).
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Let (X, d) be a metric space. The following definition gives the maximum
number of disjoint balls of radius R in X such that the centres of the balls
can be mapped for fixed y ∈ R

n and R > 0 into BRn(y, R) with a map
f : Y → R

n, where Y ⊂ X. Define for every R > 0 and y ∈ R
n

N(R, y, f) = max
{

m | x1, . . . , xm ∈ Y such that f(xi) ∈ BRn(y, R)

and BX(xi, R) ∩ BX(xj , R) = ∅ for i 6= j
}

.

Next we state our main theorem. After that the assumptions of the
theorem are motivated by corollaries and the role of each assumption is
clarified in a remark. More examples satisfying the assumptions will be
given in the last section of the paper. There the dimension estimates
derived from the Theorem 2.1 are not of the type (1).

Theorem 2.1. Let (X, d) be a separable metric space. Assume that there

are constants r0, Ri, Ro, c, t > 0, 0 < s ≤ 1 and n ∈ N so that every

x ∈ X and 0 < r < r0 have the following properties: If y, z ∈ BX(x, r0)
and dX(y, z) = r, then for every ǫ ∈]0, 1[

BX(z, (1 − ǫ)r) ∩ BX(y, cǫsr) 6= ∅. (5)

There exists an injective map fx,r : BX(x, 4r) → R
n so that for all 0 <

R < r and y ∈ BX(x, 2r)

BRn(fx,r(y), Rir) ∩ fx,r(BX(x, 4r)) ⊂ fx,r(BX(y, r)), (6)

fx,r(BX(y, R)) ⊂ BRn(fx,r(y), RoR) (7)

and

conv
(

fx,r(BX(y, r))∪BRn(fx,r(y), Rir)
)

∩ fx,r(BX(x, 4r))

= fx,r(BX(y, r)).
(8)

Assume for every y ∈ R
n and 0 < R < r

N(R, y, fx,r) ≤ c
( r

R

)t−n

. (9)

Then for any ρ-porous subset A ⊂ X we have

dimp A ≤ t − 1 +
C

log( 1
1−2ρ

)
, (10)

where the constant C depends on n, Ri, Ro, s, t and c.

Remark 2.2. Assuming separability is natural when we want to get dimen-
sion estimates. Assumption (5) guarantees that the porous set lives in a
suitable neighbourhood of the holes. Assumptions (6), (7) and (8) allow
us to use Euclidean projections when finding a cover for the porous set.

The first inclusion (6) says that there is a Euclidean ball with radius Rir

inside an image of a ball of radius r. We take the intersection with the
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whole image here to allow the maps fx,r to have, for example, holes inside
their images. To estimate to the other direction we assume (7), which says
that the images of small balls are included in a slightly larger Euclidean
balls.

According to the equality (8), the images of balls of radius r are relatively
convex with respect to the whole image. Moreover, taking the union with
the Euclidean ball of radius Rir guarantees the existence of large enough
cones inside the images of the balls, see inclusion (15). Here we again have
the intersection with the whole image for the same reason as in (6). Growth
bound (9) gives an estimate on the relative change of the number of balls
needed for a cover when we move from R

n to X.

As the first corollary we have a generalization of the estimate (1) to
normed vector spaces.

Corollary 2.3. Let || · || be a norm in R
n. Then for every ρ-porous subset

A ⊂ R
n we have a dimension estimate

dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n.

The second corollary shows that with the functions fx,r in Theorem
2.1 we can prove estimate (1) in R

n with modified group structures. In
particular, we prove the estimate in step two Carnot groups.

Corollary 2.4. Let G = R
n × R

m be a step two Carnot group with S as

its bilinear form. Then for every ρ-porous subset A ⊂ G we have

dimp A ≤ n + 2m − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n, m and S.

We will prove these corollaries in detail in the next two sections of the
paper. Note that in the first corollary the constant C depends only on the
dimension of the space and not on the norm || · ||. We prove the following
third corollary of the Theorem 2.1 here.

Corollary 2.5. Let (X, d) be a geodesic metric space. Assume that X

is bi-Lipschitz equivalent to R
n and that the images of balls under the bi-

Lipschitz mapping f are convex. Then for all ρ-porous subsets A ⊂ X we

have

dimp A ≤ n − 1 +
C

log( 1
1−2ρ

)
,

where the constant C depends only on n and the bi-Lipschitz constant of f .
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Proof. Let us check that the assumptions of the Theorem 2.1 are satisfied.
The space (X, d) is clearly separable and because of geodesity the condition
(5) holds with c = 1 and s = 1. As fx,r we can take the restrictions of
the bi-Lipschitz map f . Let L be the bi-Lipschitz constant of f . Then the
assumption (6) is satisfied with Ri = 1

L
and the assumption (7) with Ro =

L. Assuming convexity of the images of the balls in X under f guarantees
that the condition (8) holds. A simple volume comparison argument gives
condition (9) with t = n and c depending on n and L. �

3. Porosity in Normed Vector Spaces

Before any investigation is done on porous sets with different norms it
is natural to ask if different norms give different porosity on sets. This is
indeed the case as easily seen for example by looking at ({0} × R) ∪ (R ×
{0}) ⊂ R

2 which is maximally porous in maximum norm, but not in the
Euclidean one.

Because in this section we use different norms let us denote the Euclidean
one by || · ||E. Let then

B(x, r) = {y ∈ R
n : ||y − x|| ≤ r}

and

BE(x, r) = {y ∈ R
n : ||y − x||E ≤ r}

be the closed balls in R
n.

For a given norm || · || in R
n and a subspace V ⊂ R

n we define the outer
radius

Ro,||·||(V ) = min{R > 0 : B(0, 1) ∩ V ⊂ BE(0, R)}
and the inner radius

Ri,||·||(V ) = max{R > 0 : BE(0, R) ∩ V ⊂ B(0, 1) ∩ V }.
Clearly 0 < Ri,||·||(V ) ≤ Ro,||·||(V ) < ∞ and

Ri,||·||(R
n)|| · || ≤ || · ||E ≤ Ro,||·||(R

n)|| · ||.
These radii have similar nature as the radii Ro and Ri in the assumptions
of Theorem 2.1.

Remark 3.1. With every norm || · || in R
n all the balls are convex: Let

z, y ∈ B(x, r) and t ∈ [0, 1]. Then

||ty + (1 − t)z − x|| ≤ ||ty − tx|| + ||(1 − t)z − (1 − t)x|| =

= t||y − x|| + (1 − t)||z − x|| ≤ r.

Proving Corollary 2.3 with a constant depending also on the norm is
very easy. In fact, it would follow right away from Corollary 2.5 using the
identity map from R

n with the original norm to R
n with the Euclidean
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norm. The independence of the norm comes from shrinking and stretching
the space.

Proof of Corollary 2.3. We construct the function fx,r, independently of
x and r, so that it shrinks the original norm || · || in n − 1 orthogonal
directions. Let us first choose the directions u1, . . . , un−1. Let u1 be such
a vector that ||u1|| = 1 and ||u1||E = Ro,||·||(R

n). Next take u2 ∈ {u1}⊥ so
that ||u2|| = 1 and ||u2||E = Ro,||·||({u1}⊥). We continue choosing rest of
the vectors inductively, that is, uk ∈ {u1, . . . , uk−1}⊥ so that ||uk|| = 1 and
||uk||E = Ro,||·||({u1, . . . , uk−1}⊥) for all k = 2, . . . , n − 1.

Next we start modifying the norm in a reversed order. In the un−1-

direction shrink the norm first by
Ri,||·||({u1,...,un−1}⊥)

Ro,||·||({u1,...,un−2}⊥)
. The first shrinking

gives a norm || · ||1. By shrinking a norm || · || by a constant t in the
direction of v we mean the following: as the result of shrinking we get a
norm || · ||1, defined as

||x||1 = ||y +
z

t
||,

where x = y + z with z ∈ {ηv : η ∈ R} and y ∈ {v}⊥. Next shrink the

norm || · ||1 in un−2-direction by
Ri,||·||1

({u1,...,un−2}⊥)

Ro,||·||1
({u1,...,un−3}⊥)

. This gives a norm || · ||2.
Continue the procedure and finally shrink the norm || · ||n−2 in u1-direction

by
Ri,||·||n−2

({u1}⊥)

Ro,||·||n−2
(Rn)

. Let us now estimate the inner radius. Because the ball

B||·||s(0, 1) is convex the set

conv
({

± Ri,||·||s({u1, . . . , uk}⊥)

Ro,||·||({u1, . . . , uk−1}⊥)
uk

}

∪
(

BE(0, Ri,||·||s({u1, . . . , uk}⊥)) ∩ {u1, . . . , uk}⊥
)

)

(the darker area in Figure 1) lies inside the ball for all k ∈ {1, . . . , n − 1}
and we have

Ri,||·||s({u1, . . . , uk−1}⊥) ≥ Ri,||·||s({u1, . . . , uk}⊥)√
2

(11)

for all k ∈ {1, . . . , n − 1}. To get an estimate for the outer radius take
k ∈ {1, . . . , n−1} and x ∈ BE(0, Ro,||·||s({u1, . . . , uk−1}⊥))∩{u1, . . . , uk−1}⊥
and write it as x = y + z where y ∈ {u1, . . . , uk}⊥ and z ∈ {ηuk : η ∈ R}.
From the shrinking we then have

||z||E ≤ Ri,||·||s({u1, . . . , uk}⊥).

From convexity we get

||y||E ≤ 2Ro,||·||s({u1, . . . , uk}⊥).
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Ri,||·||s({u1}⊥)

Ro,||·||s({u1}⊥)

Ro,||·||(R
n)

u1

Figure 1: Shrinking in the direction of u1 (right). By convexity the darker
area must be inside the new ball and the original ball must be contained
in the lighter area.

If this were not the case the set

conv
({

x,± Ri,||·||s({u1, . . . , uk}⊥)

Ro,||·||({u1, . . . , uk−1}⊥)
uk

})

∩ {u1, . . . , uk}⊥

would not be contained in BE(0, Ro,||·||s({u1, . . . , uk}⊥)). In the Figure 1
the light gray area shows where the x can lie before shrinking. From the
estimates for y and z we get

Ro,||·||s({u1, . . . , uk−1}⊥) ≤
√

5Ro,||·||s({u1, . . . , uk}⊥). (12)

Note that the constants in the inequalities (11) and (12) are not sharp.
These two inequalities together yield

Ro,||·||s({u1, . . . , uk−1}⊥)

Ri,||·||s({u1, . . . , uk−1}⊥)
≤

√
10

Ro,||·||s({u1, . . . , uk}⊥)

Ri,||·||s({u1, . . . , uk}⊥)
(13)

for all k ∈ {1, . . . , n − 1}. Next observe that

Ri,||·||s({u1, . . . , un−1}⊥) = Ro,||·||s({u1, . . . , un−1}⊥),

since {u1, . . . , un−1}⊥ is a line. Finally combine this with (13) to get

Ro,||·||s(R
n)

Ri,||·||s(R
n)

≤ (10)
n−1

2 . (14)
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By shrinking the space the same way we shrank the norm we get an isom-
etry between the original normed space and the new one. In particular,
porosity does not change when moving from one space to the other nor
does the dimensions of sets.

We choose fx,r to be the identity in the new normed space. Take
Ri = Ri,||·||s(R

n) and Ro = Ro,||·||s(R
n). The condition (5) is satisfied

with constants c = s = 1 because of the linear structure. By construction
the assumptions (6) and (7) are satisfied. The assumption (8) was proven
to hold in Remark 3.1. The condition (9) is satisfied with t = n and c

depending on n, Ro and Ri as seen by a volume comparison principle . By
scaling the whole space so that Ri = 1 the inequality (14) gives an absolute
estimate for the constant Ro and hence the constant C depends only on
n. �

4. Porosity in Step two Carnot Groups

We define a step two Carnot group to be

G = R
n × R

m

with a group law

(x, y) ◦ (x′, y′) = (x + x′, y + y′ + S(x, x′)),

where S(x, x′) is a skew-symmetric bilinear function from R
n × R

n to R
m

with integer coefficients when expressed in the standard bases of R
n and

R
m. We will use one of the natural sub-Riemannian type metrics on the

group G which is given by

dG(a, b) = [a−1 ◦ b]

with

[c] = max{||z||E, ||t||
1

2

E} for c = (z, t) ∈ G.

With this metric balls are convex from the Euclidean perspective, and that
is why we use it instead of the Carnot-Carathodory or any other natural
metric defined on Carnot groups. Clearly the Hausdorff dimension of the
space G is n+2m. The (first) Heisenberg group is just H

1 = R
2 ×R

1 with
the bilinear form

S((x1, x2), (x
′
1, x

′
2)) = 2(x′

1x2 − x1x
′
2).

Proof of Corollary 2.4. Recall that

dG((a1, a2), (y1, y2)) = max{||y1 − a1||E, ||y2 − a2 − S(a1, y1)||
1

2

E}
for all (a1, a2), (y1, y2) ∈ G. Hence a ball centred at (y1, y2) ∈ G looks like
a diamond with sides of Euclidean balls. Define a constant

C(S) = max{||S(b, c)||E : ||b||E = ||c||E = 1}
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and a mapping f0,r : BG(0, 4r) → R
n+m by f0,r(y1, y2) = (y1,

y2

r
). This

mapping stretches the space in the direction where we use the square root
metric so that balls with radius r look almost Euclidean. By translating
we define fx,r(y) = f0,r(x

−1 ◦ y) for every x ∈ G. Let us now check the
assumptions of Theorem 2.1.

For showing that (5) is satisfied with c =
√

2 and s = 1
2

we may assume
that z = 0. Let y = (y1, y2) ∈ G, dG(y, z) = r > 0 and ǫ ∈]0, 1[. Define
w = ((1 − ǫ)y1, (1 − ǫ)2y2). Now notice that because

dG(w, z) = max{||(1 − ǫ)y1 − 0||E, ||(1 − ǫ)2y2 − 0 − S(0, (1 − ǫ)y1)||
1

2

E}

= max{(1 − ǫ)||y1||E, (1 − ǫ)||y2||
1

2

E} = (1 − ǫ)r

and

dG(y, w) = max{||y1 − (1 − ǫ)y1||E, ||(1 − ǫ)2y2 − y2 − S(y1, (1 − ǫ)y1)||
1

2

E}

= max{ǫ||y1||E,
√

2ǫ − ǫ2||y2||
1

2

E} ≤
√

2ǫr

we have

w ∈ BG(z, (1 − ǫ)r) ∩ BG(y,
√

2ǫr).

To prove that (6) holds with the constant Ri = min{1
2
, 1

4C(S)
}, take y ∈

BG(0, 2r) and z ∈ BG(0, 4r) so that dRn+m(f0,r(y), f0,r(z)) ≤ Rir. Now

dG(y, z) = max{||y1 − z1||E, ||y2 − z2 − S(y1, z1)||
1

2

E}
≤ max

{r

2
, (||y2 − z2||E + ||y1||E||z1 − y1||EC(S))

1

2

}

≤ max
{r

2
,
(r2

2
+ 2r

r

4C(S)
C(S)

)
1

2
}

≤ r.

Next we show that the assumption (7) holds with a constant Ro = 2(C(S)+
1). Taking y ∈ BG(0, 2r) and z ∈ BG(0, 4r) so that dG(y, z) < R < r, we
obtain

dRn+m(f0,r(y), f0,r(z)) ≤ ||y1 − z1||E +
1

r
||y2 − z2||E

≤ R +
1

r

(

R2 + ||S(y1, z1)||E
)

≤ R +
1

r

(

R2 + ||y1||E||y1 − z1||EC(S)
)

≤ R +
1

r

(

Rr + 2rRC(S)
)

= RoR.
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Because of the shape of the balls assumption (8) clearly holds. Finally, we
confirm that the condition (9) holds with t = 2m + n and

c =
Hn+m(BRn+m(0, 1))(Ro + 1)n+m

Hn(BRn(0, 1))Hm(BRm(0, 1))
.

Take y ∈ R
n+m, 0 < R < r and x1, . . . , xk ∈ G so that BG(xi, R) ∩

BG(xj , R) = ∅ when i 6= j and f0,r(xi) ∈ BRn+m(y, R). From the fact that
the bilinear form S does not change the Euclidean Hausdorff measure of
the balls and from the definition of the mapping f0,r we can calculate

Hn+m(f0,r(BG(xi, R))) = Hn+m(f0,r(BG(0, R)))

= Hn+m(BRn(0, R) × BRm(0, R2r−1))

= Hn(BRn(0, 1))Hm(BRm(0, 1))
Rn+2m

rm
.

On the other hand, because (7) holds we have

f0,r(BG(xi, R)) ⊂ BRn+m(f0,r(xi), RoR) ⊂ BRn+m(y, (Ro + 1)R).

Comparing the volumes we get

k ≤ Hn+m(BRn+m(0, 1))(Ro + 1)n+m

Hn(BRn(0, 1))Hm(BRm(0, 1))

Rn+mrm

Rn+2m
= c

( r

R

)m

and the proof is finished. �

5. Proof of the Main Theorem

Before we start proving Theorem 2.1 we introduce one more notation.
From the two relative radii Ri and Ro given in Theorem 2.1 we define an
angle

α = tan−1
(Ri

Ro

)

.

From the convexity assumption for the images of the balls (8) we see that
for every z ∈ conv(fx,r(BX(y, r)) ∪ BRn(fx,r(y), Rir)) \ {fx,r(y)}

C(z,
v

||v||E
, α) ∩ BRn(z, ||v||E) ∩ fx,r(BX(x, 4r)) ⊂ fx,r(BX(y, r)), (15)

where v = fx,r(y) − z. See Figure 2 for this conclusion.
The next lemma will deal with the Euclidean projection part of our proof.

For similar conclusions, see for example [6, Theorem 2.2] and [1, Lemma
3.4].

Lemma 5.1. With the same assumptions as in Theorem 2.1 let r < r0,

x ∈ X, c > 0, 0 < s ≤ 1, 0 < ρ < 1
2

and R =
Ri tan α

4

Ro
r. Assume that
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α

Ror

Rir

fx,r(y)z

Figure 2: A cone opening with an angle α to the direction of the image
of centre of the ball is included in the image of the ball. Here z is chosen
to have the maximum distance to fx,r(y) which is the extreme case.

{BX(xi, r) | i ∈ I} is a collection of balls with {xi | i ∈ I} ⊂ BX(x, 2r).
Let

D = ∂
(

conv(fx,r(BX(x, R)))\
⋃

j∈I

conv(fx,r(BX(xj , r))∪BRn(fx,r(xj), Rir)
)

.

Then there are at most c′(1−2ρ)−s(n−1) disjoint Euclidean balls with centres

in D and radius c(1 − 2ρ)sr, where c′ depends only on Ri, Ro, n, c and s.

Proof. We may assume that I is finite. First we cover the space R
n with

N cones

Cj = C(fx,r(x), vj,
α

4
),

where v1, . . . , vN ∈ Sn−1 and N depends on α and n. Fix j = 1, . . . , N and
select a subcollection of balls

Ij = {i ∈ I | fx,r(xi) ∈ Cj}.
Take any point

y ∈ Dj = ∂
(

⋃

l∈Ij

conv(fx,r(BX(xl, r)) ∪ BRn(fx,r(xl), Rir))
)

∩ conv(fx,r(BX(x, R))).

Now as the set Ij is finite there exists an index i ∈ Ij so that

y ∈ ∂
(

conv(fx,r(BX(xi, r)) ∪ BRn(fx,r(xi), Rir))
)

.
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α
4

α
4

α
2

α
2

RoR

Rir

fx,r(x)

y

vj

fx,r(xi)

Figure 3: The choice of r and R is based on the worst case scenario.

Because dE(fx,r(xi), y) ≥ Rir the angle between vj and fx,r(xi) − y is at
most α

2
. This follows from the choice of r and R. (See Figure 3.) Let

v = fx,r(xi) − y. By the inclusion (15) we have

C(y,
v

||v||E
, α) ∩ BRn(y, ||v||E) ∩ fx,r(BX(x, 2r))

⊂ fx,r(BX(xi, r)) \ {y}.
These geometric conclusions together give

C(y, vj,
α

2
) ∩ BRn(y, Rir) ∩ fx,r(BX(x, 2r)) ⊂ fx,r(BX(xi, r)) \ {y}.

Now that we have cones opening to a fixed direction vj the projection

projj : Dj → {vj}⊥ : x′ 7→ x′ − (x′|vj)vj

satisfies the following inequalities for every x1, x2 ∈ Dj

dE(projj(x1), projj(x2)) ≤ dE(x1, x2)

≤
(

sin(
α

2
)
)−1

dE(projj(x1), projj(x2)),

see Figure 4. Hence it is a bi-Lipschitz map with Lipschitz constant
(

sin(α
2
)
)−1

.
Take Mj disjoint Euclidean balls BRn(wi, c(1 − 2ρ)sr) with centres wi ∈

Dj . Because projj is
(

sin(α
2
)
)−1

-bi-Lipschitz the balls

BRn−1(projj(wi), sin(
α

2
)c(1 − 2ρ)sr)

are also disjoint. On the other hand, by (7) they are all centred in

BRn−1(projj(fx,r(x)), RoR).
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α
2

α
2

projj(x1)

projj(x2)

x1

x2

vj

Figure 4: Cones opening to the direction vj from each point in Dj guar-
antee the bi-Lipschitzness of the projection.

Hence

Mj ≤ c′
( RoR

sin(α
2
)c(1 − 2ρ)sr

)n−1

= c′′(1 − 2ρ)−s(n−1),

where c′ depends on n and c′′ depends on n, c, Ri and Ro. Multiplying this
constant by N gives the desired upper bound for the packing of

∂
(

⋃

l∈I

conv(fx,r(BX(xl, r)) ∪ BRn(fx,r(xl), Rir))
)

∩ conv(fx,r(BX(x, R))).

To finish the proof we cover the set

∂
(

conv(fx,r(BX(x, R)))
)

with c′′′(1−2ρ)−s(n−1) disjoint Euclidean balls with radius c(1−2ρ)sr. The
existence of such cover follows immediately from the assumption (7) and
convexity. �

Proof of Theorem 2.1. Cover the set A with uniformly porous subsets

Ak =
{

x ∈ A | por(A, x, r) > ρ for all 0 < r <
1

k

}

,

where k ∈ N. Take a set Ak. Because X is separable the set Ak can be
covered with a countable collection of balls of radius R, where

R = min
{ 1

ηk
,

r0

2(1 + η)

}

and

η =
Ro

Ri tan α
4

.

It is sufficient to estimate the dimension of Ak in these balls separately as
long as the estimate does not depend on the ball. We may therefore assume
that Ak ⊂ BX(x, R) for some x ∈ X. We will estimate the Minkowski
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dimension of Ak. Define r = ηR and form two collections of balls as
follows. First define a collection that covers Ak as

BC = {BX(y, c2s(1 − 2ρ)sr) | y ∈ Ak}
and then a collection of holes as

BH = {BX(zy, ρr) | BX(zy, ρr) ∩ Ak = ∅, y ∈ Ak and ρr + dX(zy, y) ≤ r}.
We may assume that c2s(1 − 2ρ)s < 1. To estimate the number of balls
needed to cover Ak take a maximum subcollection of pairwise disjoint balls
from BC and estimate from above the number of balls, denoted by K, in
this subcollection.

Take a ball BX(y, c2s(1− 2ρ)sr) ∈ BC . There exists a hole BX(zy, ρr) ∈
BH so that BX(zy, ρr) ∩ Ak = ∅, y ∈ Ak and ρr + dX(zy, y) ≤ r, since A is
porous in this scale at point y. For the points y and zy we have

1 − ρr

dX(zy, y)
≤ 2(1 − 2ρ),

which yields together with the assumption (5) that

BX(y, c2s(1 − 2ρ)sr) ∩ BX(zy, ρr) 6= ∅.
Therefore with the assumption (8) in mind we find for each BX(y, c2s(1 −
2ρ)sr) ∈ BC a point

y′ ∈ ∂
(

conv(fx,r(BX(xi, R))) \
⋃

Bl∈BH

conv(fx,r(Bl) ∪ BRn(fx,r(zl), Riρr))
)

so that

y′ ∈ conv(fx,r(BX(y, c2s(1 − 2ρ)sr))) ⊂ BRn(fx,r(y), c2s(1 − 2ρ)srRo).

Assumption (9) tells us that

N(c2s(1 − 2ρ)sr, y′, fx,r) ≤ c1(1 − 2ρ)s(n−t),

which means that from a pairwise disjoint collection of balls from BC at
most

c2(1 − 2ρ)s(n−t)

centres of balls get map to a ball BRn(y′, c2s(1−2ρ)srRo) with the mapping
fx,r. This means that at least

Kc−1
2 (1 − 2ρ)s(t−n) (16)

balls of the form

BRn(y′, c2s(1 − 2ρ)srRo)

are pairwise disjoint. By Lemma 5.1 the maximum number of these disjoint
balls is

c3(1 − 2ρ)−s(n−1). (17)
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Together (16) and (17) imply

K ≤ c4(1 − 2ρ)−s(t−1).

Now that we have an estimate for K we are ready to move to a cover
of the set Ak. This is done by tripling the radii of the balls in the disjoint
collection. Next take a ball from the new collection and continue covering
Ak in it using the same argument. This way we get for every m ∈ N

(c4(1 − 2ρ)−s(t−1))m

balls of radius
(3cRo2

sη(1 − 2ρ)s)mR

that cover the set Ak. Now with

λ = t − 1 +
c5

log( 1
1−2ρ

)

we have limr→0 Mλ(Ak, r) = 0 and hence dimM(Ak) ≤ λ. Because the
constant c5 does not depend on k and x the proof is complete. �

6. Examples where Dimension Estimates Fail

Are there any groups with ’natural’ metrics in which the codimension
of maximally porous sets is less than one? The groups introduced by P.
Erdös and B. Volkmann in [5] serve as a set of examples. They proved that
for each 0 < s < 1 there is an additive subgroup Gs ⊂ R with Hausdorff
dimension s.

Example 6.1. The groups Gs constructed by P. Erdös and B. Volkmann
are chosen using the following representation of real numbers

x = a1(x) +

∞
∑

k=2

ak(x)

k!
,

where ai(x) ∈ Z for all i and 0 ≤ ai(x) < i for all i ≥ 2. Define

Gs = {x ∈ R : ak(x) ≤ c(x)ks or ak(x) ≥ k − c(x)ks for all k ≥ k0(x)}.
These groups are dense in R and hence for example {0}×G 1

2

is 1
2
-porous

in G 1

2

× G 1

2

, but

dimH({0} × G 1

2

) =
1

2
> 0 = dimH(G 1

2

× G 1

2

) − 1.

One immediately sees that the space G 1

2

×G 1

2

satisfies the assumptions

of Theorem 2.1 with fx,r being the identity mapping. The problem is that
it satisfies the condition (9) with a constant t ≥ 2 and so Theorem 2.1 only
gives

dimp({0} × G 1

2

) ≤ 1.
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In [8] we proved that the same asymptotic behaviour is true for the di-
mension of lower-porous subsets of regular spaces as is true in the Euclidean
space. The result is that there exists a constant c that depends only on the
regularity parameters so that for every ρ-porous subset A of an s-regular
space X the dimension is bounded above by

dimp(A) ≤ s − cρs.

This gives naturally the asymptotic behaviour when porosity goes to zero.
The following example shows that an s− 1 estimate for large porosity can
not be true in general s-regular spaces.

Example 6.2. For all n ∈ N we define a metric space (Sn, dn). Here Sn is
the attractor of function system

fi : R
n → R

n : x 7→ 1

2
x + ai,

where

ai ∈ {0, (1
2
, 0, . . . , 0), (0,

1

2
, 0, . . . , 0), . . . , (0, . . . , 0,

1

2
)}.

We define the metric dn as the path-metric induced by the maximum-
metric in R

n. Next we make some observations. The metric space (Sn, dn)
is s-regular, where s is the dimension of the space

dimH(Sn) =
log(n + 1)

log 2
.

Secondly by leaving one coordinate out and hence restricting the space
(Sn, dn) we get (Sn−1, dn−1). Because of the definition of the metric we get
also that

∂BSn
((1, 0, . . . , 0), 1) = {0} × Sn−1.

It is easy to see that in a geodesic metric space the boundary of any ball
is maximally porous. Next we note that when n → ∞

dimH(Sn) − dimH(∂BSn
((1, 0, . . . , 0), 1)) =

log(n + 1) − log(n)

log 2
ց 0.

Look at Figure 5 to see what S3 looks like. Notice that in the picture we
have a more symmetric Sierpinski gasket. This is the same space as in the
case when we use the path-metric induced by the Euclidean one.

Again by Theorem 2.1 we get trivial bounds for the porous subsets in
Example 6.2 using the underlying Euclidean space R

n, but the problem is
the same as in Example 6.1. One direction in the Euclidean sense does not
have to contribute by one to the dimension of the space.

J. Väisälä has shown in [17] that porosity is qualitatively preserved by
quasisymmetric maps, in particular, by bi-Lipschitz maps. Naturally the
porosity might decrease when taking a quasisymmetric image of a porous
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Figure 5: An illustration of space S3 and S2 as ∂BS3
((1, 0, . . . , 0), 1).

set. Nevertheless we might ask if our previous results can be generalized
to quasisymmetric images of R

n. It turns out that this is not true even for
bi-Lipschitz images of R as is shown by the next example.

Example 6.3. Take a λ ∈]0, 1
2
[ and a Cantor λ-set Cλ ⊂ R which is the

attractor of the function system {λx, λx + 1 − λ}. Look at the graph of a
stretched distance function from that set and define the space X ⊂ R

2 as

X =
{

(x, y) ∈ R
2 : y =

3 − 2λ

1 − 2λ
dE(x, Cλ)

}

.

The metric d in X is given by restricting the maximum metric of R
2 to

X. The space (X, d) is now bi-Lipschitz equivalent to R with bi-Lipschitz
constant 3−2λ

1−2λ
and the Cantor set in X i.e.

C =
{

(x, y) ∈ X : y = 0
}

is maximally porous, but still

dimH(C) = dimH(Cλ) =
log(1

2
)

log(λ)
> 0 = 1 − 1.

An example of space X with λ = 1
4

is given in Figure 6.

The space of Example 6.3 clearly violates the condition (5) in Theorem
2.1. The two previous examples have shown that alone the existence of
geodesics in the space or the existence of a bi-Lipschitz map from the space
to R

n is not enough to ensure a dimension result similar to (1). On the
other hand, these two conditions with an extra assumption on the convexity
of balls is sufficient as we proved in the Corollary 2.5. There is still a gap
between positive results and negative examples and it remains open, for
example, whether or not one can drop the assumption on convexity in
Corollary 2.5.
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Figure 6: An example of a bi-Lipschitz image of R where maximally
porous sets can have positive dimension.
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